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Abstract: Extracting and transforming shape features has been an important research domain in
wheel hub design. The study of wheel hub design based on shape semantics, brand planning, and
structural optimization requires regression analysis by using shape features and the corresponding
variables to guide wheel hub design through the correlation model. The practical role of feature
transformation in design is determined by its effectiveness, accuracy, and convenience. This process,
however, has generally been handled manually in previous studies, limiting the universality and
comprehensiveness of research outcomes. With the development of artificial intelligence, the automa-
tion of this process has become possible, ushering in the era of big data research for feature extraction
and transformation. Hence, this study proposes a wheel hub feature transformation method based
on target detection and geometric analysis. This method implements feature transformation in the
following automation steps: (1) wheel hub feature point detection based on the YOLO model;
(2) wheel hub feature grouping based on morphological parameters and position parameters;
(3) feature point grooming based on geometric relations; and (4) parameter construction and trans-
formation based on morphological features. Thus, an automatic, bidirectional, and morphological
mechanism for transforming the parameters of a wheel hub shape can be developed. With the
proposed transformation model, parameters related to the wheel hub shape and features can be
transformed quickly, and the generative design of the wheel hub can be conducted based on big data.

Keywords: wheel design; target detection; feature extraction; transformation model

1. Introduction

Consumers are increasingly demanding personalized and diversified car appearances,
driving development trends. In a perfect scenario, the wheel hub is easily replaceable and
has obvious features that enhance the overall appearance of a vehicle. However, conven-
tional wheel hub design is being greatly challenged by development cycle compression [1],
shape differentiation, performance optimization, and consumer preference transformation.
The core issue lies in the effective application of abstract wheel hub shapes. Hub design is
a transformation process from an abstract concept to a final shape. The efficiency, degree of
freedom, and accuracy of the process determine the length of the product’s development
cycle, the degree of product differentiation, and the level of satisfaction of consumer prefer-
ences. The application of an efficient method of abstracting features of wheel hub shape to
the design process of the wheel hub can help designers design better wheel hubs at a faster
rate, offering more options for consumers.

Based on the above observations, this paper proposes an automatic method for the
transformation of wheel hub shape features. Usually, this process is manually completed,
resulting in the inability to generate a large number of research samples for correlational
analysis, which reduces the universality of the research. With the development of artificial
intelligence and big data research, the correlational research process can be optimized
by automating the extraction process, making the output more applicable to guide the
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wheel hub design process. As a result of feature transformation, a huge amount of feature
information can be acquired quickly for associated research, providing a reliable data
foundation for intelligent wheel hub design and optimization research. On the other hand,
this method allows for the restoration of specific shapes based on adjusted feature values,
enabling the intelligent generation of new wheel hub designs.

1.1. Shape–Feature Association

In a study on various aspects of shape–feature association, many researchers agreed
that the shape of a product is composed of several basic geometric shapes [2,3], and a shape
grammar can be constructed based on the relationships between these basic shapes [4,5].
Several researchers have proposed applying shape grammars in the design process, to use
semantic features for shape optimization, generation, and expert system construction [6–8].
Shi et al. (2020) [9] studied shape aesthetics and plane composition theory to extract the
structural lines of the wheel hub form by analyzing the front forms and outlining the basic
forms of the wheel hub shape using geometric shapes. Li and Zheng (2019) [10] proposed
the concept of a design prototype in the product design process, the selection of a method for
the expression of the design prototype, and the methods of prototype modeling, evolution,
and combination in design. Some studies have proposed a stylized product design method
based on parametric modelling using the feature point of products and developed a
product design scheme oriented toward user preferences by utilizing a generative design
based on the combination of style and contour features [11,12]. Gunpinar et al. (2018) [13]
proposed a shape-sampling technology based on particle tracking to find the shapes in
space that met geometric constraints by combining product shapes and constraints using
an iterative particle-tracking algorithm. Studies on shape–feature association have shown
that shape extraction is the premise of feature association, and feature abstraction and
expression ability are optimized during the extraction process. Using a simplified and
combined approach, the wheel hub shape is extracted primarily from the shape of the front
spokes. Depending on the feature construction mode, some feature models can be used
to reconstruct the form and some are conducive to feature correlation analysis. However,
most of these features must be manually extracted and they cannot be repurposed.

1.2. Shape Optimization

To optimize the shape, the most common method is the use of finite element analysis
(FEA) [14–16]. Dynamic impact performance and aerodynamic optimization have been the
main directions of the relevant research [17–19]. Luo et al. (2012) [20] proposed a method-
ology for evaluating the perceptual matching quality between the car body and wheel hub
through a participatory experiment and obtained a correlation between the car and wheel
hub shape. Kang et al. (2019) [21–23] proposed several deep generative design frameworks
integrating topology optimization, which can generate numerous design options optimized
for engineering performance. Wang et al. (2019) [24] established a parametric model of
computational fluid dynamics by introducing the concept of hydrodynamics into the wheel
hub design and implemented a multi-objective optimization design for the wheel hub
through a genetic algorithm. Xu et al. (2020) [25] proposed a method of combining reverse
modeling with topological optimization and formed a lightweight wheel hub by integrating
mechanical principles with the wheel hub shape. Kim et al. (2022) [26] integrated topology
and shape optimization to determine an optimal steel wheel with an enhanced natural fre-
quency. The above literature demonstrates that the combination of different fields and hub
shapes can produce various optimal wheel hub designs, while shape optimization depends
on the abstraction of wheel hub features. The effective extraction of wheel hub feature
parameters enables us to integrate wheel hub shape design with diversified influencing
factors, producing a more optimized wheel hub design.
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2. Materials and Methods

In this research, a feature transformation model was developed to optimize the trans-
formation of wheel hub shape features. Combining target detection with geometric analysis
made it possible to achieve this goal. The former principle is primarily concerned with the
extraction of feature points, while the latter focuses on the consolidation of those points
and transformation of them into shape features. This research work primarily consists of
the following steps: (1) analyze target shape features and train a target detection model
through wheel hub samples; (2) build the wheel hub feature grouping method to extract
the spoke grouping information from the wheel hub shape image; (3) utilize the geometric
characteristics of the wheel hub shape and sort the extracted feature points based on feature
grouping; and (4) convert the sorted feature points into efficient shape feature values
for further research and shape generation based on the target shape features. Figure 1
illustrates the process flow, methodology, and output of the present research work.

Electronics 2023, 12, x FOR PEER REVIEW 3 of 20 
 

 

shape design with diversified influencing factors, producing a more optimized wheel hub 
design. 

2. Materials and Methods 
In this research, a feature transformation model was developed to optimize the trans-

formation of wheel hub shape features. Combining target detection with geometric anal-
ysis made it possible to achieve this goal. The former principle is primarily concerned with 
the extraction of feature points, while the latter focuses on the consolidation of those 
points and transformation of them into shape features. This research work primarily con-
sists of the following steps: (1) analyze target shape features and train a target detection 
model through wheel hub samples; (2) build the wheel hub feature grouping method to 
extract the spoke grouping information from the wheel hub shape image; (3) utilize the 
geometric characteristics of the wheel hub shape and sort the extracted feature points 
based on feature grouping; and (4) convert the sorted feature points into efficient shape 
feature values for further research and shape generation based on the target shape fea-
tures. Figure 1 illustrates the process flow, methodology, and output of the present re-
search work. 

 
Figure 1. Research process. Step 1 and step 2 decompose the wheel hub sample into feature points 
and feature groups, while step 3 and step 4 convert the feature points into semantic structural fea-
tures. Step 4 can also be used to convert features into point coordinates for shape generation. 

2.1. Research Sample 
This study used 682 samples of different front shapes of wheel hubs procured from 

the Chinese market. All samples were standardized by taking a unified resolution of 512 
px × 512 px desaturated images with transparent backgrounds. Figure 2 presents a par-
tially processed wheel hub sample. The samples were primarily used for the following 
two processes in the research: (1) Analysis of target shape features: Acquiring representa-
tive wheel hub features through expert interviews, ensuring the extraction results satisfy 
the association research in terms of abstraction and expression ability, and (2) Training of 
feature point extraction model: The labeled research samples were used as training da-
tasets to complete the construction and evaluation of the extraction model. 

Figure 1. Research process. Step 1 and step 2 decompose the wheel hub sample into feature points
and feature groups, while step 3 and step 4 convert the feature points into semantic structural features.
Step 4 can also be used to convert features into point coordinates for shape generation.

2.1. Research Sample

This study used 682 samples of different front shapes of wheel hubs procured from
the Chinese market. All samples were standardized by taking a unified resolution of
512 px × 512 px desaturated images with transparent backgrounds. Figure 2 presents a
partially processed wheel hub sample. The samples were primarily used for the following
two processes in the research: (1) Analysis of target shape features: Acquiring representative
wheel hub features through expert interviews, ensuring the extraction results satisfy the
association research in terms of abstraction and expression ability, and (2) Training of
feature point extraction model: The labeled research samples were used as training datasets
to complete the construction and evaluation of the extraction model.
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2.1.1. Feature Analysis

The primary output of this transformation method is the parameters pertaining to
shape features taking part in the correlation analysis. The analysis of wheel hub shape
features ensures the effectiveness and comprehensiveness of parameters [27]. The post-
transformation target features were obtained through interviews with three experts on
wheel hub design and two specialists in wheel hub engineering. In order to facilitate feature
description and simplicity based on the general condition of the wheel hub shape samples,
this research work defines that: (1) overall, there are wheel hub spokes T, a wheel hub
window W, and each wheel hub has g groups of the same features, with n spokes in the
same feature group; (2) each spoke has two edge lines, L1 and L2, each having only two
or three feature points, that is, start points Sgn1 and Sgn2, endpoints Egn1 and Egn2, and
optional middle points Mgn1 and Mgn2. All features hold the relationship between these
feature points, the center O, and radius r of the wheel hub, including:

(a) Feature group g, representing the number of repeated groups of the same spoke on
the wheel hub shape, which is defined as g ≥ 3 according to the general rules;

(b) Number of spokes in the group n, representing the number of spokes with different
shapes in each group, which is defined as 1 ≤ n ≤ 4 according to the general features
of the wheel hub shape;

(c) Spoke position Pgn, representing the starting position of the spokes on the rim, which
is expressed as the radian between two vectors, one comprising the center point S′gn
of start points on both sides of the spoke and the center of wheel O, and the other
comprising the start point of all spokes S111 and the center of wheel O;

Pgn =

cos−1

−−−→
OSgn1 ·

−−−→
OSgn2

2||
−−−→
OSgn1 ||||

→
OSgn2 ||

+ cos−1

−−−→
OS111 ·

−−−→
OSgn1

||
−−−→
OS111 ||||

−−−→
OSgn1 ||

 π

180
(1)

(d) Spoke width Wsgn, representing the spoke width on the rim, which is expressed as

the radian between the vectors
−−−→
OSgn1 and

−−−→
OSgn2 formed by the start points on both

sides and the center of the circle;

Wsgn =

cos−1

−−−→
OSgn1 ·

−−−→
OSgn2

||
−−−→
OSgn1 ||||

−−−→
OSgn2 ||

 π

180
(2)

(e) Spoke angle Asgn, representing the overall deflection trend of the spoke, which is
expressed as the radian between the vectors formed by the center point of the start
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point on both sides of the spoke S′gn and the center point of the endpoint on both sides

of the spoke E′gn and
−−−→
Sgn
′O ;

Asgn =

cos−1

−−−−→
Sgn
′Egn

′·
−−−→
Sgn
′O

||
−−−−→
Sgn
′Egn

′||||
−−−→
Sgn
′O ||

 π

180
(3)

(f) Included angle on both sides Isgn, representing the opening and closing of sidelines on
both sides of the spoke, which is expressed as the radian between the vectors formed
by the start point and center point on both sides of the spoke;

Isgn =

cos−1

−−−−→
Sgn1Egn1·

−−−−→
Sgn2Egn2

||
−−−−→
Sgn1Egn1||||

−−−−→
Sgn2Egn2 ||

 π

180
(4)

(g) Position of the middle point Pmgn, representing the position of a middle point on the
spoke, which is expressed as the ratio of the length of the segment formed by the start
point Sgn and the middle point Mgn, and the radius r;

Pmgn =
||
−−−−→
Sgn Mgn ||

r
(5)

(h) Angle of the middle point Amgn, representing the degree of deviation of the middle
point from the main direction of the spoke, which is expressed as the radian between
the vector formed by the start point at the edge line of the spoke and the middle point
−−−−→
Sgn Mgn , and the vector formed by the start point of the spoke and the center of the

wheel
−−−→
SgnO ;

Amgn =

cos−1
−−−−→
Sgn Mgn ·

−−−→
SgnO

||
−−−−→
Sgn Mgn ||||

−−−→
SgnO ||

 π

180
(6)

(i) Closing position Pegn, which is located on the wheel hub where the window is close
to the center and is expressed as the ratio of the length of the line segment formed by
the center point Egn at the endpoint of the spokes on both sides of the window and
the center of wheel O, to the radius r;

Pegn =
||
−−−→
E′′gnO ||

r
(7)

(j) Window position Dwgn, representing the position of the window between spokes,
which is expressed as the closest distance between the closest point Pwgn of the
window contour on the corresponding spoke edge and the spoke edge;

Dwgn = min



||
−−−−→
SgnPwgn ×

−−−−→
SgnEgn ||

||
−−−−→

SgnEgn ||

||
−−−−→
SgnPwgn ×

−−−−→
Sgn Mgn ||

||
−−−−→

Sgn Mgn ||

||
−−−−→
MgnPwgn ×

−−−−→
MgnEgn ||

||
−−−−→

MgnEgn ||


(8)
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(k) Symmetry SYM and SYM ∈ {0, 1}, indicating whether the spokes in the same
group are symmetrical along the centerline. In each feature group, there may be
several groups of spokes {Tt, Tn−t}, t ∈ (0, n− 1) and corresponding edge lines
{Lk, L2n−k}, k ∈ (0, 2n− 1). The feature difference within the group less than a
certain threshold indicates the existence of a symmetrical relationship between the
corresponding spokes. The judgment for symmetry is based on the range and mor-
phological characteristics of different features as shown in Table 1.

Table 1. Basis of symmetry detection.

Detection Objects

Parameter n/2 = 0 n/2 6= 0 Value

Position of spoke {Pt, (2π/n)− Pn−t} {Pt, 2π − Pn−t}; P(n+1)/2 0.2; π/n
Spoke width {Wst, Wsn−t} {Wst, Wsn−t} 0.01
Spoke angle {|Ast|, |Asn−t|} {|Ast|, |Asn−t|}; As(n+1)/2 0.09; 0

Bilateral included angle {|Ist|, |Isn−t|} { |Ist|, |Isn−t|} 0.2
Position of middle point {|Pmk|, |Pm2n−k|} {|Pmk|, |Pm2n−k|} 0.08
Angle of middle point {|Amk|, |Am2n−k|} {|Amk|, |Am2n−k|} 0.08

Closing position {|Pet|, |Pen−t|} {|Pet|, |Pen−t|} 0.08
Position of window {|Dwk|, |Dw2n−k|} {|Dwk|, |Dw2n−k|} 10

2.1.2. Feature Point Labeling

Feature points can be labeled according to the definition of spoke feature points in
feature analysis, as shown in Figure 3. Since detection targets cover the feature points on the
entire wheel hub, there are at least 4 spokes per wheel hub and 4 feature points per spoke,
which means that at least 10,912 feature points can be used as a dataset, meeting the training
requirements of the deep learning model. After labeling, wheel hub samples were divided
into a training set and a verification set according to the requirements of model training.
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Figure 3. Labeled samples. All samples were labelled using LabelMe to extract feature points on
either side of each spoke. In the central area, the position where the trend of the spokes changes was
used as the endpoint.

2.2. Research Method

Spokes are an integral part of a wheel hub and it is therefore difficult to define the
boundary of the spoke region if directly extracting spoke features from the image. In
order to resolve this issue, this study proposes a method of extracting feature points before
transformation to abstract spoke shapes and establishing the transformation relationship
between the wheel hub shape and wheel hub feature data. The method includes four
steps: feature point detection, feature grouping, Feature point grooming and Parameter
construction and transformation.
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2.2.1. Feature Point Detection

This step is mainly to train the feature point extraction model to extract the feature
points on the wheel hub shape. In this study, YOLOv5m [28] was selected for feature point
extraction based on a comparative analysis. Since YOLO is a target detection model, its
target region must therefore be identified first for the detection of feature points. Based on
the distribution of feature points, a 20 px × 20 px square area around the feature points
was located as the target area, as shown in Figure 4. The feature point extraction model was
acquired by training the model at 300 epochs for a batch size of 32 by running a machine
equipped with two GeForce GTX TITAN for 3 h. However, further processing was required
to construct the wheel hub feature parameters to develop a correlation between the feature
points extracted in this process.
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2.2.2. Feature Grouping

This step divides wheel hub shapes into groups based on window detection. Wheel
hub shapes are grouped based on the window area using the two features: (1) the region is
closed and easy to extract and (2) the shape and distribution of the area are consistent with
the distribution of spokes. In this research work, Python and OpenCV were used to detect
the contour of the window area. A small hole with a length and width of less than 5 px
was removed before the windows were sorted according to their geometric center Ci of the
extracted i windows on the circumference. To determine the number of wheel hub feature
groups, two groups of parameters (Groups A and B) were used to analyze the windows for
their shape and arrangement rules.

(1) Parameter A

Parameter A, a morphological parameter, is mainly used to judge the difference in
geometric form between windows and is composed of window compactness Compi and
similarity Simi. The compactness of a polygon is the ratio of its circumference to its area and
is given as Compi = WSi/WLi. The shape similarity is described by Hu’s moment. By assum-
ing the window area function to be f (x, y) ( x and y are the coordinates of the geometric
center of window area) , the central moment of the order p + q is given as

µpq =
N

∑
y=1

M

∑
x=1

(
x− x)p(y− y)q f (x, y) p, q = 0, 1, 2 . . . (9)

The normalized center moment is

ηpq =
µpq

µ00
ρ ; ρ =

p + q
2

+ 1 (10)
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Seven invariant moments M1 ∼ M7 can be determined through the normalized
central moments of the second and third order, and thus, the shape-matching function can
be established to obtain the similarity Simi:

Simi =
7
∑

t=1
| 1

m
Wi
t

− 1
m

W1
t

|;

mWi
t = sign

(
mWi

t

)
× log

∣∣∣mWi
t

∣∣∣, mW1
t = sign

(
mW1

t

)
× log

∣∣∣mW1
t

∣∣∣ (11)

The shape parameter ai = Compi + Simi is available after the changes in the trends
and dimensions of Compi and Simi are unified. The morphological parameter of the whole
wheel hub is A = {a1, a2, a3 · · · ai}.
(2) Parameter B

Parameter B, a position parameter, is mainly used to judge the difference in the spatial

layout between various windows, comprising the distance Disi =

∣∣∣∣−−→CiO
∣∣∣∣ between the

geometric center of the window and the center of the circle, and the standard arc length
Arci between the geometric centers of different windows. Since the standard arc length is
the product of the angle, which is formed by the geometric center of the window, the center
of the circle, and its radius, is given as the following:

Arci = cos−1

 −−→
CiO ·

−−−→
Ci+1O

||
−−→
CiO ||||

−−−→
Ci+1O ||

 πr
180

(12)

The shape parameter bi = Disi + Arci is available after the changes in the trends and
dimensions of Disi and Arci are unified. The morphological parameter of the whole wheel
hub is B = {b1, b2, b3 · · · bi}.

Windows can be grouped based on the number of windows i, parameters A and B,
as shown in Figure 5. This process adopts the estimation method prior to matching. As
i = gn ; g, n ∈ N∗, the possible group set can be obtained after estimating the number of
spokes in a group. For each possible value of g in the set, the mean value AnBn of the prod-
uct of two parameters at the same location in each group can be calculated and then used

to calculate the combined standard deviation STDG =

√
∑

g
i=1

(
AngBng − AnBn

)2
/(g− 1).

The group represented by g having the maximum value of STDG is considered the best
group as the largest shape difference falls within this group.
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Figure 5. Feature grouping process. Based on the number of windows i, parameters A and B. By
evaluating the STDG under all the expected groupings, the window difference within the group
corresponding to its maximum value is the largest, indicating that the individual spokes within this
group are least similar to each other and can be classified into a feature group.
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2.2.3. Feature Point Grooming

The feature points on both sides of each spoke in the group were analyzed for their
positional relationship based on the wheel hub feature points and wheel hub grouping in
order to sort them. This involved a three-step process, including feature point separation,
radial position analysis, and sideline analysis.

(1) Feature point separation

To effectively distinguish the shape points of different spokes, it is necessary to con-
struct a corresponding detection area for each shape group. In this study, the window area
was divided radially into three distinct subareas by using the nearest and farthest points
of the window contour and the center of the circle based on the actual condition of the
wheel hub shape. Further, a detection area was constructed using the geometric centers{

C′i , C′′i , C′′′i , O, C′′′i+1, C′′i+1, C′i+1

}
of multiple subareas. The feature points corresponding

to the edge line on both sides of the spokes, represented by points pgn in this area, are
illustrated in Figure 6. Once the feature points on both sides of each spoke are separated,
each group of feature points is collectively rotated to the y-axis for position analysis based
on the geometric center of the detection area.
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Figure 6. Optimization of feature point detection area. Line 1 and Line 2 divide the window on each
side of the spokes into three subareas, and the geometric center of each subarea together with the
center O forms the construction point of the optimized detection area. Compared to the original area,
the new area better fits the shape trend of the spokes.

(2) Radial position analysis

The spatial order must be determined for the feature points on both sides of the spoke
before the estimation of the feature parameters. After rotation, the feature points are located
on both sides of the y-axis. The start and endpoints are determined based on the shape
characteristics of the wheel hub, specifically by identifying the two y-coordinates—the largest
and smallest points. The start and endpoints are recorded as S′gn and E′gn, respectively. Using

the two recorded points as base points, unit vectors
−−→
S′gnx and

−−→
E′gnx are formed in the direction

of the x-axis. Additionally, vectors
−−−−→
S′gnWSgn and

−−−−→
E′gnWEgn are formed by the nearest and

farthest points WSgn and WEgn, respectively, from the center of the wheel and the window
outline. The included angles formed by these two sets of vectors, denoted as θS and θE, serve
as a detection basis for the other start and endpoints, as illustrated in Figure 7. In the case of

the remaining point pk in pgn excluding S′gn and E′gn, then θSk = cos−1

 −−→
S′gnx ·
−−→
S′gn pk

||
−−→
S′gnx ||||

−−→
S′gn pk ||

 and

θEk = cos−1

 −−→
E′gnx ·
−−→
E′gn pk

||
−−→
E′gnx ||||

−−→
E′gn pk ||

. If min(θSk) ≤ θS or min(θEk) ≤ θE, the corresponding point
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is another start point S′′gn and endpoint E′′gn which, together with the base point, form the start
point set pS and endpoint set pE, while the possible middle point set is p′M = pgn − pS − pE.
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(3) Sideline analysis

If the start point set pS and endpoint set pE contain 2 points, the x value of each point can
be sorted to distinguish the spoke edge line where the point is located. When only one point
is detected, it indicates that the point may be missing. In this case, two related points, namely
(x− 5, y) and (x + 5, y), are constructed around the point (x, y) as optimized key points.

The middle point set p′M, p′M = ∅ shows that the middle points are absent on both
sides of the spoke, while p′M 6= ∅ represents at least one middle point on both sides of
the spoke. The selection and arrangement of middle points depends on the relationship
between edge lines on both sides and the window, and the distance between the middle point
and the judgment target. The basic edge lines on both sides of the spoke are constructed
using Sgn1 and Egn1 to form L1 and using Sgn2 and Egn2 to form L2, while the windows
on both sides are denoted as W1 and W2, respectively. If the window intersects the basic
edge line on the same side, a point pw is selected on the window edge line between the
intersection points to represent the point that is farthest away from the corresponding edge
line. On this basis, for any point p within p′M, there may be the following four linear pa-

rameters: dL1 = ||
−−−→
Sgn1 p ×

→
L1||/||

→
L1 ||, dL2 = ||

−−−→
Sgn2 p ×

→
L2||/||

→
L2 || are the distances of a

point from the basic edge line on both sides, while dW1 = ||
((
−−→ppw1·

→
x
)

/||→x ||
)
→
x || and

dW2 = ||
((
−−→ppw2·

→
x
)

/||→x ||
)
→
x || are the projection lengths of the x-axis to the nearest point

of the windows on both sides. To establish the relationship between different basic edge lines
and windows, different length parameters have to be used to detect the nearest point, as
shown in Table 2. The comparison of the length parameters on both sides indicates that the
edge with the minimum length parameter corresponds to the edge where the point is located.

Table 2. Center point judgment method.

Relationship Relationship

Graph Left Right Graph Left Right

A
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2.2.4. Parameter Construction and Transformation 

In this step, the groomed feature points are calculated according to the target shape 
features (according to step 1) and converted into eleven groups of feature parameters. 
Based on the geometric characteristics of the wheel hub shape, the shape of the wheel hub 
can be restored using the converted parameters. Table 3 presents the wheel hub feature 
parameters derived from the sorted feature point.  

Disjoint Disjoint
B
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2.2.4. Parameter Construction and Transformation 

In this step, the groomed feature points are calculated according to the target shape 
features (according to step 1) and converted into eleven groups of feature parameters. 
Based on the geometric characteristics of the wheel hub shape, the shape of the wheel hub 
can be restored using the converted parameters. Table 3 presents the wheel hub feature 
parameters derived from the sorted feature point.  

Intersect Disjoint

min(dL1) min(dL2) min(dW1) min(dL2)
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Table 2. Cont.

Relationship Relationship

Graph Left Right Graph Left Right

C
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2.2.4. Parameter Construction and Transformation 

In this step, the groomed feature points are calculated according to the target shape 
features (according to step 1) and converted into eleven groups of feature parameters. 
Based on the geometric characteristics of the wheel hub shape, the shape of the wheel hub 
can be restored using the converted parameters. Table 3 presents the wheel hub feature 
parameters derived from the sorted feature point.  
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2.2.4. Parameter Construction and Transformation 

In this step, the groomed feature points are calculated according to the target shape 
features (according to step 1) and converted into eleven groups of feature parameters. 
Based on the geometric characteristics of the wheel hub shape, the shape of the wheel hub 
can be restored using the converted parameters. Table 3 presents the wheel hub feature 
parameters derived from the sorted feature point.  

Intersect Intersect
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2.2.4. Parameter Construction and Transformation

In this step, the groomed feature points are calculated according to the target shape
features (according to step 1) and converted into eleven groups of feature parameters.
Based on the geometric characteristics of the wheel hub shape, the shape of the wheel hub
can be restored using the converted parameters. Table 3 presents the wheel hub feature
parameters derived from the sorted feature point.

Table 3. Table of wheel hub feature parameters.

Figure Feature
Parameter

1 2 3 4 5 6 7 8
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(2) Using the feature points in the group to construct edge lines on both sides of the 
spoke. By connecting the feature points 𝑆 , 𝑀 , 𝐸  on both sides of each spoke, 
the basic outline of the spoke can be constructed, which is used to describe the basic 
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(3) Combining the rim boundary with an array, and then connecting the spoke edge lines 
to form the spoke contour. The upper part of the spoke can be constructed by inter-
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endpoints of the spoke sides 𝐸  and the closing position 𝑃 , a transition curve can 
be constructed to form the lower part of the spoke. Connecting the two parts of the 
spoke outlines gives the complete spoke outline of the wheel hub. 

Sample
110

Hub grouping 5
Spokes in the group 2

Symmetry True
Position of spoke −0.545 −0.736 – –

Spoke width 0.008 0.008 – –
Spoke angle −0.118 0.131 – –

Included angle of spoke 0.108 0.102 – –
Position of middle point 0 0.651 0.635 0 – – – –
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The wheel hub shape transformation is implemented by the grasshopper in Rhinoceros
in the following five steps, as shown in Figure 8:
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(1) Calculating the coordinates of feature points using feature parameters. All fea-
ture parameters can be reconstructed as corresponding point sets according to their
construction process. For example, based on the size of the wheel hub r and the
position of the spokes Pgn, the coordinates of the starting points

(
xgn, ygn

)
of the

spokes can be obtained. Based on these coordinates and the spoke width Wsgn,
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θ1 =
90×Wsgn

π , θ2 =
−90×Wsgn

π can be calculated, and the starting points on both sides
Sgn1, Sgn2 of the spokes can be obtained.

[
xgn1
ygn1

]
=

[
cos θ1 − sin θ1
sin θ1 cos θ1

]
×
[

xgn
xgn

]
,
[

xgn2
ygn2

]
=

[
cos θ2 − sin θ2
sin θ2 cos θ2

]
×
[

xgn
xgn

]
(13)

(2) Using the feature points in the group to construct edge lines on both sides of the spoke.
By connecting the feature points

[
Sgn, Mgn, Egn

]
on both sides of each spoke, the basic

outline of the spoke can be constructed, which is used to describe the basic shape of
the spoke.

(3) Combining the rim boundary with an array, and then connecting the spoke edge
lines to form the spoke contour. The upper part of the spoke can be constructed by
intersecting the outer edge of the hub with the basic outline of the spokes. Combining
the endpoints of the spoke sides Egn and the closing position Pegn, a transition curve
can be constructed to form the lower part of the spoke. Connecting the two parts of
the spoke outlines gives the complete spoke outline of the wheel hub.

(4) Constructing the window shape according to the position of the window. The con-
nected spoke outline is a closed curve. Combined with the window position pa-
rameters, it can be converted into an offset distance Wogn = min

(
Dwgn1, Dwgn2

)
and

a movement distance Wmgn = Dwgn1 − Dwgn2, which can be used to construct the
window area outline of the wheel hub.

(5) Building a plane shape and 3D model according to the contour. By filling the spoke
area and the window area with different colors, a 2D model of the reconstructed hub
can be obtained. Based on the spatial base surface of the wheel hub, the constructed
edge curves can be projected onto the upper base surface and the bottom base surface.
The side of the spoke can be composed by lofting. Combined with the top, bottom,
side surfaces, and rim surface, the complete 3D model of the wheel hub can be created,
as shown in Figure 9.
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3. Results

In this study, a two-way automatic conversion process between wheel hub shape and
feature data was constructed based on sample training, shape calculation, and shape recon-
struction. The effectiveness and convenience of this process are the primary indicators for
assessing whether it meets the research requirements. These indicators can be evaluated based
on the following four aspects: (1) the accuracy of the feature point extraction model; (2) the
accuracy of the shape feature transformation; (3) the similarity between the reconstructed
shape and the original shape; and (4) the time consumed by the conversion process.

3.1. Accuracy of Feature Point Extraction

The precision of the feature point extraction model depends on its construction process.
The accuracy of feature point detection was verified by the output results of the YOLO
model. Figure 10 depicts the location loss, box_loss, which represents the discrepancy
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between the predicted and calibrated frames. The location loss was measured on the
training and validation sets after 300 epochs, and the error was found to be 0.036 and 0.022,
respectively. The obj_loss measures the confidence of the computation network, and it was
evaluated on the training and validation sets after 300 epochs. The obj_loss was found
to be 0.128 and 0.088 on the training and validation sets, respectively. In addition, the
precision and recall rates were 0.994 and 0.983, respectively. These results indicate that this
high-precision model can be effectively used for the detection of shape feature points of the
wheel hub. Figure 11 shows the extraction results of some wheel hubs, indicating that the
feature point detection satisfied the research expectation. Any missing detections can be
addressed in the subsequent feature point sorting process.

Electronics 2023, 12, x FOR PEER REVIEW 13 of 20 
 

 

 
Figure 10. Training results of the feature point extraction model. The top row is for training and the 
bottom row, for validation. According to the output, it shows that box_loss (train) = 0.036, box_loss 
(val) = 0.022, obj_loss (train) = 0.128, obj_loss (val) = 0.088, precision rates = 0.994, and recall rates = 
0.983, indicating that the feature point detection met the research expectation. 

 
Figure 11. Detection results of feature points. The results were basically the same for different wheel 
shapes. The start point and midpoint of the wheel hub had good detection results. Partially missed 
endpoints can be filled in by subsequent processing. 

3.2. Accuracy of Feature Transformation 
The accuracy of the extracted wheel hub features is influenced not only by the preci-

sion of the detected feature points but also by the transformational accuracy of the fea-
tures. The transformational accuracy of the features is affected by two important factors: 
(1) the accuracy of grouping the wheel hub shapes and (2) the similarity between the con-
verted edge lines of the spokes and the actual edge lines. Grouping accuracy refers to the 
ratio of the number of correctly grouped samples to the total number of samples. The 
comparison between the automatic and manual grouping results of 682 wheel hub sam-
ples tested in this research work showed a grouping accuracy of 97.65%, which was satis-
factory. Although the method used demonstrated a relatively high sensitivity to changes 
in shape and position, incorrectly grouping the 16-wheel hubs did not significantly affect 
the overall shape transformation. However, this misgrouping could potentially have had 
a subtle impact on the accuracy of the shape association research. 

The similarity of the spokes after transformation is composed of the distance between 
feature points at the corresponding position on both sides of the spoke and the actual 
feature points. As the distance decreases, the spoke edge lines become nearly similar, lead-
ing to more precise converted parameters that describe the shape of the original wheel 

Figure 10. Training results of the feature point extraction model. The top row is for training and
the bottom row, for validation. According to the output, it shows that box_loss (train) = 0.036,
box_loss (val) = 0.022, obj_loss (train) = 0.128, obj_loss (val) = 0.088, precision rates = 0.994, and recall
rates = 0.983, indicating that the feature point detection met the research expectation.
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Figure 11. Detection results of feature points. The results were basically the same for different wheel
shapes. The start point and midpoint of the wheel hub had good detection results. Partially missed
endpoints can be filled in by subsequent processing.

3.2. Accuracy of Feature Transformation

The accuracy of the extracted wheel hub features is influenced not only by the precision
of the detected feature points but also by the transformational accuracy of the features.
The transformational accuracy of the features is affected by two important factors: (1) the
accuracy of grouping the wheel hub shapes and (2) the similarity between the converted
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edge lines of the spokes and the actual edge lines. Grouping accuracy refers to the ratio of
the number of correctly grouped samples to the total number of samples. The comparison
between the automatic and manual grouping results of 682 wheel hub samples tested
in this research work showed a grouping accuracy of 97.65%, which was satisfactory.
Although the method used demonstrated a relatively high sensitivity to changes in shape
and position, incorrectly grouping the 16-wheel hubs did not significantly affect the overall
shape transformation. However, this misgrouping could potentially have had a subtle
impact on the accuracy of the shape association research.

The similarity of the spokes after transformation is composed of the distance between
feature points at the corresponding position on both sides of the spoke and the actual
feature points. As the distance decreases, the spoke edge lines become nearly similar,
leading to more precise converted parameters that describe the shape of the original wheel
hub. The edge lines of the converted spoke are shown in Figure 12. To obtain the mean
similarity of each wheel hub, the spoke edge lines of the remaining 650 wheel hub shapes
were analyzed for similarity after the incorrect grouping and removal of identical shapes,
as illustrated in Figure 13. Feature point extraction involves defining identical points as
those within a distance of 20 pixels in the sample, which introduces minimal error and has
only a slight impact on the overall shape. With 20 px as the threshold (similarity > 0.05),
96.2% of samples showed similarity within the threshold, indicating that the process could
accurately transform feature points into edge lines of the corresponding spoke.
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Figure 12. Boundary transformation of spokes. The boundaries (red lines) on either side of each spoke
were sorted clockwise, and the feature points (blue dots) on each boundary were sorted according to
their distance from the center of the wheel hub. The sorted feature points were used to determine
the degree of similarity by performing a distance calculation with the original feature points at the
corresponding locations.
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average distance between points in the same location, and the y-axis represents the data density. The
larger the value, the more similar the shape. The green area is the number of samples with an average
distance of less than 20 px, and the similarity of the detection results in this area was high.
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3.3. Reconstruction Similarity

Reconstruction similarity reflects the information loss of the shape during abstraction
and restoration, which is primarily used to verify the use of extracted shape features
of the wheel hub to guide the generation of the wheel hub shape. The reconstructed
wheel hub shape is shown in Figure 14. As some details may be lost during the shape
abstraction process, similarity judgment is mainly based on a consistent overall shape.
In this study, a questionnaire survey was conducted with a 10-level scale to evaluate the
similarity of 40 random wheel hub shapes before and after reconstruction. A total of
157 out of 160 questionnaires was recovered, with an effective rate of 98.1%. The confidence
of 40 options in the survey results was 0.934, demonstrating the credibility of the survey
results. The distribution shown in Figure 15 indicates that 97.5% of samples received a
similarity rating of six to eight points, which falls within the range of “relatively similar” to
“very similar”, aligning with the research expectation of a high degree of similarity between
the reconstructed shape and the original one.
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3.4. Time Consumed by the Conversion Process

The time consumed in the shape transformation process is the key indicator for
assessing the efficiency of the transformation method. The process of shape transformation
can be divided into several steps, and among them, three steps are particularly time-
consuming. These three steps include feature point detection and sorting, shape grouping,
and shape reconstruction, which require a significant amount of time to complete. The
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overall efficiency of this method can be obtained from the mean time for each step, as
shown in Figure 16.
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The time consumed in the feature extraction process was estimated for 650 wheel hub
samples. The mean time consumed in feature point detection and sorting was found to be
0.174± 0.044 s. Furthermore, for 96.5% of the samples, the time taken for this step fell between
0.1 s and 0.3 s, which was notably faster than manual sorting. This indicates that the automated
method of feature point detection and sorting is highly efficient. The process of shape grouping
was found to take an average time of 0.027 ± 0.003 s, with the majority of samples (99.6%)
completing the step in less than 0.04 s. This level of consistency indicates that the automated
shape grouping method is highly reliable and outperforms manual grouping. The mean
time consumed by the generation process was estimated to be 12.1 ± 0.7 s for 50 wheel hub
shapes generated randomly. It failed to meet the requirements of real-time generation due
to increased computational efforts and poor software performance. However, this method
significantly improved efficiency compared with the manual design. In general, the extraction
process took about 0.2 ± 0.05 s, while the generation process took approximately 12.1 ± 0.7 s.
As a result of the significant reduction in the time required for both feature extraction and
shape generation, researchers were now able to conduct research on the relationship between
wheel hub features and big data through fast shape generation.

4. Discussion

This study effectively created a bidirectional transformation system for wheel hub
shape and parameters through the combination of target detection and geometric analysis.
Compared to previous methods, the proposed approach is primarily distinguished by its
automation and universality. The proposed feature transformation method provides an
automated process of program analysis. Once the transformational model is constructed,
there is no need for manual intervention in the feature extraction process, resulting in
significantly improved efficiency. According to the results of the above research, this
method greatly reduces the time for shape conversion and generation while maintaining
a high accuracy. The proposed method is universal because it enables the convenient
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association of the extracted parameters, which consist of semantic structural features,
with different factors that influence shape [29]. This allows for the creation of conversion
relationships between the parameters and factors, which in turn enables the generation of
shapes by modifying the corresponding wheel hub parameters.

The proposed method has potential applications in various research fields related
to wheel hub shape, and the utilization of a big data approach in the feature association
process can further enhance the comprehensiveness and effectiveness of research. In terms
of design guidance, this method provides a generative model for shape modification after
feature correlation. Through semantic inputs, suitable shape prototypes can be quickly
generated for reference by wheel hub designers to conduct an in-depth design. In actual
project processes, this method accelerates the proposal and confirmation stages of the
design scheme and provides a reliable design reference space for wheel hub design through
accurate semantic and feature translation, as well as efficient prototype generation. The
conventional wheel hub development cycle, which previously consisted of three rounds of
two weeks each, was shortened to one round per week, optimizing development efficiency.

As an illustration of this method of extracting and analyzing shape features of different
brands of wheel hubs for correlation analysis, the wheel hub shape and brand relevance
were taken as an example. Developing and maintaining a consistent brand statement is
an important aspect of developing a successful product [30]. This method allows for the
quick and efficient extraction of shape feature information for each collected wheel hub,
providing the corresponding shape features under each brand for correlation analysis. In
this research work, 650 wheel hub shapes were extracted, representing 15 brands from
five countries. By establishing a distribution relationship between brands and features, we
could identify feature parameters that exhibited significant brand differences:

(1) Spoke width. Figure 17 shows the range of the mean spoke width on each wheel hub
of different brands. A wide range of spoke widths offered by each brand indicates
their comprehensive coverage of spoke widths. Upon aggregating the data, it became
evident that various brands display unique preferences for spoke width. Certain
brands such as Audi, Volkswagen, BMW, Mercedes-Benz, Citroen, Peugeot, and Ford
tend to have narrower spoke widths, whereas Honda and Chevrolet tend to have
wider spoke widths, aligning with consumer perceptions of these brands.
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(2) Spoke angle. Figure 18 presents the mean spoke angles on each wheel hub for each
brand. A significant difference can be observed in the angle coverage and mean angle
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for different brands. Honda has a relatively high coverage range and mean value of
the spoke angle, indicating a preference for spokes with rotation angles. Conversely,
Mercedes-Benz and Mazda have relatively low coverage ranges and mean values of
the spoke angle, suggesting a preference for non-rotating spokes.
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Figure 18. Spoke angle based on different brands. The x-axis is the average spoke angle on each
wheel and the y-axis is the brand. The larger the value, the greater the deflection of the overall wheel
shape. In the graph, Honda has more overall deflection, while Mazda has essentially no deflection.

(3) Position of the window. Figure 19 presents the mean distance between the window
on each wheel hub and the spoke of each brand. It reflects the distance between the
window area and the spokes. A larger value indicates that the window is further away
from the spokes, resulting in a wider slope on both sides of the spokes. Overall, there is
a significant variation in this value among different brands. Citroen has a significantly
higher range and mean value compared to other brands, indicating quite a large distance
between the window on its wheel hub and the spokes, and a wider side of the spokes as
well. Buick and Toyota, which have smaller values, exhibit a window edge that is closer
to the spokes and a narrower slope on both sides of the spokes.
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Figure 19. Window distance based on different brands. The x-axis is the average of the window-to-
spoke distance and the y-axis is the brand. The larger the value, the wider the slope on either side of
the spoke. In the graph, Citroen has a wider slope, while Buick has a narrower slope.
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5. Conclusions

The present study optimized the extraction and transformation of features from auto-
mobile wheel hub shapes. To achieve this, the study employed target detection technology
and geometric shape analysis to overcome the issues of inconsistent and non-interpretable
feature extraction from wheel hub shapes. By doing so, the study enhanced the efficiency of
the feature extraction process and the conversion of features into shapes and vice versa. The
analysis revealed that the conversion method has good precision and conversion efficiency
and can effectively optimize the research and generation process of wheel hub shapes. This
study highlights the vital role of the feature transformation method in conducting correla-
tion research on wheel hub shapes and brands, as well as in wheel hub shape research based
on big data. By integrating the feature transformation method into the research process,
this study showed how to facilitate wheel hub design and modeling association research.
Additionally, the integration of wheel hub shape generation into the design process was
made more accessible, which further enhanced the efficiency of the design process.
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