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Abstract: This research paper proposes a real-time obstacle avoidance strategy for mobile robots with
a monocular camera. The approach uses a binary semantic segmentation FCN-VGG-16 to extract
features from images captured by the monocular camera and estimate the position and distance of
obstacles in the robot’s environment. Segmented images are used to create the frontal view of a mobile
robot. Then, the optimized path planning based on the enhanced A* algorithm with a set of weighted
factors, such as collision, path, and smooth cost improves the performance of a mobile robot’s path.
In addition, a collision-free and smooth obstacle avoidance strategy will be devised by optimizing the
cost functions. Lastly, the results of our evaluation show that the approach successfully detects and
avoids static and dynamic obstacles in real time with high accuracy, efficiency, and smooth steering
with low angle changes. Our approach offers a potential solution for obstacle avoidance in both
global and local path planning, addressing the challenges of complex environments while minimizing
the need for expensive and complicated sensor systems.

Keywords: A* algorithm; computer vision; mobile robot; obstacle avoidance; path planning

1. Introduction

The capacity to avoid obstacles is the primary goal of autonomous navigation, which
demands precision and efficiency. Thus, autonomous mobile robots (AMRs) must be able
to identify environmental barriers and design avoidance maneuvers. Sonars [1], infrared
(IR) sensors [2], laser scanners [3], and cameras [4] are only a few examples of the many
technologies developed to address the challenge of mobile robot navigation. Sonar devices
in various mounting configurations were utilized for many years for obstacle detection
due to their great low cost, although suffering from large inaccuracy due to reflection [5].
Due to the repeated teaching process, the processing time is extremely lengthy. Because the
path finding method can be developed based on the connection between the destination
and target point, the navigation process is not ideal. Laser scanners were shown to be
trustworthy and accurate. Nevertheless, they become problematic in uncharted territory [6].
Cameras give rich scene information despite their small footprint, inexpensive cost, and
high computing power requirements [6]. The proposed method removed those restrictions
because low-cost monocular cameras of sufficient precision are now widely available.
Because of their perceptual abilities, AMRs recently saw a rise in popularity as a sensing
approach based on vision-based navigation [7]. Recent years saw extensive research into
monocular depth estimates using deep learning, and the results are encouraging [8]. Hence,
real-time image segmentation-based navigation was effectively completed [9].

In many vision-based applications, such as scene understanding, robotic perception,
and picture reduction [10–14], semantic segmentation using deep learning (DL) is a funda-
mental problem. Minae et al. [10] examined DL-based segmentation models that showed
remarkable performance in visual image segmentation tests to address lack of regular
datasets for evaluating object segmentation. Then, using a shared dataset, Li et al. [11]
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selected the most appropriate strategy from various structures of semantic segmentation.
The ISPRS Vaihingen 2D semantic labeling contest was enhanced in [12] to address this
issue. With limited samples, the semi-supervised self-learning method maintained seman-
tic segmentation accuracy. Image semantic segmentation with hierarchical feature fusion
(ISHF) was presented by Yang et al. [13] to ensure the accuracy of picture segmentation
in deep neural networks. Despite ensuring the accuracy of segmentation, there were is-
sues with improving segmentation speed. Fusic et al. [14] proposed a vision sensor-based
DL algorithm to classify obstacles and terrain from the evaluation of the obtained image
files. However, the navigation based on scene terrain classification was not ultimately
demonstrated. Moreover, the vision-based navigation was enhanced by combining it with
the sensor system. Gharajeh et al. [15] proposed mobile robot path planning based on
the ANFIS technique. However, to save memory resources and fast processing time in
the perception, the authors applied binary semantic segmentation, such as moving and
restricted regions. The segmentation framework is now more efficient and lightweight
without sacrificing quality. There is now both a global and a local path to the path planning
process. The performance of AMRs’ motion depends on environmental perception [15–23].

Global path planning is only applicable in well-known environments when utilizing
well-known techniques, such as the Dijkstra algorithm [16], the A* algorithm [17], and the
rapidly exploring random tree (RRT) search method [18]. In close quarters, we employ local
path planning strategies, such as the dynamic window approach (DWA) [19], game-theory-
based path planning [20], and the ant colony method [21]. Shaher et al. [16] presented a
simple, optimal Dijkstra algorithm-based technique for global path planning. Nevertheless,
the technique simply restricted nodes with less random access memory (RAM). As a result,
the search was essentially inefficient and slow. Eshtehardian et al. [18] developed a rapid
RRT* search algorithm combining with B-spline for a smooth trajectory. Although the
standard rapid random tree search algorithm entirely handled MOOPs such as smoothness,
shortest path, and collision avoidance, the ideal technique required more memory and
processing time. Although it converged slowly, [21]’s ant colony algorithm was trustworthy.
Based on the Dijkstra algorithm [16], the A* algorithm was a heuristic search tool [17].
In a large and complicated environment, the A* algorithm alone could not be used for
path planning. Yonggang et al. [23] suggested an efficient A* approach combining with
the three-time Bezier curve to address the concerns of diverse turning points and steering
angles. Enhanced A* algorithms are widely utilized for both global and local path planning
due to their fast calculation speeds, path optimization, and other advantages.

The authors successfully design multi-scale fully convolutional network-based se-
mantic segmentation for mobile robot navigation using a low resource system. Then, we
completely utilize perspective correction on the segmented image to generate the AMR’s
frontal view of the moving environment, which detects the real-time moving area. In
addition, the optimized path planning algorithm is implemented based on the monocular
camera. Data processing, thus, calls for adequate performance and speed rate despite
constrained means. All three costs work together to guarantee the shortest path, the min-
imum distance to obstacles, and a smooth trajectory. The structure of the paper consists
of the following sections: After the introduction, the binary semantic segmentation based
on VGG-16 provides two foundational stages of segmentation network architecture and
training process. Next, navigation strategy based on ground plane segmentation describes
the foundational stages for constructing an optimal obstacle avoidance navigation strategy.
In addition, the approach is strengthened and effectively validated in Experimental Results.
The conclusion finishes with a summary and a development of future projects.

2. Binary Semantic Segmentation FCN-VGG-16

The suggested binary semantic segmentation based on VGG-16 has two primary
components: network architecture and network training. The following two sections
elaborate on these two sections (Sections 2.1 and 2.2).
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2.1. Network Architecture

The authors develop a network based on the FCN [24–27] to accomplish instant pixel-
wise labeling while maintaining a decent segmentation outcome. VGG [25] is chosen over
AlexNet [26] because of its popularity and more accurate predictions. In contrast to prior
work by Shelhamer et al. [27], our binary semantic segmentation based on VGG-16 [7]
employs deconvolutional layers at a total of four scales. The authors use different scales to
refine their predictions significantly. According to Yang et al. [28], this architecture starts
with a low-resolution, rough output prediction and refines it by fusing with prior layers to
give both local and global reasoning. VGG-16 is introduced as a convolutional and max
pooling layer-based encoder block in this case, as shown in Figure 1. All of the hidden
layers rely on linear rectifiers as their activation source. The completed VGG-16 layers are
removed from the network. The authors use multiscale fusions to merge features taken
from various layers to build the decoder block. The network input is a 96 × 96 × 3 RGB
image, and the first scaler’s output is 1/32 of the input image’s size. The network will then
be upsampled to the necessary image size of 96 × 96 × 64 by a classifier transforming the
shape to 96× 96× C. The number of classes C is used for intending to segment semantically.
The number of classes C is set to two because we only wish to mark pixels that belong to
the ground and those that do not. Ceilings, doorways, and pillars were not labeled because
they are unimportant for the majority of robot navigation purposes, although their labels
might be simply added if necessary.
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Figure 1. Multi-scale fully convolutional network [27].

2.2. Network Training

The experiments were executed on a server outfitted with specific software and an
operating system. To be precise, the server was equipped with Python 3.11.0 and the
TensorFlow 1.4 framework and ran on 64-bit Windows 10 Home English. The server was
powered by an Intel(R) Core (TM) I7-8750 h processor, operating at either 2.20 GHz or
2.21 GHz.

BCE = −
C=2

∑
i=1

yilog(ŷi) = −y1log(ŷ1)− (1− y1)log(1− ŷ1) (1)

where ŷi is the class softmax probability; yi is the prediction’s ground truth. The dataset is
similar to the source of data in [7]. The corridor environment plays an essential role in AMRs
motion, which often motivates the authors to gather corridor-specific training datasets. The
forecast of FCN-VGG-16 is depicted in detail in Figure 2 based on Equation (1).

Because of the difficulty of categorizing data, the authors settle on cross-entropy
loss. For classification models where the output is a probability value between 0 and 1,
a standard performance measure is cross-entropy loss, often known as log loss. While
cross-entropy and log loss have subtle differences depending on the setting, they are equal
for assessing error rates between 0 and 1 in machine learning. When C = 2, it is referred to
as binary cross-entropy or BCE in Equation (1).
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Figure 2. Ground truth and prediction in the loss function (BCE).

Network parameters are optimized for binary cross-entropy via one of the SGD vari-
ants’ parameter learning strategies. In contrast to the suggestion made by Yang et al. [28],
our network’s capabilities were increased through data augmentation, in which the original
versions of the training images are used. The training process is sped significantly thanks
to the extensive use of transfer learning. The authors use trained VGG models to set the
network parameters. The only challenging part is picking the right training environment.
After training and validating many different network versions, as shown in [7], the authors
settled on the following parameters: the momentum is 0.9, and the learning rate is 0.001;
the training procedure is tuned for 300 epochs, and the learning rate is decayed by 10 for
every 80 epochs.

When using a multi-scale FCN for binary semantic segmentation, the authors get
two classes, accessible and inaccessible areas. Hence, with limited resources, enough
performance and speed rate in data processing is necessary. The image size of 96 × 96
was exclusively chosen. Training times are cut thanks to the widespread use of transfer
learning drastically. The authors use pre-trained VGG models to set up the network, with
the most complicated part being the choice of training parameters through training and
testing numerous network versions in Figure 3. Figure 3a represents the validation mIoU as
the noise impacting the quality of the training process and how it can be reduced to speed
up the training process. As a result, the accuracy of the forecast will drop. The authors
take measures to avoid overfitting by augmenting their data. The method makes it easier
to fine-tune the forecast shown in Figure 3b. Additionally, practically eliminating noise
will considerably improve the quality of the prediction. The segmentation noise filtering
method is finalized using the probabilistic models described in [28].

Electronics 2023, 12, x FOR PEER REVIEW 5 of 22 
 

 

  
(a) (b) 

Figure 3. Training and validation on training images using mean intersection over union—mIoU as 
metric: (a) VGG-FCNs-CMU-96 × 96; (b) VGG-FCNs-Augment-96 × 96. 

In these difficult scenarios, our network is able to accurately anticipate the ground 
border, demonstrating its tolerance to different corridor types. The segmentation 
experiment outcomes in the Ta Quang Buu library setting are depicted in Figure 4. 

 
Figure 4. Segmentation results of the Ta Quang Buu library’s environment: (a) raw images; (b) 
ground truths; and (c) predictions. 

Finally, the optimal autonomous mobile robot path planning in the next section is 
guaranteed by the binary semantic segmentation VGG-16’s output results. 

Figure 3. Training and validation on training images using mean intersection over union—mIoU as
metric: (a) VGG-FCNs-CMU-96 × 96; (b) VGG-FCNs-Augment-96 × 96.

In these difficult scenarios, our network is able to accurately anticipate the ground bor-
der, demonstrating its tolerance to different corridor types. The segmentation experiment
outcomes in the Ta Quang Buu library setting are depicted in Figure 4.
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Figure 4. Segmentation results of the Ta Quang Buu library’s environment: (a) raw images; (b) ground
truths; and (c) predictions.

Finally, the optimal autonomous mobile robot path planning in the next section is
guaranteed by the binary semantic segmentation VGG-16’s output results.

3. Navigation Strategy Based on Ground Plane Segmentation

Our proposed approach constructs the fraction map based on the current observation,
using the result of the binary semantic segmentation process in which the available area
for movement of the arbitrary view will be labeled. Because inaccurate segmentation
affects obstacle avoidance results. So, the segmentation model output will be continuously
put into the probabilistic model using conditional random fields to filter the noise and
uncertainty [29] completely. Furthermore, the quality of the architecture of the segmentation
model also affects the results [30]. The navigation strategy of mobile robots includes three
sections as follows: In Section 3.1, a perspective correction method is used to alter the
ground region extracted from the semantic segmentation result. Section 3.2 provides a
sequence of coordinates for precise navigation from the current place to the designated
destination, based on a bird’s-eye perspective. Finally, Section 3.3 concludes by discussing
the ideal trajectory strategy for mobile robots. These three sections are further upon in the
sections that follow.

3.1. Perspective Correction

Figure 5 shows the images obtained after the binary semantic segmentation procedure,
labeling functional movement (white) and prohibited regions (black). Measurements of
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the distance to the obstruction were complicated by the strong distortion caused by the
perspective of the taken images.
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Figure 5. Result of semantic segmentation process.

The authors require coordination to be proportional to the actual ground in order to
plan the trajectory. To get a rough idea of the connection between world coordinates and
image coordinates, we can use a basic matrix multiplication based on the pinhole model
and a mathematical camera description. The transformation that maps a point from the
world coordinate system to the image coordinate system can be expressed as follows, where
p and P denote the image point and the world point, respectively:

p = Mint ×Mext × P (2)

where Mint presents the matrix of intrinsic parameters, Mext is the matrix of extrinsic
parameters. The intrinsic and extrinsic parameters are internal to the camera; however, the
latter can change depending on the camera’s position in the world frame.

The intrinsic and rotational constituents of the extrinsic parameters remain constant,
owing to the camera’s configuration mounted on the bird’s eye view of the mobile robot.
These parameters are presumed to remain invariant during movement, rendering the
approximations calculable only once. Utilizing the correspondence of four points in [31],
the front view of the ground plane can be constructed through a transformation matrix.
Consequently, our resulting image solely captures the ground plane and the available and
unavailable regions. The projective transformation, founded upon the four points, can be
described as follows:

Let (x, y) and (x′, y′) be inhomogeneous. Coordinates of a pair of matching points x
and x′ are in the world and image plane, and the given n point correspondences satisfy
(x, y)↔ (x′, y′). Then, the transformation H is described such as follows:

x′ = Hxi (3)

with each point correspondence satisfies two constraints:

x′ =
x1
′

x3′
=

h11x + h12y + h13

h31x + h32y + h33
; y =

x2
′

x3′
=

h21x + h22y + h23

h31x + h32y + h33
. (4)

Hence, H is determined uniquely. Hence, from any four points on the scene plane in
Figure 6a, we will obtain four points of arbitrary view in Figure 6b. Finally, transformation
H will build any four points of an arbitrary view of a real-time moving environment to any
other four points in the frontal view.

The authors perform the perspective correction of the frontal views by using the
checkerboard in Figure 7.
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Using the above transformation, the authors can construct the frontal view for a real-
time motion to define the available area. Figure 8 shows the segmentation model’s output
from frontal view images.
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Based on the information perception of the monocular camera bird’s view in Figure 9,
mobile robot path planning will be designed entirely.

3.2. Path Planning

Based on the generated frontal plane, the authors will construct a moving path using
a traditional A* algorithm [17]. Firstly, the authors create a collision-free area by scalding
up the unavailable place. After that, the image will be divided into grid cells. The current
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position is determined at the bottom center of the picture. The authors calculate the centers
of each cell and use them for the path planning process in Figure 10.
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Figure 10. Detect collision-free area and cells division.

In each mobile robot position, we have five functional movements: left, up—left,
straight, up—right, and right. A fundamental aspect of the A* algorithm is its utilization
of a heuristic function to estimate the cost to the objective. The heuristic function is a
distance-based mathematical estimation of the cost to the target from a given point. By
utilizing a heuristic function, the A* algorithm can prioritize points that are likely to be
closer to the target, enabling it to identify the shortest path more quickly in Equation (5).

f(m) = h(m) + g(m) (5)

where m represents the current point, f(m) represents the cost evaluation function, h(m)
represents the predicted cost from m to G, and g(m) represents the actual cost from m to
the next point. The typical heuristic function for distance is the Manhattan distance, as
indicated in Equation (6), or the Euclidean geometric distance, as given in Equation (7).

hM(m) = |xG − xb|+
∣∣yG − yb

∣∣ (6)

and
hE(m) =

√
(xG − xb)

2 +
(
yG − yb

)2 (7)(
xG, yG

)
is the position of the goal point, and (xb, yb) is the coordinate of any point.

Figure 11a shows that the A* algorithm can only search in four directions for neigh-
borhoods when utilizing the Manhattan distance. Figure 11b presents an alternative use of
Euclidean distance to study eight neighborhoods. The search process begins at S and then
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expands to surrounding points. Then, the generation values following are calculated. The
generating values are then evaluated using the heuristic function. Finally, the point with
the smallest generation value is selected as the next parent point. The search procedure
will be repeated until the target point G is located. In a large-scale map, the conventional
A* search will generate an enormous number of path points and consume a significant
amount of memory.
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directions of neighborhood.

The heuristic cost is determined by the distance of the current grid cell’s center to the
target grid cell’s center, and the path cost is calculated by the distance between the centers
of adjacent grid cells. The algorithm repeats the exploration by picking the cell with the
lowest price (sum of path cost and heuristic cost) in the priority queue until the picking cell
reaches the target (path is found) or the queue is empty (path is not found). If the path is
found, the algorithm will construct the absolute path by following the path cost from the
target grid cell.

3.3. Trajectory Optimization

After obtaining the path by the A* algorithm, the authors use K points to describe
the trajectories and apply the cost function (movement requirement) for the smoothening
process. The cost function is constructed based on the necessity of a low steering angle, and
a collision-free and continuous path, which is similar to the objective function described
as follows:

cos ttotal = ω1Ccollision +ω2Cpath +ω3Csmooth (8)

where ω1, ω2, and ω3 are weights of collision cost, path cost, and smooth cost, respectively.
Each cost component has a different effect on the result and can be described as follows:

Collision cost Ccollision prevents collision by penalty points that are in the unavailable
area and pushes them to the nearest available area:

Ccollision = max(0, bound val− distance(p, pb)) (9)

where p are the path coordinates, pb are the closest collision-free bounding points relative
to coordinates p, and bound val is the minimum distance to the nearest obstacle.

Path cost Cpath ensures the continuity of the sequence of coordinates by penalty points
goes far from the planned path:

Cpath = distance(points, path points) (10)

where points are the coordinates, path points are the closest points in the planned path
relative to points.

Smooth cost Csmooth reduces the steering angle by penalty the sum of the distance of
three consecutive points:

Csmooth = distance
(
pi, pi+1

)
+ distance

(
pi, pi−1

)
(11)
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where pi−1, pi, pi+1 are three consecutive coordinates.
The authors update the optimization using gradient-based methods [32]. In Equation (8),

smooth cost Csmooth introduces the risk of inaccuracy. The smooth cost function always
decreased the angle between three adjacent coordinates. Thus, the authors apply a weight
to the smooth cost based on whether the coordinates fall inside the accessible or unavail-
able area. When coordinates enter the available area, the update can typically continue.
Otherwise, the magnitude of the update will be diminished by the added weight. The
influence of the smooth cost remains, but it is less significant than the effect of the collision
cost, which will return the coordinates to the available area.

4. Experimental Results
4.1. Proposed Obstacle Avoidance Strategy

All steps of obstacle avoidance and planning strategy are according to the optimization
trajectory workflow in Figure 12 as below.
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4.2. Perspective Correction Process

In order to evaluate the created frontal plane, the authors will conduct studies on
a checkerboard, which will provide patterns for improved recognition. In the initial
experiment, the authors examine the non-obstacle region and assess the cell size in the
generated image. The size of the cells in the created plane is proportionate to the size of the
original cells in Figure 13. Hence, the cells in a constructed frontal plane can be utilized for
qualitative measurement.
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Figure 13. Perspective correction on checkerboard.

Then, the authors compare the differences between perspective correction with ob-
structions in various positions. Figure 14 depicts the relative position of an obstruction from
an arbitrary and frontal perspective. The checkerboard cells can compare the near function
while moving blocks in the checkerboard plane, observing that perspective correction is
only performed to the checkerboard plane and causes an inaccuracy in the other plane.
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Since the authors treat the unobservable area as an unavailable area for movement, the
result of perspective correction can be used to determine four different obstacle positions
in Figure 15.

4.3. Path Finding Process

Before implementing the path finding algorithm, the authors establish the collision-
free region by considering the path as a sequence of points that locate the mobile robot’s
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center due to the collision problem. In Figure 16, the collision-free area is delineated by
extending the unusable area (black area) by a distance equal to half the mobile robot’s width.
The variance in boundary dimension may result in a variable path planning outcome.
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Figure 16. Determine the bounding of the collision-free area: (a) having one obstacle at the bottom of
the environment, (b) having two obstacles at the top of the environment.

The authors apply the A* path planning algorithm to the collision-free region. As the
authors plan the path on the observable area, which was rather uncomplicated in Figure 17,
the computational cost of the A* algorithm is modest.

4.4. Trajectory Optimization Process

In Figure 18, the authors examine the effect of the collision cost using random blue
points and the same method. The empty black spot can be used to store the blue points.
There are two possible scenarios in which a mobile robot encounters barriers while moving
in real time: Figure 18a depicts the environment for Scenario 1, which features a single
obstacle in the bottom center, and Figure 18b depicts the environment for Scenario 2, which
features a pair of obstacles at the top. To prevent accidental collisions with obstacles,
Ccollision changes blue points to black ones.
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The outcome demonstrates that path cost moves random blue points to the closest
points along the intended path in Figure 19.
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of the environment, (b) having two obstacles at the top of the environment.

In Figure 20, a comparison is presented between the performance of the original A*
path and the path generated by combining the collision cost and smooth cost. To enhance
the safety of the autonomous mobile robots (AMRs), the environment is modified to ensure
the path remains unobstructed, as depicted by the blue line. Including the additional
collision cost in the A* heuristic cost function is a remedy for the potential issue of robot
collision (indicated by the black line) when traversing or turning around an obstacle.
Application of the traditional A* algorithm may not be sufficient to avoid collisions in such
scenarios. Furthermore, the smooth cost decreases the angle between three consecutive
path points, leading to a smoother path.



Electronics 2023, 12, 1932 14 of 20

Electronics 2023, 12, x FOR PEER REVIEW 15 of 22 

In Figure 20, a comparison is presented between the performance of the original A* 
path and the path generated by combining the collision cost and smooth cost. To enhance 
the safety of the autonomous mobile robots (AMRs), the environment is modified to en-
sure the path remains unobstructed, as depicted by the blue line. Including the additional 
collision cost in the A* heuristic cost function is a remedy for the potential issue of robot 
collision (indicated by the black line) when traversing or turning around an obstacle. 
Application of the traditional A* algorithm may not be sufficient to avoid collisions in 
such scenarios. Furthermore, the smooth cost decreases the angle between three consec-
utive path points, leading to a smoother path. 

(a) (b) 

Figure 20. Effect of the smooth cost in the enhanced A* path: (a) having one obstacle at the bottom 
of the environment, (b) having two obstacles at the top of the environment. 

After separately studying path cost, collision cost, and smooth cost, we investigate 
all cost functions simultaneously and show the final results. The processing time of three 
scenarios is separately measured to prove the proposed path’s performance in Figure 21. 

(a) (b) (c) 

Figure 21. Final trajectory results with real-time measurement: (a) having one obstacle at the top 
right of the environment, (b) having two obstacles at the top of the environment, and (c) having one 
obstacle at the bottom of the environment. 

Figure 20. Effect of the smooth cost in the enhanced A* path: (a) having one obstacle at the bottom of
the environment, (b) having two obstacles at the top of the environment.

After separately studying path cost, collision cost, and smooth cost, we investigate
all cost functions simultaneously and show the final results. The processing time of three
scenarios is separately measured to prove the proposed path’s performance in Figure 21.
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Figure 21. Final trajectory results with real-time measurement: (a) having one obstacle at the top
right of the environment, (b) having two obstacles at the top of the environment, and (c) having one
obstacle at the bottom of the environment.

More three situations tested in the simulation are as follows: Scenario 3 has one
obstacle in the top right corner of the shifting environment, whereas Scenario 4 has two, and
Scenario 5 has one massive obstacle at the base. To validate the quality of the segmentation
model’s design, the results are compared to those in [30]. The A* algorithm is first utilized
to find the path based on optimized path planning. The overall completion time of the A*
algorithm is only 0.0140, 0.0223, and 0.0051 s for Scenarios 1, 2, and 3, respectively. Finally,
the enhanced A* algorithm with three cost functions, including path cost, collision cost,
and smooth cost, directs the mobile robot to safely avoid obstacles and follow a smooth
trajectory to its goal. In Scenario 3, the impressive processing time is 0.0591 s, in Scenario 4
it is 0.0725 s, and in Scenario 5 it is 0.0493 s.
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With the successful application of the optimized mobile robot navigation strategy,
particularly the process of smoothing the path while maintaining the mobile robot’s safety,
the tracking trajectory controlling is robust with steering angle variations of less than 0.2
rad in Figure 22.
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Figure 22. Changes in steering angle while mobile robot is tracking optimal trajectory: (a) steering
angle between coordinates in x axis, (b) steering angle between coordinates in y axis.

Furthermore, the authors continuously validate the mobile robot path planning perfor-
mance in two continuous scenarios in Figure 23. The following 50 × 50 grid environments
are continuously conducted. The start point S (0, 0) and goal point G (50, 50) were used as
simulated test maps. The obstacles appeared randomly in Scenario 6, and the formation of
obstacles is more complex in Scenario 7.
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In both Scenarios 6 and 7, if only using A* path, the mobile robot will track only the
global path and turn too many times. Hence, the A* path requires much more computational
scale and memory usage. A* solution is not optimal compared with our improved A*
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algorithm through the path length and time processing. Furthermore, A* path moves into
the serious region around the obstacle defined by collision cost (grey region) in Figure 23.
Based on the binary semantic segmentation image results, using path cost and collision cost,
the performance of the mobile robot path is better (red lines), in the local area of the frontal
view. The path is always a collision-free distance to obstacles. Finally, when adding more
smooth costs, our improved A* makes the path smoother (green lines). The trajectory must
be shorter than the planning path. Table 1 displays the results of a comparison between the
A* algorithm and the suggested A*-based route planning algorithm in terms of the number
of path nodes and the length of the paths taken in the aforementioned two cases.

Table 1. The comparison between our proposed path planning and different methods.

Methods Path Nodes Path Length

Traditional A* algorithm [17] 73 86.8

Improved Dijkstra algorithm [16] 52 80.5

Our improved A* without smooth cost 7 75.2

Our proposed method 7 75.6

The proposed method significantly reduced the calculation path nodes and path
length in the mobile robot’s movement compared to the traditional A* algorithm [17] and
improved the Dijkstra algorithm [16]. Moreover, the mobile robot’s trajectory is smoother
and more robust when the changed steering angle is reduced in Figure 22. In addition,
the proposed path planning still ensured the shortest distance between the start and goal
points. The result also consolidates the optimal mobile robot navigation strategy design.

The authors will evaluate the results of the transformation and conclude that semantic
segmentation is essential for constructing the frontal perspective of the ground. Then,
the mobile robot’s optimal path planning can be created. Practical experimental results
improve collision-free zone detecting procedures. Optimized path planning with all of
the cost functions and obstacle avoidance will be created once the front view becomes the
norm. Figure 24 depicts the four-wheel mobile robot used to test our proposed semantic
segmentation, while Figure 25 depicts the same robot navigating a 2.8 m 1.4 m area with
four obstacles in Scenario 8. Figure 25 shows how our best obstacle avoidance method [7]
replans a safe global path for the mobile robot to travel along, which it then uses to
move forward.
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To verify the moving obstacle avoidance, the following experiments are set up in
Scenario 9 under ROS environment, in Figure 26: The authors postulate a mobile robot
that follows a global path from point A to point B. The obstacle Obs moved from posi-
tion Pos 1 to Pos 2 with a velocity as 0.2 m/s. The mobile robot’s parameters were as
follows: the maximum velocity: 1 m/s, the maximum angular velocity: 25◦/s, the an-
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gular velocity resolution: 1◦/s, the acceleration: 0.25 m/s2, and the angular acceleration:
45◦/s2, respectively.
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Figure 26 (snapshots (a)–(f)) depicts a mobile robot following a global path determined
by the A* algorithm. Then, the mobile robot discovers the obstacle Obs, and the path is
modified the local path to becoming the optimized path. Hence, the mobile robot avoids
the obstacle successfully at Pos 1, then continues at the new Pos 2 of the moving obstacle.
The experimental test is conducted on a mobile robot using the monocular camera in an
actual ROS environment. In addition, the optimal mobile robot trajectory strategy ensures
the mobile robot’s robust movement while avoiding obstacles. All snapshots of Figure 25
present the mobile robot’s moving process, including as follows:

In Figure 26a, at the start point S, a mobile robot will move to goal point G. The global
path is entirely built. In each local area of the frontal view, the mobile robot discovers if
it has obstacles in the path. Then, the mobile robot determines the door’s position and
adjusts the path to move through the door successfully. Next, the mobile robot movement
maintains a safe collision distance from the obstacle Obs at Pos 1, as shown in Figure 26b.
Furthermore, when the obstacle moves from Pos 1 to Pos 2, the way will intersect the first
global path based on the A* algorithm. In Figure 26c, if the optimized mobile robot path is
not successfully implemented, the robot will collide with the obstacle Obs in Figure 26b,c
(red dotted lines). The mobile robot velocity is decreased from 1 m/s to a suitable velocity to
gain enough time processing of implementing the optimized path. From Figure 26d–f, the
mobile robot path is completely re-planned to the new path (green dotted lines). The mobile
robot successfully tracks the optimized path from S to G with a collision-free distance to
the obstacle of 0.2 m. Our evaluation findings demonstrate that the method successfully
detects and avoids obstacles in real time with great precision and efficiency.
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Figure 26. Optimized trajectory of mobile robot in the experimental moving obstacle scenario in ROS
environment with the global path is dotted red lines and the re-path is dotted green lines: (a) Mobile
robot moves from the start point S to goal point G, through the gate and avoid the obstacle Obs at
Pos 1 (red dotted line); (b) After avoiding the obstacle Obs, mobile robot detect the moving obstacle
at Pos 2; (c) The path is changed to ensure the moving obstacle Obs (green dotted line); (d) mobile
robot moves successfully according to a new re-path; (e) mobile robot turn left to avoid the conner of
the moving Obs; (f) mobile robot reaches to the goal point G with new re-path.

5. Conclusions

Path finding in the real world necessitates multi-objective optimization issues, such
as optimizing the shortest path, the smallest distance to obstacles, and the smoothest tra-
jectory. However, obstacles may arise when the qualities of the aims contradict. Thus, a
multi-objective evolutionary algorithm based on binary semantic segmentation is proposed.
Furthermore, data augmentation helps predict challenging situations, such as poor lighting
conditions and background clutter. The most important parts of a good obstacle avoidance
algorithm are collision-free path planning, a manageable amount of processing time, and
minor adjustments to the steering angle. Instead of relying on the option of following an
initial reference, as with existing systems, the mobile robots’ navigation technique will be
proactive in selecting flexible alternatives in the frontal view. Inputs for a perspective trans-
form are collected from a segmentation map deemed suitable for perspective correction.
From the beginning and ending locations of the map, the optimized path based on the A*
algorithm will determine the direction of rapid movement.
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Moreover, in the trajectory optimization process, with enhanced A* algorithm, the
authors create a novel cost function construction based on the need for a path finding,
collision-free path with a low steering angle. Collision cost Ccollision prevents collisions
caused by penalty points in inaccessible regions and moves them to the nearest available
region. Path cost Cpath ensures the continuity of the series of coordinates by assigning
penalty points when the path deviates from its intended course. Finally, the expense is
streamlined. Csmooth decreases the steering angle by penalizing the distance between three
consecutive points. After separately studying each component, the authors integrate the
cost function and produce the final results. Authors measure the impressive processing
time at each phase to evaluate the performance process and trajectory quality. A mobile
robot can move stable and robots with the steering angle variations less than 0.2 rad.
The simulation outcomes satisfactorily demonstrate the accuracy and enhancement of the
proposed strategy. Our long-term objective is to train the model to distinguish between
many different types of interior obstructions by using data from multiple classes. As a
result, path planning will function better in a wide range of indoor environments. In
addition, the gathered data could be used with sensor systems to deal with intricate issues
in the global and local outside environment.
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