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Abstract: This paper proposes the electric vehicle (EV)-station-grid coordination optimization strategy
considering user preferences, which regulates the charging behaviors of EV users from the user side to
ensure the stable and safe operation of the power grid. Firstly, the spatio-temporal prediction model
of charging load based on speed-temperature is developed. The model of EV power consumption per
unit mileage affected by temperature and EV speed is constructed, and the shortest path algorithm is
applied to determine the driving paths of EVs so as to judge the charging demand in combination
with the state of charge (SOC) of the battery and to determine the charging periods and locations
of the EVs, thus obtaining the spatio-temporal information of the charging load. Secondly, a multi-
attribute charging decision model considering user preferences is constructed. Fuzzy clustering and
rough set theory are applied to mine user behavior preferences, combined with behavioral economics
to describe users’ irrational charging decision-making psychology. Lastly, a real-time charging price
model considering voltage fluctuation index and user charging cost is constructed to analyze the
impact of price on guiding charging behaviors. The simulation results verify the effectiveness and
performance of the collaborative optimization strategy.

Keywords: electric vehicle; coordination optimization strategy; preference mining; behavioral
economics; road-grid coupling network

1. Introduction

As a flexible resource on the load side, the electric vehicle (EV) is not only conducive
to the construction of new power systems but also an important tool to achieve the target
of “Carbon Emission Peak and Carbon Neutrality” [1]. However, with the continuous
improvement in the popularity of EVs, the extensive access of EVs also brings new chal-
lenges to the stable operation of existing systems. On the one hand, the charging load of
EVs is affected by the heterogeneity of users’ travel. The charging load of EVs has unique
temporal and spatial randomness [2,3], which makes it more difficult to mine the charging
laws. On the other hand, restricted by the layout and configuration of existing charging
facilities, when large-scale EVs are connected to the power grid, their charging demand
is difficult to be fully met, resulting in excessive load fluctuation, deteriorating the power
quality and even endangering the security of supply and other problems [4,5].

Until now, there have been a number of studies on guiding users to charge in an
orderly manner. In [6], the algorithm provides a load leveling or peak shaving service by
managing the current absorbed by each electrical bus in a charging station, while satisfying
the charging requirements of electric buses and adhering to a reasonable connection pattern
defined by the fleet limit of electric buses. Literature [7] investigates a coordinated charging
where EVs are charged via an “aggregator” that interacts with a power system operator to
schedule EV charging at times that either minimize system operating costs, decrease EV
charging costs, or both, while meeting the daily EV charging requirements subject to the
EV owners’ charging constraints. Beta distributions were found to be the most appropriate
distribution for statistically modeling the initial and final state of charge of vehicles in
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an EV fleet. Literature [8] proposes an optimization model based on time-of-use (TOU)
price, which realizes the effect of orderly charging on peak load shifting. In [9], a novel
prioritization-based load management method was developed to prevent loss of comfort
and increase in consumption cost caused by the conventional load management approxi-
mations based on static priority. A house that has four MLs such as air conditioner (AC),
water heater (WH), clothes dryer (CD), and EV in the case study shows the performance of
the proposed methods within a two-day simulation. Game theory can effectively solve the
problem of how to reasonably set the charging price while protecting the interests of multi-
ple parties. Literature [10] proposes a large-scale EV real-time scheduling model based on
dynamic non-cooperative game, which considers the interests of multiple electric vehicle ag-
gregators (EVA). The proposed model can effectively reduce load fluctuation as well as the
cost of EVA charging. Literature [11] proposed a demand response algorithm to optimize
vehicle to grid (V2G) aggregation by enabling EVs scheduled charging/discharging in a
quest to minimize the energy cost for the retailer, as well as satisfying the electricity market,
i.e., day-ahead and instantaneous real-time markets. Where the consumers’ contribution
has been modeled as correlative game, each consumer is taking part as a player and tends
to enhance his own incentives payoff (profit) by using the techniques proposed in this
paper. Literature [12] studies the problem of energy charging using a robust Stackelberg
game approach in a power system composed of an aggregator and multiple electric vehicles
(EVs) in the presence of demand uncertainty and proposes two different robust approaches:
a non-cooperative optimization and a co-operative design. The effectiveness of the robust
solutions in uncertain environments is verified. The above studies have realized the effect
of orderly charging on peak load shifting or the economic benefits of users by adjusting
charging prices. However, the strategy of the above research on charging behavior is mainly
focused on the time dimension, without taking into account the guidance role of the space
dimension; thus, the imbalance of the overall regional charging load distribution has not
been resolved.

The charging load has the dual attributes of road network and power grid, so the
charging optimization strategy architecture under the EV-station-grid cooperation mode
can effectively solve the problem of unbalanced regional charging load distribution. In [13],
a load transfer scheme between transmission and distribution networks is proposed, which
can effectively provide a reference for power grid dispatchers and improve the security and
economy of the power system. In [14], the driving behaviors of EVs are simulated by the
microscopic traffic flow model, and then, a bi-level dynamic charging scheduling model is
presented with objectives of optimally tracking the day-ahead scheduling and minimizing
the waiting time cost of EVs. In [15], the charging price model is established based on the
dynamic price demand function under the constraint of dynamic queue and node voltage
so as to guide users to select fast charging stations with the goal of minimum charging cost.

The strategies constructed in the above literature take into account the objective factors
such as traffic flow, time, price, etc. to parallelly guide the charging load in the time and
space, achieving the targets of alleviating the regional load imbalance and improving the
power quality of the distribution network. However, there is a basic assumption in the
above strategies—the decision maker is completely rational when making the charging
choice behavior [16], without considering the impact of subjective psychology on the deci-
sion. EV users are faced with a multi-dimensional, dynamic, and uncertain environment
with mutual influence between strategies when making charging decisions. It is difficult
for decision makers to obtain sufficient information and make accurate predictions of the
situation. In this case, users often obtain information by observing the behavior from others,
resulting in irrational behaviors such as herding effect [17] and endowment effect [18]. In
addition, the charging decision-making group has a large scale and a wide distribution of
members. The decision-making attributes present complexity and randomness, manifested
in the existence of multiple dimensions of evaluation attributes in decision-making issues,
and the importance of these attributes is different. That is, users tend to pay more attention
to the changes of some attributes when making decisions, while being relatively insensitive
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to other attributes, presenting unique psychological preferences. Literature [19] uses the
quantitative product between the preference vectors between two decision members to illus-
trate the relationship between the corresponding two decision members and uses similarity
relationships to divide decision members into the same aggregation. Literature [20] syn-
thesizes each attribute weight vector and a large group preference matrix and determines
the ranking of decision-making options based on the comprehensive evaluation vector
of each option. Literature [21] proposes a large group decision-making method oriented
to utility value preference information. However, the above multiple attribute decision
making problems do not take into account the irrational psychology of decision makers
in the process of preference mining. By analyzing the advantages and disadvantages of
the above methods, this paper proposes an irrational group decision-making method that
considers complex preferences, and the established model is more consistent with the actual
decision-making process.

Based on the above, this paper proposes the EV-station-grid coordination optimization
strategy considering user preferences, describing irrational psychology through prospect
theory [22], mining user preferences through clustering, establishing a multi-objective
optimization model to regulate the spatial and temporal distribution of charging loads,
achieving the goal of peak shaving and valley filling, and reducing grid fluctuations. Users
can also effectively reduce charging costs by responding to the optimization objectives,
while charging station operators can ensure profitability by regulating prices.

The method proposed in this article breaks the assumption of rational decision-making
principles and broadens the application scope of behavioral economics, improving the
accuracy of decision model results from the very beginning, and collaborative optimization
strategy provides theoretical support for formulating scientific charging guidance schemes.
The contributions of this paper can be summarized as follows:

1. The charging decision model based on the prospect theory is proposed, and user
behavior preferences are mined by combining fuzzy clustering and rough set the-
ory [23–25]. The diversity of decision makers’ behavior preferences, multi-dimension
of decision factors, and time variant of decision objectives are fully considered.

2. The model of EV power consumption per unit mileage based on speed-flow practical
model is constructed. The shortest path algorithm [26] is used to determine the EV’s
driving path, and the charging demand is judged in combination with the state of
charge (SOC) of the battery under the influence of temperature so as to obtain the
spatiotemporal information of the charging load.

3. A bi-level collaborative optimization strategy is proposed to guide users to charge in
an orderly manner by formulating a real-time charging price not only to improve the
power quality of the grid and reduce the comprehensive charging cost of users but
also to ensure the basic profit of the charging station operator, thus achieving a better
interaction between the EV, station, and grid.

The rest of this article is arranged as follows. In Section 2, the spatio-temporal predic-
tion of charging load considering speed–temperature is proposed. In Section 3, prospect
theory, fuzzy clustering, and rough set theory are combined to propose an irrational charg-
ing decision model considering user preferences. In Section 4, a bi-level collaborative
optimization strategy based on real-time charging price is proposed to guide users’ charg-
ing behavior with the goal of reducing grid fluctuation index and reducing user costs.
Section 5 is example analysis, and the last section is the conclusion.

2. Spatio-Temporal Prediction of Charging Load
2.1. Construction of Physical Road Network

The physical road network carries various road weight distribution and traffic rules.
This paper abstracts the physical road network with the geometric centerline of the road
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and describes and explains the topological structure of the road network with the graph
theory [27]. 

ε = (Nε, Eε, δε)
Nε = {ni|i = 1, 2, . . . , u}

Eε =
{〈

ni, nj
〉∣∣ni, nj ∈ N

}
δε =

{
eij
∣∣〈ni, nj

〉
∈ E

} (1)

where ε represents the road network topology, which is composed of Nε, Eε, and δε.Nε

is the intersection node in the road network; that is, the road intersection set, u, is the
total number of nodes, and Eε is the road segment set in the road network. δε is the
adjacency matrix of the road weight value, describing the length of each road section and
the connection relationship of nodes, and the length of the road eij is determined according
to Formula (2).

eij =


dij, i is connected with j

0, i = j
inf, i is not connecte dwith j

(2)

where inf means infinite, dij is the distance of road
〈
ni, nj

〉
, and dij 6= 0.

2.2. Practical Speed–Flow Relationship Model

Travel time is one of the important factors affecting the charging decision of users. In
the condition that the road length is known, the travel time is determined by the driving
speed, which is affected by the road capacity and traffic flow. EV driving speed directly
affects the power consumption per unit mileage and then affects the charging demand of
EV users. Therefore, this paper introduces the practical speed–flow relationship model to
calculate the real-time driving speed of EVs vij(t).{

vij(t) =
vij,m

1+(Qij(t)/ρij)
β

β = a + b(Qij(t)/ρij)
γ

(3)

where vij,m represents the zero flow velocity of road E(i,j); ρij is the capacity of road E(i,j),
which is proportional to the road grade; Qij(t) is the traffic flow of road E(i,j) at time t; the
ratio of Qij(t) to ρij is the road saturation at time t; β is the empirical coefficient; a,b,γ is
the adaptive coefficient under different roads and the phase angle difference of the branch
ij levels.

2.3. Influence of Temperature on Charging Demand
2.3.1. Effect of Temperature on Battery Performance

Most of the power batteries of EVs are lithium iron phosphate batteries, which are
sensitive to temperature. The capacity of the battery at different temperatures was analyzed
in literature [28]. Taking the discharge capacity of 25 ◦C as the reference point for the
performance test, the change curve of battery capacity is relatively obvious at the low
temperature stage. At 0 ◦C, the battery capacity is 79.3% of the normal capacity. When the
temperature drops to below 0 ◦C, the performance of the battery decreases due to the low
temperature environment, which makes the discharge capacity of the battery decline faster.
At −20 ◦C, the relative capacity of the battery is only 43.6%, while at the high temperature
stage, the battery capacity change curve is not obvious.

2.3.2. Influence of Temperature on Air-Conditioner (AC) System Energy Consumption

The AC system in EVs is the highest energy-consuming equipment second only to the
motor. Literature [29] investigated the probability of EV owners starting the AC system
under different temperatures and found the probability conforms to the normal distribution,
as shown in Figure 1.
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The heating temperature threshold and the cooling temperature threshold are around
11 ◦C and 30 ◦C, respectively. Thus, the probability density function of AC startup is

(Tem) =
1√

2πδTem
exp

[
− (Tem−uTem)

2

2(δTem)
2

]
(4)

where, in the case of heating startup, uTem= 10.82, δTem = 2.14, and in the case of cooling
startup, uTem= 29.4, δTem = 1.75.

2.3.3. SOC Analysis of EVs Considering Temperature

Temperature can affect the energy consumption per unit mileage of EVs by influencing
additional energy consumption, battery performance, road conditions, and other factors.
The energy consumption factor in literature [29] is used to describe the EV battery power
consumption per unit mileage, and the regression model is used to establish the power
consumption model per unit mileage at a certain speed.

ECF = a/v(t) + bv(t) + cv(t)2 + d (5)

where ECF is the power consumption factor, and v(t) is the speed of EVs on road E(i,j) at
time t. a, b, c, d are the fitting coefficients, which are different under various road grades.

Thus, the driving power consumption SOCt
i of EV i at time t can be obtained.

SOCt
i = ECF× L(t) (6)

where L(t) is the mileage driven by EV at time t.
Temperature determines the working performance of the battery to some extent. Tak-

ing 25 ◦C as the reference basis, the actual capacity of the battery at different temperatures
can be obtained:

D(T) = µ·D(25) (7)

where D(T) represents the actual capacity of the battery at T◦C, µ is the relative capacity
percentage of the battery, and D(25) represents the battery capacity at 25 ◦C.
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Considering the influence of temperature on AC system consumption, it is concluded
that the AC system consumption of EVs at different temperatures is as follows:

A(T) =
SOCt

i
1− θ

θ (8)

where θ indicates the proportion of AC system consumption, and the refrigeration power
consumption of AC accounts for 32.5% of the total power consumption according to litera-
ture [30], while the heating power consumption accounts for 35%. When the temperature
does not need to open AC, this item is 0. Then, the remaining SOC of the EV i can be
expressed as

SOCre
i = D(T)− SOCt

i − A(T) (9)

2.3.4. Prediction Framework of EV Charging Load

The spatio-temporal prediction framework of EV charging load considering velocity
and temperature proposed in this paper is shown in Figure 2. The framework is based
on the road network topology information and traffic information to build the practical
speed–flow relationship model. On this basis, the travel information of EVs is generated
by the Monte Carlo method, and the energy consumption factor per unit mileage and the
proportion of AC power consumption are constructed based on the temperature data and
speed data, combined with the shortest distance algorithm, to determine the EV path. Thus,
the real-time EV SOC can be analyzed to judge the charging demand.
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3. Irrational Charging Decision Model

The framework of the irrational multi-attribute charging decision model considering
user preferences is shown in Figure 3. Based on the prospect theory of “irrational people”
in the field of behavioral economics, this paper constructs a multi-attribute charging
decision model. Charging users need to weigh different decision attributes in multiple
candidate schemes and first solve the model from each single attribute index to obtain
its corresponding prospect value. Then, the prospect values are aggregated according
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to the weight; thus, the comprehensive prospect value under multiple attributes of each
alternative is obtained. The historical charging data are mined, and the fuzzy clustering
and rough set theory are combined to grasp the group preference so as to provide a basis
for quantitative research on charging decision-making.
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3.1. Multi-Attribute Charging Decision Model
3.1.1. Prospect Value Function

In prospect theory, which assumes “irrational man”, “prospect” is the basic research
unit. In the charging decision process, charging costs corresponding to different stations
selected by decision makers are “prospects”, and users make decisions based on these
prospects. However, prospect theory is concerned not with the final state of gain or loss
but with the gain or loss relative to the reference point. When an individual is faced with
the problem of charging decision, the time and money he pays are all payment items. If
the time or cost exceeds the reference value, the excess part can be regarded as a loss. The
profit value function g(x)+ and loss value function g(x)− are shown as follows:

G(∆x) =

{
g(x)+ = (xr − x)α, x ≤ xr

g(x)− = −λ(x−xr)
β, x > xr

(10)

where α is the marginal sensitivity decline coefficient for income; β is the marginal sensi-
tivity decline coefficient for loss; xr is the reference point; λ represents the loss aversion
parameter; and λ > 1 indicates that individuals are more sensitive to loss.
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The study pointed out that when decision makers cannot obtain direct evaluation criteria,
they often evaluate themselves by comparing them with others [31]. Therefore, in this paper,
15 min is taken as the time period, and the average value of attributes in the i-th period is taken
as the reference point for the i-th+1 period and updates it so as to provide reference standards
for charging users, which is more in line with the “Herd effect” mentality of users.

3.1.2. Utility Integration

When the individual is faced with a multi-attribute decision-making problem, the
decision makers will take the budget as the constraint, comprehensively evaluate the loss
and gain of each option involved in the decision-making problem relative to the reference
point, and integrate to form “transaction utility”. Relevant research [32] summarizes four
possible methods for individuals to integrate multi-attribute income or loss to form trading
utility, which are as follows:

(1) Segregation mode, which is G(∆x) + G(∆y) > G(∆x + ∆y), U = G(∆x) + G(∆y).
(2) Loss consolidation mode, which is G[(−∆x) + (−∆y)] > G(−∆x) + G(−∆y),

U = G[( − ∆x) + (−∆y )].
(3) Integrate smaller losses into larger gains, which is G[(∆x + (−∆y)] > G(∆x) +

G(−∆y) and G(∆x) > |G(−∆y)|,U = G[(∆x) + (−∆y)].
(4) When the size of gains and losses cannot be judged, the decision makers may use (1)

or (2).

Charging decision involves different attributes relative to its reference points, which
may be income or loss. Therefore, this paper assumes that decision makers will adopt
the method (a) to integrate multi-attribute gains or losses to form transaction utility, and
considering the impact of different types of attribute gains or losses on transaction utility at
the same time, the transaction utility function is expressed as U = ϕG(∆x) + ϑG(∆y).

In this paper, sensitivity analysis is used to determine the sensitivity of decision makers
to different factors to analyze the guiding effect of each factor input on charging behavior.
Sensitivity is defined as the percentage of change in the value of the objective function
caused by a change in an input parameter; that is Rx = ∆Rx/R × 100%. Based on the
discussion of relevant factors affecting charging decisions in the relevant literature [33–35],
sensitivity analysis is conducted by selecting price, time, and battery capacity attributes, as
shown in Figure 4a–c.

For every 10% change in the cost, time, and the battery capacity factors, the fitness
value changes to 4.336%, 7.901%, and 0.721%. Therefore, it can be concluded that changes in
price and time can have an impact on users’ charging decisions. Thus, the attributes can be
summed up to price attribute—charging price C, and time attribute—travel time T, which is
the time of EV driving to the station, and the queuing time T′, which is the time from arrival
at the charging station to start charging. The collection of charging stations in the area
is Rm = {1, 2, . . . i, . . . , m}; accordingly, the utility function after integrating different
dimension attributes when charging user n selects charging station i is expressed as

Uni = ϕ1
ni·Gni(∆C) + ϕ2

ni·Gni(∆T) + ϕ3
ni·Gni

(
∆T′

)
, i ∈ Rm (11)

where Gni(∆C) represents the value function of cost attribute C of station i, while Gni(∆T)
and Gni

(
∆T′

)
represent the value function of time attributes T and T′; ϕ1

ni, ϕ2
ni, and ϕ3

ni
represent the weights of three attributes, separately.

In this paper, value of time (vot) is introduced to transform time and cost so as to
realize the effective integration of multi- attribute gain and loss. Vot value is the ratio of the
average annual salary Nsalary of EV users to the average annual working hours Tworktime.

vot = Nsalary/Tworktime (12)

$G(∆T) =
{

vot× (Tr − T)α, (T ≤ Tr)

−λvot× (T − Tr)
β, (T > Tr)

(13)
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Finally, the utility function can be expressed as

Uni = ϕ1
ni·Gni(∆C) + ϕ2

ni·$Gni(∆T) + ϕ3
ni·$Gni

(
∆T′

)
, i ∈ Rm (14)
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Therefore, the process of selecting the charging station is actually to compare the
weighted attribute values of each selected limb. However, the setting of attribute weight
is usually a simple artificial assignment or an assumption that the weight is the same
currently. In fact, different attributes must have various influence extents on the decisions,
which also leads to the price incentive effect under the unweighted preference not reaching
the expectation. Therefore, this paper starts with the user’s historical behavior to optimize
the attribute weight coefficient and build a multi-attribute charging decision model with
behavior preference.

3.2. Behavior Preference Mining

When users make charging decisions, each attribute has a different proportion of in-
fluence on charging behavior. However, most of current decision-making models implicitly
assume that the contribution of each dimension attribute to decision is the same [36,37] and
do not consider the different impacts of each attribute on the decision results, so accurate
decision results cannot be obtained. However, groups have the ability to learn and evolve.
Therefore, aiming at large complex charging groups, this paper uses fuzzy clustering com-
bined with relative positive domain theory in rough set theory to objectively and indirectly
determine the attribute weight of group members’ preference vector. This method is suit-
able for mining preference vector which only has users’ historical attribute data and has no
prior information of attribute weight assignment by experts. The decision-making process
with behavior preferences is shown in Figure 5.
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1. Determine the sample objects to be processed. Compose n samples to be processed
into a set X:

X = {x1, x2, . . . ,xn} (15)

Each sample is represented by m attribute eigenvalues vectors:

Xj =
{

x1j, x2j, . . . , xmj
}

(16)
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The attributes selected in this paper are respectively C, T, T′, then m = 3, and the
attribute set can be expressed as

X =


x11 x12 . . . x1n
x21 x22 . . . x2n
...

xm1

...
xm2

. . .

. . .

...
xmn

 =


C1 C2 . . . Cn
T1 T2 . . . Tn
T′1 T′2 . . . T′n

 (17)

2. Establish fuzzy similarity relationship. Firstly, the attribute characteristic value is
normalized to the range [0, 1]. Then, the fuzzy similarity matrix is established, as
shown in (17).

rij =
∑m

k=1 (xki ∩ xkj)

∑m
k=1 (xki ∪ xkj)

(18)

3. Cluster. The fuzzy equivalent matrix is obtained by the fuzzy equivalent closure
method, and then the number of clusters is determined according to the fuzzy equiva-
lent matrix:

(1) Firstly, the appropriate threshold range is determined according to the fuzzy
equivalent matrix. When the cluster is carried out within each threshold range,
the lower limit of the threshold range Fk is taken as the mark to record the names
and numbers of tuples contained in the categories with different threshold
ranges, denoted as Si(i = 1,2, . . . , k).

(2) According to the definition of attribute importance in the rough set, each attribute
is deleted from all attributes in turn, and then, the weight distribution methods
2 and 3 are performed. In the repeated step, the number of clusters is subject to
the threshold range determined in step 1, wherein, after deleting each attribute,
the entire set is still classified according to the corresponding threshold range.
Record the name and number of tuples contained in each cluster, denoted as
S′j(j = 1,2, . . . , k), to examine the influence of each attribute on the cluster.

4. Determine the importance of each attribute. Take the classification without deleting
any attribute as the benchmark and regard it as a knowledge classification, and the
deletion of each attribute is regarded as another kind of knowledge classification. The
positive domain of the classification after deletion of each attribute relative to the
total attributes classification is analyzed. It is essentially a collection of objects whose
classification with one attribute removed can be accurately divided into categories
with no attribute removed. It can be seen from the definition of relative positive
domain that the relative positive domain of any knowledge is the whole domain
relative to itself. According to the particularity of this paper, when all the data are in
the same class, or each object is in the same class, the processing method of relative
positive domain cannot bring any information. Therefore, these two special cases
should be excluded when determining the relative positive domain of each data in
this paper. Therefore, at a certain confidence level Fk, the importance of the attribute r
can be expressed as follows:

ϑSX′Fk
(Sr) = 1− γs−s′

(
X′
)

(19)

where S is each conditional attribute investigated in this paper, and X′ is the decision
attribute set of the attribute r and is the fuzzy clustering indicator of the sample to be
investigated.

γs−s′(X′) represents the importance of the s′.
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Considering that different threshold levels are also different confidence levels in fuzzy
clustering, p confidence levels Fk are combined to consider the comprehensive importance
of each attribute as

ϑ(Sr) =

(
p

∑
i=1

Fk × ϑSX′Fk
(Sr)

)
/n (20)

Thus, the weight distribution of each attribute is determined according to the compre-
hensive importance:

ϑ′r = ϑ(Sr)/
m

∑
r=1

ϑ(Sr) (21)

4. Bi-Level Collaborative Optimization Strategy

This paper proposes a bi-level collaborative optimization strategy model based on
real-time charging price to guide EV orderly charging and the safe operation of charging
stations. The schedulability of EV load is utilized to smooth the load fluctuation of dis-
tribution network and ensure its stable operation. As shown in Figure 6, the framework
of collaborative optimization strategy is divided into the upper and lower layer, and the
upper layer is the EV charging price guidance layer. Firstly, based on the prospect theory,
the EV user charging prospect function model considering the influence of price and time
factors is established, and the EV load data after the price guidance are transferred to the
lower model. The lower layer is the charging station operation layer, which calculates the
real-time total load data of the distribution network according to the EV load data, and it
takes the voltage fluctuation index and user charging cost as the target under the constraint
conditions such as power flow constraint, calculates the real-time price, and updates the
price on a rolling basis to guide EV orderly charging.
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4.1. Objective Function and Constraint Conditions

The purpose of collaborative optimization strategy is to reduce the fluctuation of
distribution network and reduce the adverse effects. Therefore, this paper puts forward
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the voltage fluctuation index to represent the voltage fluctuation of the system. At the
same time, considering the economy of EV users, the collaborative optimization strategy
is established.

4.1.1. Objective Function

1. Minimum voltage fluctuation index

The primary purpose of collaborative optimization strategy is to alleviate the imbal-
ance of load in the distribution network area and reduce the fluctuation of voltage so as
to improve the power quality. In this paper, the voltage fluctuation index is proposed
to represent the voltage deviation of regional distribution network system. The voltage
deviation of node j at time t can be expressed as:

∆Vt
j =

∣∣∣1−Vt
j

∣∣∣ (22)

where Vt
j represents the voltage of node j. There are r power grid nodes in the region, so

the objective function at time t is the minimum voltage fluctuation index in the region:

∂min = min
r

∑
j=1

∆Vt
j /r (23)

2. Minimum charging cost for users

Users can only respond positively to collaborative optimization strategy when they are
profitable, so reducing charging costs for users is undoubtedly one of the goals. Then, the
objective function of the charging user n choosing the charging station i can be expressed as

Umax = argmax[Uni] (24)

where Uni represents the utility value.

4.1.2. Constraints

1. Income constraints of charging stations

After the charging station operator participates in the price regulation, its profit should
not be lower than the profit obtained by the original pricing system so that the operator
can be willing to participate in the real-time price strategy.(

m

∑
k=1

n

∑
i=1

(
SOCg

i − SOCr
i

)
·ck(t)

)
≥

n

∑
i=1

((
SOCg

i − SOCr
i

))
·c0 (25)

In (25), m is the total number of charging stations in the region; n is the total number
of EVs to be charged;ck(t) is the real-time charging price of station k; SOCg

i is the SOC of
EV i after charging; and SOCr

i is the remaining SOC of EV i at the beginning of charging. c0
is the unified price before adjustment.

2. Power flow equation constraints


PGi(t) = Vi(t)

N
∑

j=1
Vj(t)

(
Gijcosθij(t) + Bijsinθij(t)

)
+ PEVi(t) + Poi(t)

QGi(t) = Vi(t)
N
∑

j=1
Vj(t)

(
Gijsinθij(t)− Bijcosθij(t)

)
+ Qoi(t)

(26)

In (26),PGi(t) and QGi(t) are the active and reactive power injected at node i during
time period t, respectively. Poi(t) and Qoi(t) are the conventional active and reactive loads
at node i of time period t, respectively, while PEVi(t) represents the charging loads. Gij and
Bij are the real and imaginary parts of the node admittance matrix, respectively; θij(t) is the
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nodal-voltage phase angle difference for the branch ij of time period t; and N is the total
number of nodes in the distribution network.

3. Power flow equation constraints

According to the requirements of GB/T12325-2008 “Power Quality and Supply Voltage
Deviation”, the three-phase supply voltage deviation of 20kV and below should be ±7% of
the nominal voltage, which is 0.93 ≤ Vt

i ≤ 1.07.

4. Transmission power constraint

{
Pij,t ≤ Pmax

ij
Qij,t ≤ Qmax

ij
(27)

where Pmax
ij and Qmax

ij are the upper limits of the active and reactive power that line ij can
transmit respectively.

5. Power accessibility constraints

Excessive battery discharge will cause adverse impact to the battery, resulting in
charging difficulties and other problems. Therefore, this paper stipulates that the lower
limit of the remaining SOC of the EV arriving at the charging station is 10%; thus, the
constraint of the power accessibility is

SOCre
i ≥ 10% (28)

6. Price constraints

The upper limit of the price set by the charging station operator should be lower than
the highest psychological expected price of the users to ensure that the EV users can actively
participate in the charging guidance, while the lower limit of the price should consider the
basic profit of the charging station operator.

cearn < ck(t)< cexpe (29)

7. Time constraints

Users who choose the fast charging mode have urgent charging needs and cannot wait
too long. Therefore, the sum of the user’s travel time and time spent in the charging station
should be less than Tmax.

T + T′≤ Tmax (30)

4.2. Analysis of Optimization Calculation Process

The architecture of the strategy proposed in this paper includes the price setting stage
and the charging guidance stage, and the simulation process is shown in Figure 7. It mainly
includes simulation of EV travel and charging load distribution, calculation of distribution
network, and calculation of guided price. The adaptive genetic algorithm (AGA) is adopted
for solving. AGA uses a dynamically generated method to determine the probability of
adaptive crossover and mutation. In order to maintain the diversity of individual genetics,
quickly converge to the global optimum and prevent the genetic algorithm from converging
too early to the local optimum.

The adaptive crossover probability Pc and mutation probability Pm can be obtained by
the following equation:

Pc =

{
Pc_max −

(
Pc_max−Pc_min

M

)
× Gen fitl > fitavg

Pc_max fitl ≤ fitavg
(31)

where Pc_max is the maximum crossover probability; Pc_min is the minimum crossover
probability; Gen is the current number of iterations; M is the maximum number of iterations;
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fitl indicates the larger fitness in a cross operation; and fitavg represents the average fitness
of all individuals in the current iteration.

Pm =

{
Pm_max −

(
Pm_max−Pm_min

M

)
× Gen fitl > fitavg

Pm_max fitl ≤ fitavg
(32)

where Pm_max is the maximum mutation probability; Pm_min is the minimum mutation
probability; Gen is the current iteration number; and M is the maximum number of iterations.
fit represents the fitness of the individual in the current mutation operation. Figure 7 shows
the operational flowchart of the AGA.
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• Step 1: Initialize. Generate an effective population and calculate each individual fitness.
• Step 2: Selection operation. N individuals with better fitness are selected and retained.

If the optimal fitness meets the set goal or reaches the maximum number of iterations,
output the optimal results and stop the operation; otherwise, proceed to the next step.

• Step 3: Crossover operation. When the random variable is less than the adaptive
crossover probability, a single point crossover between parents and offspring is per-
formed, resulting in the generation of 2N offspring from N parent individuals. The
parents and offspring merge to form a new population.

• Step 4: Mutation operation. For a new population, mutation is performed when the
random variable is less than the adaptive mutation probability.

• Step 5: Judge the constraint conditions of 3N individuals, eliminate the invalid indi-
viduals, retain the N individuals with better fitness, return to the second step, and
increase the number of iterations once.

This paper sets the specific parameters of the AGA as follows: 70 genetic iterations, a to-
tal of 200 individuals in the population. Pc_max = 0.9, Pc_min = 0.4, Pm_max = 0.1, Pm_min = 0.01.
The solving process of multi-objective optimization charging strategy is shown in Figure 8,
and the specific steps are as follows:

• Initialize EV locations and SOC and import multi-source raw data such as road
network, power grid structure, and temperature. Initialize the charging price matrix
in time period t, and the simulation takes 15 min as a cycle.
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• Each EV travels according to the planned path, and the speed and energy consumption
of each road section in time period t are calculated based on the speed-flow model and
temperature so as to determine whether the remaining EV power needs to be charged
and obtain the spatio-temporal distribution of the charging load.

• Carry out the calculation in the charging station, make statistics on the occupation and
queuing of charging piles at each charging station during t period, calculate the power
flow of the distribution network, and calculate the queuing time of charging station
according to the calculation method of queuing time in literature [15].

• Considering various constraints on the user side and the power grid side, AGA is
used to obtain the optimal charging strategy at time t. The steps include population
initialization, selection, crossover, mutation, etc.

• According to the optimal solution, the EVs are allocated to the corresponding node
for charging.

• Output charging price matrix of 96 periods, user charging cost, and voltage fluctuation index.
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5. Results
5.1. Simulation Parameters

Taking the road network in literature [38] as an example, this paper divides the roads
in the road network into two levels, in which the values of {a, b, γ} of trunk road are {1.726,
3.15, 3}, and the corresponding values of secondary trunk road are {2.076, 2.870, 3} [39]. Road
network parameters and road saturation parameters are given in Table A1 of Appendix A.
The road network is coupled with the IEEE 39 node power distribution system. There
are 5 fast charging stations in the network, and the number of charging piles in each
fast charging station is 10. The ambient temperature is set to 0 ◦C. The values of other
main simulation parameters are shown in Table 1. A total of 1500 EVs participated in the
simulation, and the initial time and initial position distribution are shown in Figure A1a,b
of Appendix A.

Table 1. Value of main parameters in the simulation.

Parameters Value Unit

Charging power 60 kW
Battery capacity 24 kW·h

Disorderly charging price 2.2 $/kW·h
Orderly charging price range [0.6, 3.5] $/kW·h

Zero flow velocity 50 km/h

5.2. Analysis of Simulation Results
5.2.1. Analysis of Collaborative Optimization Strategy Results: Power Grid Side

The primary goal of collaborative optimization is to reduce voltage fluctuation and
reduce voltage overshoot. This paper takes 15 min as the time period to analyze the
improvement effect of adjusting charging price on power quality. The following simulation
results are obtained by comparing the collaborative optimization strategy considering user
preferences proposed in this paper, the non-preferred charging strategy, and the disorderly
charging mode of choosing the nearest charging station without price guidance.

Figures 9a–c and 10a–c show the voltage values of the five charging station nodes and
the voltage fluctuation index under the conditions of considering preference, no preference,
and disorderly charging.

It can be seen that after the fast charging load is connected, under the disorderly
charging strategy, a large number of node voltages are out of limit. The voltage fluctuation
of the distribution network is sharp in the three periods of 6:30–8:30, 11:30–14:30, and
17:00–20:00, and the voltage violations occurred 74 times in 42 periods in total. The lowest
voltage appears at 12:45 and drops to 0.821 pu. From 17:00 to 20:00, the average drop of
node voltage is 10.330%. The voltage fluctuation index rises to 0.143. The maximum voltage
fluctuation occurred at 12:30, reaching 0.158.

Under the no-preference charging strategy, the voltage fluctuation index has been
improved to some extent, but there are still voltage out of limit occurrences: 16 times in
14 periods, mainly concentrated at 13:15–13:45, 5:00–5:30, and 7:00–7:30. The lowest voltage
occurs at 7:45, which is 0.835pu. At 13:15, the voltage fluctuation index reaches 0.0371,
which is the peak value. The average voltage fluctuation index is 30.843% lower than that
of disorderly charging.

Under the strategy proposed in this paper, the voltage fluctuates between 0.93 and 1.07,
and there is no out-of-limit situation. The voltage fluctuation index is between 0.0003 and
0.0203, which is an order of magnitude lower than before. The average voltage fluctuation
index is 32.715% lower than that of disorderly charging, which is more effective than the
optimization result of non-preference charging strategy.

To sum up, the power flow of the distribution network is changed, and the voltage of
each node in the distribution network is affected by adjusting the spatio-temporal access of
the fast charge load proposed in this paper. After adjustment, the voltage deviation of the
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distribution network is reduced, and the power quality is improved to some extent. At the
same time, compared with the no-preference charging strategy, the optimization effect of
the strategy proposed in this paper is better, the voltage is more stable, and the out-of-limit
node is from some to none, which proves that the strategy proposed in this paper is more
superior and effective.
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5.2.2. Analysis of Collaborative Optimization Strategy Results: User Side

For EV users, they hope to reduce the charging cost by participating in the optimization
strategy, which means the larger utility according to Formula (24). The comparison of
utility is shown in Figure 11.
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Compared with disorderly charging, the collaborative optimization strategy proposed
in this paper improves the charging utility value of users by 93.533%, and the average
charging utility value increases from −7.832 to 1.916, which means that the charging
cost has been effectively reduced. For the majority of charging users, the comprehensive
charging cost has been optimized not only in money but also in time.

By responding to the real-time price of different charging stations and accepting
guidance and distribution, users can reduce their queuing time and charging costs. In order
to simulate the “herding effect” of users in charging decision-making, this paper sets the
reference points as time-varying, and the reference points of price, queue time, and travel
time are shown in the Figure 12a–c.

The objective weight of each attribute is mined through fuzzy clustering. The cluster-
ing results under partial confidence degree are as follows:

• 0.65 < Fk ≤ 0.70, all samples are divided into 1 cluster when no attribute is deleted,
2 clusters when price attribute is deleted, and 1 cluster when time attribute is deleted.

• 0.70 < Fk ≤ 0.75, all samples are divided into 2 clusters when no attribute is deleted,
8 clusters when price attribute is deleted, and 3 clusters when time attribute is deleted.

• 0.75 < Fk ≤ 0.80, all samples are divided into 5 clusters when no attribute is
deleted, 68 clusters when price attribute is deleted, and 20 clusters when time at-
tribute is deleted.

• 0.80 < Fk ≤ 0.85, all samples are divided into 7 clusters when no attribute is deleted,
117 clusters when price attribute is deleted, and 40 clusters when time attribute
is deleted.

• 0.85 < Fk ≤ 0.90, all samples are divided into 11 clusters when no attribute is deleted,
138 clusters when price attribute is deleted, and 49 clusters when time attribute
is deleted.

• 0.90 < Fk ≤ 0.95, all samples are divided into 19 clusters when no attribute is deleted,
141 clusters when price attribute is deleted, and 51 clusters when time attribute is
deleted.

• 0.95 < Fk ≤ 1.00, all samples are divided into 23 clusters when no attribute is deleted,
144 clusters when price attribute is deleted, and 52 clusters when time attribute
is deleted.

According to the definition of attribute importance, the weight of each attribute is
assigned as (C, T, T′) = (0.2298, 0.3851, 0.3851).
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5.2.3. Analysis of Collaborative Optimization Strategy Results: Station Side

From the point of view of charging stations, through reasonable pricing and orderly
guidance, EVs can be dynamically allocated to reduce congestion in charging stations and
improve the rationality of charging station utilization.
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The load of each charging station before and after optimization is shown in Figure 13a,b.
It can be seen that the load of node 5 is too large in some time periods under disorderly
charging, and the voltage has exceeded the limit for many times. However, after orderly
guidance, the load of node 5 is significantly reduced and transferred to other nodes, which
proves the effectiveness of the collaborative optimization in this paper.
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In this paper, three scenarios under 0 ◦C, 25◦C, and −20 ◦C are selected, respectively,
for comparative analysis of queuing time. Among them, the charging efficiency under
−20 ◦C is 80%, and the charging efficiency under 0 ◦C and 25 ◦C is 98%. The comparison
of queuing time at different temperatures is shown in Figure 14. The number of queuing
vehicles and the average queuing time are given in Table 2.

Table 2. Queueing conditions at different temperatures.

Temperature −20 ◦C 0 ◦C 25 ◦C

Charging Strategy Disorderly Orderly Disorderly Orderly Disorderly Orderly

Number of queueing EVs 480 252 415 159 442 202

Average queue time 12.635 7.471 6.649 4.202 5.725 3. 397
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By analyzing the number of queueing EVs and the average queue time data in Figure 11
and comparing the data in Table 1 at different temperatures, it can be concluded that,
compared to disorderly charging, the average queue time at −20 ◦C, 0 ◦C, 25 ◦C decreased
by 40.870%, 36.802%, and 40.663%, respectively, and the number of queueing EVs decreased
by 47.916%, 61.686%, and 54.298%, respectively. The results show that dynamic pricing can
not only improve the congestion inside the charging stations but also effectively distribute
the charging pressure to other stations. At −20 ◦C, the relative SOC decreases, and the
charging efficiency decreases, and the heating of the AC system accelerates the power
consumption speed, so the remaining power of EV is lower and the charging time is longer,
leading to the increase in the queuing time. The average queue time in the three scenarios
is significantly reduced, which verifies the validity of the pricing strategy proposed in
this paper.

In addition, optimization strategy and reasonable pricing can effectively balance
the load among charging stations, reduce congestion within stations, and improve the
comprehensive utilization rate of each charging station; thus, it has not reduced the profits
of charging station operators, which represents the electricity sales profits of all charging
stations during the 96 periods. The total profit of charging stations under the pricing
strategy in this paper is USD 30,975.816, while that under the original fixed charging
pricing strategy is USD 30,565.499. The profit comparison of charging stations is shown
in Figure 15.
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Figure 15. Profit comparison.

To sum up, the strategy proposed in this paper guides users through price leverage;
the charging behavior is dynamically adjusted according to the initial load of the distri-
bution network, and the spatial distribution changes of the fast charging EVs access in
different periods has a good regulating effect. From the perspective of the power grid,
it can significantly reduce the number of distribution network voltage threshold nodes
and improve the power quality of the distribution network. From the perspective of user
groups, the charging cost is effectively reduced, and the queuing time of users is greatly
reduced. The irrational charging decision model and time-varying reference point con-
structed considering user preferences can fully stimulate the response potential of users.
From the point of view of charging stations, the utilization rate of charging stations is
improved, so the profit space of charging station operators is not reduced.

Figure 16 shows the convergence analysis curve of the optimization algorithm pro-
posed in this article. After approximately 50 iterations, the optimal solution was obtained,
proving that AGA has good convergence.
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6. Discussion

This paper proposes a collaborative optimization strategy considering psychological
preference. By adjusting the real-time charging price to guide the charging decision behav-
ior of users, it can change the spatio-temporal distribution of charging load, optimize the
power quality of distribution network, effectively reduce the charging cost of EV users, and
ensure the overall benefit of charging station operators. It is significant for suppressing load
fluctuation, maintaining power grid stability and economic operation. Specific conclusions
are as follows:

(1) The spatio-temporal prediction of charging load considering speed-temperature pro-
posed in this paper considers road constraints, practical speed–flow relationship
model, and temperature, and simulates the driving conditions and the remaining SOC
of EVs in the urban road network so as to obtain the spatio-temporal distribution of
charging load by coupling the regional distribution network.

(2) This paper proposes a charging decision model based on the irrational psychology
and decision-making behavior of users, and on this basis combines fuzzy clustering
with the relative positive domain theory of rough set to mine the attribute prefer-
ence, obtaining a multi-attribute charging decision model that considers the user’s
psychological preference. The charging decision-making model formulated by this
method is more in line with the decision-making process of the user, and the collab-
orative optimization strategy formulated based on this can effectively stimulate the
user’s responsiveness.

(3) A bi-level collaborative optimization strategy model is proposed. By changing the
price of each power station to guide users charging in an orderly manner, the average
voltage fluctuation index is reduced by 32.715%, the voltage out-of-limit situation is
solved, and the average charging utility value of users in the region is increased from
−7.832 to 1.916, effectively reducing the charging cost of users. At the same time, the
congestion of charging stations has been alleviated, and the profit of charging stations
has not been affected.

To sum up, the strategy proposed in this paper can satisfy the needs of EVs, fast
charging stations, and distribution networks. With the development and improvement of
the charging market in the future, the EV-station-grid will face competition and cooperation,
and the interaction between the three parties will lead to more complex charging decision-
making scenarios with the game and V2G. It will be the focus of future research to develop
incentive and control strategies for user charging behavior in multiple scenarios.
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Appendix A

Table A1. Road network parameters and saturation parameters.

Nodes Nodes Distance Grade 6:30–8:30 8:30–11:30 11:30–13:30 13:30–17:00 17:00–19:00 19:00–23:00 Other Time

1 2 1.71 II 0.5 0.3 0.4 0.3 0.5 0.3 0.2
1 5 2.704 II 0.55 0.3 0.4 0.3 0.55 0.3 0.2
2 3 1.126 II 0.55 0.3 0.4 0.3 0.55 0.3 0.2
2 4 3.39 II 0.6 0.35 0.4 0.35 0.6 0.3 0.25
3 4 1.552 II 0.6 0.35 0.4 0.35 0.6 0.3 0.25
3 9 1.986 II 0.55 0.3 0.4 0.3 0.55 0.3 0.2
9 4 1.613 II 0.6 0.35 0.4 0.35 0.6 0.3 0.25
9 8 1.805 II 0.55 0.3 0.4 0.3 0.55 0.3 0.2
9 10 2.137 II 0.6 0.35 0.4 0.35 0.6 0.3 0.25
10 8 1.557 I 0.65 0.35 0.45 0.35 0.65 0.35 0.3
10 13 1.924 II 0.65 0.35 0.45 0.35 0.65 0.35 0.3
10 14 1.017 II 0.6 0.35 0.4 0.35 0.6 0.3 0.25
14 13 0.747 II 0.7 0.35 0.45 0.35 0.7 0.35 0.3
14 19 1.037 I 0.55 0.3 0.4 0.3 0.55 0.35 0.3
14 21 1.687 I 0.7 0.4 0.5 0.4 0.7 0.4 0.3
14 22 0.926 I 0.75 0.45 0.5 0.45 0.75 0.45 0.3
22 23 1.429 II 0.55 0.3 0.4 0.3 0.55 0.35 0.3
23 24 0.878 I 0.75 0.45 0.5 0.45 0.75 0.45 0.3
24 25 0.794 II 0.5 0.3 0.4 0.3 0.5 0.3 0.2
21 20 1.3 I 0.6 0.35 0.4 0.35 0.6 0.3 0.25
20 19 1.126 II 0.55 0.3 0.4 0.3 0.55 0.3 0.2
20 18 0.87 II 0.5 0.3 0.4 0.3 0.5 0.3 0.2
18 17 2.149 II 0.55 0.3 0.4 0.3 0.55 0.3 0.2
17 19 1.271 II 0.6 0.35 0.4 0.35 0.6 0.3 0.25
19 13 1.686 II 0.5 0.3 0.4 0.3 0.5 0.3 0.2
13 8 1.843 I 0.75 0.45 0.5 0.45 0.75 0.45 0.3
13 11 2.387 I 0.75 0.45 0.5 0.45 0.75 0.45 0.3
8 4 1.5 II 0.55 0.3 0.4 0.3 0.55 0.3 0.2
8 7 2.763 II 0.55 0.3 0.35 0.3 0.55 0.25 0.2
8 11 1.836 II 0.7 0.35 0.45 0.35 0.7 0.35 0.3
11 7 1.986 II 0.55 0.3 0.35 0.3 0.55 0.25 0.2
11 12 1.162 II 0.7 0.35 0.45 0.35 0.7 0.35 0.3
11 16 1.801 II 0.55 0.3 0.35 0.3 0.55 0.25 0.2
16 17 1.76 II 0.7 0.35 0.45 0.35 0.7 0.35 0.3
16 12 1.334 II 0.55 0.3 0.35 0.3 0.55 0.25 0.2
16 15 2.634 I 0.75 0.45 0.5 0.45 0.75 0.45 0.3
15 12 1.413 I 0.75 0.45 0.5 0.45 0.75 0.45 0.3
12 7 0.739 II 0.7 0.35 0.45 0.35 0.7 0.35 0.3
7 6 2.134 I 0.65 0.7 0.7 0.65 0.65 0.6 0.2
7 4 1.023 I 0.65 0.7 0.7 0.65 0.65 0.6 0.2
7 5 1.35 I 0.65 0.7 0.7 0.65 0.65 0.6 0.2
5 6 0.859 I 0.6 0.75 0.8 0.75 0.6 0.6 0.2
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