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Abstract: Interval neutrosophic sets (INSs), characterized by truth, indeterminacy and falsity mem-
bership degrees, handle the uncertain and inconsistent information that commonly exists in real-life
systems, and constitute an extension of the interval valued fuzzy set and interval valued intuitionistic
fuzzy set. The existing works on similarity measures for INSs are mostly constructed by distance
measures and entropies. Meanwhile, the degree of similarity is expressed as a single number, even if
the interval-valued information is considered. This may lead to a loss of interval-valued information.
In order to cope with these issues, in this paper, we introduce a new approach to constructing the
similarity measures for INSs using fuzzy equivalencies. First, based on fuzzy equivalencies and
aggregation operators, the definition of interval-valued fuzzy equivalence is generalized to interval
neutrosophic values. Then, based on the framework of INSs, we propose the definition and con-
struction method of the similarity measure using the interval neutrosophic fuzzy equivalence. The
similarity degree is expressed as an interval and could retain more information than ever before.
In addition, according to practical situations, one can obtain different similarities by selecting the
parameters in fuzzy equivalence. Due to the increase in edge computing, it is necessary to reasonably
offload the client’s resource and assign them to the edge server to balance the resource usage. The
Similarity measure is conductive to select and match the client and edge server. Finally, an illustrative
example verifies that the proposed method can find a reasonable client and edge server, as well as
effectiveness in the edge computing application.

Keywords: interval neutrosophic sets; similarity measure; resource offloading

1. Introduction

Edge computing refers to technologies that allow computing to be performed at
the edge of the network on downstream data, meaning cloud services, and upstream
data, meaning Internet of Things services [1]. The advantages of edge computing include
its ability to overcome the restrictions on limited computation capacity for some clients
compared with local computing. At the same time, in contrast with offloading resources
toward the remote cloud, edge computing can avoid the high latencies caused by the
offloading of certain tasks [2]. Therefore, offloading resources is considered a critical
challenge in edge computing. In order to ensure the normal operation of services for clients,
redundant work is allocated to edge servers based on the load capacity. This can enhance
the speed of response to new services and improve the robustness and computing ability of
the network.

In essence, the selection and matching of clients and edge servers for resource offload-
ing are the multi-attribute decision-making (MADM) problems. Due to the ambiguity of
people’s thinking and the complexity of objective things, the attribute values of MADM
problems cannot be expressed by crisp numbers and may be easier to describe by fuzzy
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information. Zadeh [3] proposed the theory of fuzzy sets in 1965. The concept of fuzzy
sets opened up new perspectives to handle the hesitation and vagueness comprised in
the decision-making scheme. This has been studied at length and successfully applied
in various fields [4–7]. As the fuzzy set uses one single value TA(x) ∈ [0, 1] to represent
the grade of truth-membership of the fuzzy set A in the universe, it cannot handle some
cases where TA is difficult to define by a specific value, so Turksen [8] proposed the interval
valued fuzzy sets. However, whether these are fuzzy sets or interval valued fuzzy sets,
it is difficult to describe decision-makers’ evaluation of complex objects only through the
truth-membership function in practical decision making. On this basis, Atanassov [9,10]
proposed intuitionistic fuzzy sets, and added a falsity-membership function to the fuzzy set,
which is an extension of Zadeh’s fuzzy sets. That is to say that there is a truth-membership
function TA(x) and a falsity-membership function FA(x) in an intuitionistic fuzzy set A,
which satisfy the conditions TA(x), FA(x) ∈ [0, 1] and 0 ≤ TA(x) + FA(x) ≤ 1. Further-
more, Atanassov and Gargov [11,12] proposed the interval-valued intuitionistic fuzzy sets
by extending the truth-membership function and falsity-membership function to interval
values. However, intuitionistic fuzzy sets and interval-valued intuitionistic fuzzy sets can
only handle incomplete information, but cannot deal with the uncertain information and
inconsistent information in practical decision-making problems. For example, in the voting
issue, some agreed, some opposed and some abstained. Another example relates to medical
diagnoses: sometimes it is difficult for a doctor to make a certain diagnosis when a patient
is suffering from a disease, so they may give an analysis with a degree of truth and falsity,
as well as indeterminacy, such as “yes” (60%), ”no” (40%) and “not sure” (20%) in [13,14].
These issues are beyond the scope of fuzzy sets and intuitionistic fuzzy sets. Therefore,
Smarandache [15] proposed the concept of neutrosophic sets (NSs), which are indepen-
dently characterized by the truth-membership function TA(x), the falsity-membership
function FA(x), and the indeterminacy-membership function IA(x). In the neutrosophic
set, the indeterminacy factor is explicitly quantified, and completely independent from the
truth-membership and false-membership, while the incorporated uncertainty is dependent
on the degrees of belongingness and non-belongingness in the intuitionistic fuzzy set. With
regard to the aforementioned example about the doctor’s diagnosis, it can be expressed as
(0.6, 0.4, 0.2) by NSs. To date, NSs have become an interesting research topic and attracted
widespread attention. The original NS is mainly used for philosophical applications: in
order to easily use the NS in real scientific and engineering fields, some extensions to NS
have been proposed. Wang et al. [16] proposed the notion of a single-valued neutrosophic
set (SVNS), which is an instance of NS, and provided a set of theoretic operations on SVNSs.
Zhang et al. [17,18] performed extensive research on neutrosophic sets, and proposed a
new kind of inclusion relation and new operations in SVNSs. Similarly to interval intuition-
istic fuzzy sets, Wang et al. [19] proposed interval neutrosophic sets (INSs), wherein the
truth-membership, indeterminacy-membership, and false-membership were extended to
interval numbers, and discussed some properties. From a practical point of view, using
interval values to express uncertain information is more appropriate than a single value
and more suitable for people’s needs. As a combination of interval-valued sets and SVNSs,
INSs provide an effective approach to deal with uncertain, inconsistent, incomplete, and im-
precise information. The INS theory has been proven to be useful in many scientific fields,
such as multi-attribute decision making, machine learning, algebraic systems, etc. [20–22].

Information measures are crucial to decision making in uncertain information pro-
cessing, and similarity is the most important measure. In general, similarity measures
are mainly used to measure the discrimination degree of objects. In many practical situ-
ations, we need to compare two objects in order to determine whether they are identical
or approximately identical or at least to what degree they are identical. To date, a lot of
research has been performed on similarity measures in the field of NS theory. Broumi and
Smarandacha [23] presented a method to calculate the distance between SVNSs on the basis
of the Hausdorff distance and proposed some similarity measures based on the distance
and matching function to calculate the similarity degree between SVNSs. Majumdar and
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Samanta [24] presented several similarity measures for SVNSs based on the Hamming
(Euclidian) distance and normalized Hamming (Euclidian) distance between two SVNSs.
Ye [21,25–27] studied the similarity of SVNSs and INSs from different angles. Wang [28]
discussed the relationship among several existing similarity measures of SVNSs, such as
distance-based similarity measures, the similarity measures based on min and max opera-
tors, and vector similarity measures in terms of inequality and equivalence, and provided
the definition of equivalence for similarity measures. In addition, Qin [29] proposed a new
similarity and entropy based on the new inclusion relationship of SVNSs [17,18]. Yang [30]
defined a new inclusion relationship of INSs, and gave the new similarity and entropy for
the new inclusion relationship. In accordance with the fact that most cases of similarity
among SVNSs are often counter-intuitive, Zeng [31] constructed a new distance measure
of SVNSs based on the modified Manhattan distance and proposed a new distance-based
similarity measure. Ali [32] developed two forms of Hausdorff distance between SVNSs
based on the definition of an Hausdorff metric between two sets, and used these new
distance measures to construct several similarity measures for SVNSs. It is easy to ascertain
that the similarity measures are expressed by a single number regardless of whether on
is dealing with SVNSs or INSs. This is why it is more reasonable to think that interval
neutrosophic sets express more uncertain information than single-valued neutrosophic sets,
since the interval values could prevent information loss to a maximum extent. However,
there has been little research using interval values to express the similarity between INSs
to date.

In most research, similarity measures are constructed based on the distance measure
and entropy [33–35]. However, as a fuzzy connective, the fuzzy equivalence has been used
to depict the similarity between fuzzy sets from another aspect. Fodor and Roubens [36]
first put forward the concept of fuzzy equivalence. Wang et al. [37] proposed a way of
constructing fuzzy equivalencies using fuzzy implications. Li et al. [38] proved that the
biresiduations of t -norms are indeed fuzzy equivalencies, and then presented several
ways of constructing fuzzy equivalencies based on the composition of automorphisms,
fuzzy negations, and some existing fuzzy equivalencies. Li et al. [39] introduced the
concept of an interval-valued fuzzy equivalence, which is an interval extension of the
fuzzy equivalence, and provided ways of constructing interval-valued fuzzy equivalencies
from given fuzzy equivalencies and aggregation functions. Inspired by the concept of
interval-valued fuzzy equivalence, in the present paper, we consider extending the interval-
valued fuzzy equivalencies to interval neutrosophic fuzzy equivalencies, and then we
propose a new method of similarity measure for INSs based on the fuzzy equivalence
and express the similarity with interval values. The advantage of this method is that, on
the one hand, different similarities could be obtained by transforming the parameters in
fuzzy equivalence, making the similarity methods more inclusive. On the other hand, the
similarity degree in interval form could retain more information than ever before.

The rest of this paper is organized as follows. In Section 2, we review some preliminary
definitions and the results of the interval neutrosophic set and fuzzy equivalence on the
unit interval. In Section 3, based on the interval-valued fuzzy equivalence, we define the
concept of an interval neutrosophic fuzzy equivalence, and provide a way of constructing
interval neutrosophic fuzzy equivalencies using the aggregation operators. In Section 4,
we extend the definition and construction method of a similarity measure for interval
neutrosophic values to interval neutrosophic sets. In Section 5, we present a multi-attribute
decision-making method using the similarity measure on interval neutrosophic sets, and
apply it to the selection and matching of clients and edge servers for resource offloading. A
brief conclusion is provided in Section 6.

2. Preliminaries

This section gives a brief overview of the concepts of interval-valued sets, interval
neutrosophic sets, and the fuzzy equivalence of real numbers on [0, 1].
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2.1. Interval-Valued Set and Its Operational Rules

Consider the real unit interval [0, 1], and denote the set N[0,1] = {[aL, aU ]|0 ≤ aL ≤
aU ≤ 1} as the interval-valued set of the closed interval [0, 1]. An interval value a ∈ N[0,1]

can be denoted by a = [aL, aU ], where aL and aU are the left and right endpoints of the
interval value a, respectively.

The usual partial orders between interval values are the product order and the inclu-
sion order. For given interval values a, b ∈ N[0,1], the product order ≤ is defined as a ≤ b, if
and only if aL ≤ bL and aU ≤ bU , and the inclusion order ⊆ is defined as a ⊆ b, if and only
if bL ≤ aL and aU ≤ bU [39].

According to Zadeh’s extension principle, we can extend the logic operation ∨, ∧, c

on the closed interval [0, 1] to the interval values set N[0,1], then some operations can be
presented as follows: for any a = [aL, aU ], b = [bL, bU ] ∈ N[0,1], for any λ ∈ [0, 1],

(1) a ∨ b = [aL ∨ bL, aU ∨ bU ];

(2) a ∧ b = [aL ∧ bL, aU ∧ bU ];

(3) ac = [1− aU , 1− aL];

(4) min N[0,1] = [0, 0], max N[0,1] = [1, 1];

(5) a + b = [(aL + bL) ∧ 1, (aU + bU) ∧ 1];

(6) λa = [λaL, λaU ];

2.2. Interval Neutrosophic Sets

The neutrosophic set is a part of neutrosophy, which studies the origin, nature, and
scope of neutralities, as well as their interactions with different ideational spectra, and is
a powerful general formal framework, which generalizes the aforementioned sets from a
philosophical point of view. Smarandache [15] gave the following definition of a neutro-
sophic set.

Definition 1 ([15]). Let X be a space of points (objects), with a generic element in X denoted by x. A
neutrosophic set A in X is characterized by a truth-membership function TA(x), an indeterminacy-
membership function IA(x), and a falsity-membership function FA(x), where TA(x), IA(x), and
FA(x) are real standard or nonstandard subsets of ]0−, 1+[, such that TA(x) : X →]0−, 1+[,
IA(x) : X →]0−, 1+[ and FA(x) : X →]0−, 1+[. Furthermore, the sum of TA(x), IA(x), and
FA(x) satisfies the condition 0− ≤ sup TA(x) + sup IA(x) + sup FA(x) ≤ 3+.

An interval neutrosophic set is an instance of neutrosophic set which can be used in
real scientific and engineering applications. In the following, we introduce the definition of
an interval neutrosophic set.

Definition 2 ([19]). Let X be a space of points (objects), with a generic element in X denoted by
x. An interval neutrosophic set A in X is characterized by a truth-membership degree TA(x), an
indeterminacy-membership degree IA(x), and a falsity-membership degree FA(x). An interval
neutrosophic set A can be denoted by

A = {< x, (TA(x), IA(x), FA(x)) > |x ∈ X}, (1)

where TA(x), IA(x), FA(x) ⊆ [0, 1] for each x ∈ X, and the sum of supremum of TA(x), IA(x)
and FA(x) satisfies the condition 0 ≤ sup TA(x) + sup IA(x) + sup FA(x) ≤ 3.

For convenience, if TA(x) = [TL
A(x), TU

A (x)], IA(x) = [IL
A(x), IU

A (x)] and FA(x) =
[FL

A(x), FU
A (x)], then

A = {< x, ([TL
A(x), TU

A (x)], [IL
A(x), IU

A (x)], [FL
A(x), FU

A (x)]) > |x ∈ X}. (2)
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We use the symbol INS(X) to denote the set of all interval neutrosophic sets in X.

Definition 3 ([19]). Let X be a finite set and A, B ∈ INS(X). A is contained in B, denoted by
A ⊆ B, if TL

A(x) ≤ TL
B (x), TU

A (x) ≤ TU
B (x), IL

A(x) ≥ IL
B(x), IU

A (x) ≥ IU
B (x), and FL

A(x) ≥
FL

B (x), FU
A (x) ≥ FU

B (x) for any x ∈ X.

Definition 4 ([19]). Let A be an interval neutrosophic set in X,

(1) If TL
A(x) = TU

A (x) = 0, IL
A(x) = IU

A (x) = 1, FL
A(x) = FU

A (x) = 1 for all x ∈ X, then A is
called a null interval neutrosophic set, denoted by ∅INS;

(2) If TL
A(x) = TU

A (x) = 1, IL
A(x) = IU

A (x) = 0, FL
A(x) = FU

A (x) = 0 for all x ∈ X, then A is
called an absolute interval neutrosophic set, denoted by UINS;

For the convenience of discussion on the interval neutrosophic set, we introduce the
concept of interval neutrosophic value [17,30]. Let the set

D̃∗ = {x̃ = (x̃1, x̃2, x̃3)|x̃1, x̃2, x̃3 ⊆ [0, 1]}
= {x̃ = ([xL

1 , xU
1 ], [x

L
2 , xU

2 ], [x
L
3 , xU

3 ])|[xL
i , xU

i ] ⊆ [0, 1], i = 1, 2, 3}.
(3)

For i = 1, 2, 3, x̃i = [xL
i , xU

i ] be a subinterval of [0, 1]. An element of D̃∗ is called an in-
terval neutrosophic value. For any interval neutrosophic set A, (TA(x), IA(x), FA(x)) ∈ D̃∗.

Associated with the inclusion relation ⊆ of interval neutrosophic sets on Definition 3,
we can give the order relation on D̃∗, which is based on the product order ≤ of the interval-
valued set. For any x̃ = (x̃1, x̃2, x̃3), ỹ = (ỹ1, ỹ2, ỹ3) ∈ D̃∗, x̃ ≤ ỹ ⇔ (x̃1 ≤ ỹ1) ∧ (x̃2 ≥
ỹ2) ∧ (x̃3 ≥ ỹ3).

2.3. Fuzzy Equivalence and Aggregation Function

Definition 5 ([36,38,39]). A function E : [0, 1]× [0, 1]→ [0, 1] is called a fuzzy equivalence if it
satisfies the following properties:

(E1) E(x, y) = E(y, x) for any x, y ∈ [0, 1];

(E2) E(x, x) = 1 for any x ∈ [0, 1];

(E3) E(1, 0) = E(0, 1) = 0;

(E4) For all x, y, z ∈ [0, 1], if x ≤ y ≤ z, then E(x, z) ≤ min{E(x, y), E(y, z)};

Example 1 ([38]). Eα
(θ,ε) and Eβ

(θ,ε) are two general forms of fuzzy equivalence for any x, y ∈ [0, 1],
respectively, given by:

Eα
(θ,ε)(x, y) =

θ − θ|x− y|+ ε min(x, y)
θ − (θ − 1)|x− y|+ ε min(x, y)

, (4)

Eβ

(θ,ε)(x, y) =
θ − θ|x− y|+ ε min(1− x, 1− y)

θ − (θ − 1)|x− y|+ ε min(1− x, 1− y)
, (5)

with θ ≥ 0, ε ≥ 0. Furthermore, we can give the particular values of the parameter θ and ε, and
then some specific fuzzy equivalencies can be generated by the above formulas.

(1) If θ = 0, ε = 1, then we have

Eα
(0,1)(x, y) =

min(x, y)
|x− y|+ min(x, y)

=
min(x, y)
max(x, y)

=
x ∧ y
x ∨ y

.

Eβ

(0,1)(x, y) =
min(1− x, 1− y)

|x− y|+ min(1− x, 1− y)
=

min(1− x, 1− y)
max(1− x, 1− y)

=
(1− x) ∧ (1− y)
(1− x) ∨ (1− y)

.

(2) If θ = 0, ε = 2, then we have
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Eα
(0,2)(x, y) =

2 min(x, y)
x + y

=
2(x ∧ y)

x + y
.

Eβ

(0,2)(x, y) =
2 min(1− x, 1− y)

|x− y|+ 2 min(1− x, 1− y)
=

2 min(1− x, 1− y)
2− x− y)

=
2(1− x) ∧ (1− y)

2− x− y
.

(3) If θ = 1, ε = 0, then we have

Eα
(1,0)(x, y) = Eβ

(1,0)(x, y) = 1− |x− y|.

Definition 6 ([38,40,41]). A function Ag : [0, 1]n → [0, 1] is an aggregation operator if it satisfies
the following properties:

(Ag1) Ag(x, x, . . . , x) = x for all x ∈ [0, 1].

(Ag2) Ag is monotonically increasing in all of its arguments.

Example 2 ([38,40]). We can take some examples of aggregation operator as follows:

(1) The arithmetic mean: Aga−mean(x1, x2, . . . , xn) =
1
n ∑i=1 xi.

(2) The geometric mean: Agg−mean(x1, x2, . . . , xn) = n
√

∏n
i=1 xi.

Especially, for any x, y ∈ [0, 1], Aga−mean(x, y) = x+y
2 , and Agg−mean(x, y) =

√
xy. It is

easy to know that for any x, y ∈ [0, 1], Agg−mean(x, y) ≤ Aga−mean(x, y).

(3) The convex linear combinations:
Agλ(x1, x2, . . . , xn) = λ min(x1, x2, . . . , xn) + (1 − λ)max(x1, x2, . . . , xn), with
λ ∈ [0, 1].
Especially, for any x, y ∈ [0, 1], Agλ(x, y) = λ min(x, y) + (1 − λ)max(x, y). In
particular, if λ = 0, we have Ag0(x, y) = max(x, y) = x ∨ y; if λ = 1, we have
Ag1(x, y) = min(x, y) = x ∧ y. Moreover, for any λ1, λ2 ∈ [0, 1], λ1 < λ2, then
Agλ2(x, y) ≤ Agλ1(x, y).

3. Fuzzy Equivalence on Interval Neutrosophic Values

In fuzzy set theory, fuzzy equivalences can be used to construct similarity measures for
fuzzy sets. In order to describe the similarity of interval neutrosophic sets, in this section,
we will introduce the concept of an interval neutrosophic valued fuzzy equivalence. Li [39]
introduced the concept of interval-valued fuzzy equivalence.

Definition 7 ([39]). A function IE : N2
[0,1] → N[0,1] is called an interval-valued fuzzy equivalence,

if it satisfies the following properties:

(IE1) IE(a, b) = IE(b, a) for all a, b ∈ N[0,1];

(IE2) IE(a, a) = [1, 1] for any a ∈ N[0,1];

(IE3) IE([0, 0], [1, 1]) = IE([1, 1], [0, 0]) = [0, 0];

(IE4) For all a, b, c ∈ N[0,1], and if a ≤ b ≤ c, then IE(a, c) ≤ IE(a, b),IE(a, c) ≤ IE(b, c).

Based on the given fuzzy equivalencies and aggregation functions, we can construct a
general formalization for an interval-valued fuzzy equivalence [39].

Theorem 1 ([39]). Let Ei
(θ,ε) (i = α, β) be the given fuzzy equivalencies; and let Agµ and Agϕ be

two aggregation functions such that Agµ ≤ Agϕ. Then, the function IEi
(µ,ϕ),(θ,ε) : N2

[0,1] → N[0,1]

(i = α, β) is an interval-valued fuzzy equivalence, and it is defined as follows, for any a, b ∈ N[0,1],

IEα
(µ,ϕ),(θ,ε)(a, b) = [Agµ(Eα

(θ,ε)(aL, bL), Eα
(θ,ε)(aU , bU)), Agϕ(Eα

(θ,ε)(aL, bL), Eα
(θ,ε)(aU , bU))], (6)
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IEβ

(µ,ϕ),(θ,ε)(a, b) = [Agµ(Eβ

(θ,ε)(aL, bL), Eβ

(θ,ε)(aU , bU)), Agϕ(Eβ

(θ,ε)(aL, bL), Eβ

(θ,ε)(aU , bU))]. (7)

Proof. Since Agµ ≤ Agϕ, then for i = α, β, we have IEi
(µ,ϕ),(θ,ε) ∈ N[0,1]. The following

items show that IEi
(µ,ϕ),(θ,ε) satisfies the four properties of Definition 7.

(1) For i = α, β, since Ei
(θ,ε) is a fuzzy equivalence, then Ei

(θ,ε) should satisfy the

symmetry, and thus, we have IEi
(µ,ϕ),(θ,ε)(a, b) = IEi

(µ,ϕ),(θ,ε)(b, a).

(2) For any x ∈ [0, 1] and i = α, β, we have Ei
(θ,ε)(x, x) = 1. Meanwhile, for the

aggregation functions Agµ and Agϕ, it is clear that Agµ(1, 1) = 1 and Agϕ(1, 1) = 1, thus
IEi

(µ,ϕ),(θ,ε)(a, a) = [1, 1] for any a ∈ N[0,1].

(3) For i = α, β, Ei
(θ,ε)(1, 0) = Ei

(θ,ε)(0, 1) = 0. Furthermore, the aggregation function

Agµ(0, 0) = 0 and Agϕ(0, 0) = 0, thus IEi
(µ,ϕ),(θ,ε)([1, 1], [0, 0]) = IEi

(µ,ϕ),(θ,ε)([0, 0], [1, 1]) =
[0, 0].

(4) For all a, b, c ∈ N[0,1], if a ≤ b ≤ c, then aL ≤ bL ≤ cL, and aU ≤ bU ≤ cU .
For i = α, β, on the one hand, we have Ei

(θ,ε)(aL, cL) ≤ Ei
(θ,ε)(aL, bL), and Ei

(θ,ε)(aU , cU) ≤
Ei
(θ,ε)(aU , bU). Furthermore, due to monotonic increase in the aggregation function Ag,

that is, for any x1, x2, y1, y2 ∈ [0, 1], Ag(x1, x2) ≤ Ag(y1, y2) whenever x1 ≤ y1 and
x2 ≤ y2. Then, Agµ(Ei

(θ,ε)(aL, cL), Ei
(θ,ε)(aU , cU)) ≤ Agµ(Ei

(θ,ε)(aL, bL), Ei
(θ,ε)(aU , bU)), and

Agϕ(Ei
(θ,ε)(aL, cL), Ei

(θ,ε)(aU , cU)) ≤ Agϕ(Ei
(θ,ε)(aL, bL), Ei

(θ,ε)(aU , bU)). Therefore, we have

IEi
(µ,ϕ),(θ,ε)(a, c) ≤ IEi

(µ,ϕ),(θ,ε)(a, b). On the other hand, we could similarly prove that

IEi
(µ,ϕ),(θ,ε)(a, c) ≤ IEi

(µ,ϕ),(θ,ε)(b, c).

According to the given examples of Definitions 5 and 6, we present several computa-
tional formula for interval-valued fuzzy equivalence IE.

1. For 0 ≤ λ1 < λ2 ≤ 1, suppose that Agµ = Agλ2 , Agϕ = Agλ1 ,

IEα
(λ2,λ1),(θ,ε)(a, b) = [Agλ2(Eα

(θ,ε)(aL, bL), Eα
(θ,ε)(aU , bU)), Agλ1(Eα

(θ,ε)(aL, bL), Eα
(θ,ε)(aU , bU))], (8)

IEβ

(λ2,λ1),(θ,ε)(a, b) = [Agλ2(Eβ

(θ,ε)(aL, bL), Eβ

(θ,ε)(aU , bU)), Agλ1(Eβ

(θ,ε)(aL, bL), Eβ

(θ,ε)(aU , bU))]. (9)

Importantly, if λ2 = 1, λ1 = 0, θ = 0, ε = 1, by Equations (8) and (9), we have

IEα
(1,0),(0,1)(a, b) = [Ag1(Eα

(0,1)(aL, bL), Eα
(0,1)(aU , bU)), Ag0(Eα

(0,1)(aL, bL), Eα
(0,1)(aU , bU))]

IEβ

(1,0),(0,1)(a, b) = [Ag1(Eβ

(0,1)(aL, bL), Eβ

(0,1)(aU , bU)), Ag0(Eβ

(0,1)(aL, bL), Eβ

(0,1)(aU , bU))]

Due to the aggregation operators Ag0(x, y) = x∨ y and Ag1(x, y) = x∧ y of Example 2,
for Eα

(0,1)(x, y) = x∧y
x∨y of Example 1, then

IEα
(1,0),(0,1)(a, b) = [Ag1(

aL ∧ bL

aL ∨ bL ,
aU ∧ bU

aU ∨ bU ), Ag0(
aL ∧ bL

aL ∨ bL ,
aU ∧ bU

aU ∨ bU )]

= [
aL ∧ bL

aL ∨ bL ∧
aU ∧ bU

aU ∨ bU ,
aL ∧ bL

aL ∨ bL ∨
aU ∧ bU

aU ∨ bU ],
(10)
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for Eβ

(0,1)(x, y) = (1−x)∧(1−y)
(1−x)∨(1−y) of Example 1, then

IEβ

(1,0),(0,1)(a, b) = [Ag1(
(1− aL) ∧ (1− bL)

(1− aL) ∨ (1− bL)
,
(1− aU) ∧ (1− bU)

(1− aU) ∨ (1− bU)
),

Ag0(
(1− aL) ∧ (1− bL)

(1− aL) ∨ (1− bL)
,
(1− aU) ∧ (1− bU)

(1− aU) ∨ (1− bU)
)]

= [
(1− aL) ∧ (1− bL)

(1− aL) ∨ (1− bL)
∧ (1− aU) ∧ (1− bU)

(1− aU) ∨ (1− bU)
,

(1− aL) ∧ (1− bL)

(1− aL) ∨ (1− bL)
∨ (1− aU) ∧ (1− bU)

(1− aU) ∨ (1− bU)
],

(11)

Similarly, if λ2 = 1, λ1 = 0, θ = 0, ε = 2, by Equations (8) and (9), we have

IEα
(1,0),(0,2)(a, b) = [

2(aL ∧ bL)

aL + bL ∧ 2(aU ∧ bU)

aU + bU ,
2(aL ∧ bL)

aL + bL ∨ 2(aU ∧ bU)

aU + bU ], (12)

IEβ

(1,0),(0,2)(a, b) = [
2((1− aL) ∧ (1− bL))

2− aL − bL ∧ 2((1− aU) ∧ (1− bU))

2− aU − bU ,

2((1− aL) ∧ (1− bL))

2− aL − bL ∨ 2((1− aU) ∧ (1− bU))

2− aU − bU ].
(13)

2. Suppose that Agµ = Agg−mean, Agϕ = Aga−mean,

IEα
(g−mean,a−mean),(θ,ε)(a, b) = [

√
Eα
(θ,ε)(aL, bL) · Eα

(θ,ε)(aU , bU),
Eα
(θ,ε)(aL, bL) + Eα

(θ,ε)(aU , bU)

2
], (14)

IEβ

(g−mean,a−mean),(θ,ε)(a, b) = [

√
Eβ

(θ,ε)(aL, bL · Eβ

(θ,ε)(aU , bU),
Eβ

(θ,ε)(aL, bL) + Eβ

(θ,ε)(aU , bU)

2
]. (15)

Importantly, if µ = g−mean, ϕ = a−mean, θ = 0, ε = 1, by Equations (14) and (15),
we have

IEα
(g−mean,a−mean),(0,1)(a, b) = [

√
aL ∧ bL

aL ∨ bL ·
aU ∧ bU

aU ∨ bU ,
aL∧bL

aL∨bL + aU∧bU

aU∨bU

2
], (16)

IEβ

(g−mean,a−mean),(0,1)(a, b) = [

√
(1− aL) ∧ (1− bL)

(1− aL) ∨ (1− bL)
· (1− aU) ∧ (1− bU)

(1− aU) ∨ (1− bU)
,

(1−aL)∧(1−bL)
(1−aL)∨(1−bL)

+ (1−aU)∧(1−bU)
(1−aU)∨(1−bU)

2
],

(17)

if µ = g−mean, ϕ = a−mean, θ = 0, ε = 2, by Equations (14) and (15), we have

IEα
(g−mean,a−mean),(0,2)(a, b) = [

√
2(aL ∧ bL)

aL + bL · 2(aU ∧ bU)

aU + bU ,
2(aL∧bL)

aL+bL + 2(aU∧bU)
aU+bU

2
], (18)

IEβ

(g−mean,a−mean),(0,2)(a, b) = [

√
2((1− aL) ∧ (1− bL))

2− aL − bL · 2((1− aU) ∧ (1− bU))

2− aU − bU ,

2((1−aL)∧(1−bL))
2−aL−bL + 2((1−aU)∧(1−bU))

2−aU−bU

2
].

(19)
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For any x̃ = (x̃1, x̃2, x̃3) ∈ D̃∗, because of each component x̃i ∈ N[0,1], therefore, we
consider to extend the interval-valued fuzzy equivalence to interval neutrosophic value.

Definition 8. A function INE : D̃∗ × D̃∗ → N[0,1] is called an interval neutrosophic fuzzy
equivalence, if it satisfies the following properties:

(INE1) INE(x̃, ỹ) = INE(ỹ, x̃) for all x̃, ỹ ∈ D̃∗;

(INE2) INE(x̃, x̃) = [1, 1] for all x̃ ∈ D̃∗;

(INE3) INE(D̃∗+, D̃∗−) = INE(D̃∗−, D̃∗+) = [0, 0], where D̃∗+ and D̃∗− are called the pos-
itive and negative ideal interval neutrosophic value on D̃∗, respectively, i.e., D̃∗+ =

([1, 1], [0, 0], [0, 0]) and D̃∗− = ([0, 0], [1, 1], [1, 1]);

(INE4) For any x̃, ỹ, z̃ ∈ D̃∗, if x̃ ≤ ỹ ≤ z̃, then INE(x̃, z̃) ≤ INE(x̃, ỹ), INE(x̃, z̃) ≤
INE(ỹ, z̃).

Theorem 2. Suppose that IEγ, IEξ , and IEη are interval-valued fuzzy equivalences, a function
F̃ : D̃∗ × D̃∗ → N[0,1] is defined for all x̃ = (x̃1, x̃2, x̃3), ỹ = (ỹ1, ỹ2, ỹ3) ∈ D̃∗ by:

F̃(x̃, ỹ) = ω1 IEγ(x̃1, ỹ1) + ω2 IEξ(x̃2, ỹ2) + ω3 IEη(x̃3, ỹ3), (20)

where ω1, ω2, ω3 ∈ [0, 1] and ω1 + ω2 + ω3 = 1. Then, F̃ is interval neutrosophic fuzzy
equivalence on D̃∗.

Proof. Since IEγ, IEξ , and IEη are interval-valued fuzzy equivalences, then IEk(k = γ, ξ, η)
must satisfy the total properties of Definition 7.

(1) Suppose that x̃ = (x̃1, x̃2, x̃3), ỹ = (ỹ1, ỹ2, ỹ3) ∈ D̃∗, then IEk(x̃i, ỹi) = IEk(ỹi, x̃i)
for any i = 1, 2, 3 and k = γ, ξ, η, thus F̃(x̃, ỹ) = F̃(ỹ, x̃).

(2) Suppose that x̃ = (x̃1, x̃2, x̃3) ∈ D̃∗, then IEk(x̃i, x̃i) = [1, 1] for any i = 1, 2, 3 and
k = γ, ξ, η, thus F̃(x̃, x̃) = ω1 IEγ(x̃1, x̃1) + ω2 IEξ(x̃2, x̃2) + ω3 IEη(x̃3, x̃3) = [1, 1].

(3) Since IEk([0, 0], [1, 1]) = IEk([1, 1], [0, 0]) = [0, 0] for k = γ, ξ, η, then F̃(([1, 1], [0, 0],
[0, 0]), ([0, 0], [1, 1], [1, 1])) =ω1 IEγ([1, 1], [0, 0])+ω2 IEξ([0, 0], [1, 1])+ω3 IEη([0, 0], [1, 1]) =
[0, 0], and F̃(([0, 0], [1, 1], [1, 1]), ([1, 1], [0, 0], [0, 0])) = ω1 IEγ([0, 0], [1, 1]) + ω2 IEξ([1, 1],
[0, 0]) + ω3 IEη([1, 1], [0, 0]) = [0, 0].

(4) Suppose that x̃, ỹ, z̃ ∈ D̃∗ and x̃ ≤ ỹ ≤ z̃. According to the order relation of interval
neutrosophic values, it follows that x̃1 ≤ ỹ1 ≤ z̃1, z̃2 ≤ ỹ2 ≤ x̃2, and z̃3 ≤ ỹ3 ≤ x̃3. Since
IEγ(x̃1, z̃1) ≤ IEγ(x̃1, ỹ1), IEξ(x̃2, z̃2) ≤ IEξ(x̃2, ỹ2), and IEη(x̃3, z̃3) ≤ IEη(x̃3, ỹ3), then
F̃(x̃, z̃) ≤ F̃(x̃, ỹ). On the other hand, since that IEγ(x̃1, z̃1) ≤ IEγ(ỹ1, z̃1), IEξ(x̃2, z̃2) ≤
IEξ(ỹ2, z̃2), and IEη(x̃3, z̃3) ≤ IEη(ỹ3, z̃3), we thus have F̃(x̃, z̃) ≤ F̃(ỹ, z̃).

Suppose that, in Theorem 2, we take ω1 = ω2 = ω3 = 1
3 and IEγ = IEξ = IEη =

IEα
(µ,ϕ),(θ,ε)(or IEβ

(µ,ϕ),(θ,ε)) and then, based on the above interval-valued fuzzy equivalences,
we obtain the corresponding interval neutrosophic fuzzy equivalencies INEα

(µ,ϕ),(θ,ε) and

INEβ

(µ,ϕ),(θ,ε) as follows:

INEα
(1,0),(0,1)(x̃, ỹ) =

1
3

3

∑
i=1

[
xL

i ∧ yL
i

xL
i ∨ yL

i
∧

xU
i ∧ yU

i
xU

i ∨ yU
i

,
xL

i ∧ yL
i

xL
i ∨ yL

i
∨

xU
i ∧ yU

i
xU

i ∨ yU
i
] (21)

INEβ

(1,0),(0,1)(x̃, ỹ) =
1
3

3

∑
i=1

[
(1− xL

i ) ∧ (1− yL
i )

(1− xL
i ) ∨ (1− yL

i )
∧
(1− xU

i ) ∧ (1− yU
i )

(1− xU
i ) ∨ (1− yU

i )
,

(1− xL
i ) ∧ (1− yL

i )

(1− xL
i ) ∨ (1− yL

i )
∨
(1− xU

i ) ∧ (1− yU
i )

(1− xU
i ) ∨ (1− yU

i )
]

(22)
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INEα
(1,0),(0,2)(x̃, ỹ) =

1
3

3

∑
i=1

[
2(xL

i ∧ yL
i )

xL
i + yL

i
∧

2(xU
i ∧ yU

i )

xU
i + yU

i
,

2(xL
i ∧ yL

i )

xL
i + yL

i
∨

2(xU
i ∧ yU

i )

xU
i + yU

i
] (23)

INEα
(g−mean,a−mean),(0,1)(x̃, ỹ) =

1
3

3

∑
i=1

[

√
xL

i ∧ yL
i

xL
i ∨ yL

i
·

xU
i ∧ yU

i
xU

i ∨ yU
i

,

xL
i ∧yL

i
xL

i ∨yL
i
+

xU
i ∧yU

i
xU

i ∨yU
i

2
] (24)

INEβ

(g−mean,a−mean),(0,1)(x̃, ỹ) =
1
3

3

∑
i=1

[

√
(1− xL

i ) ∧ (1− yL
i )

(1− xL
i ) ∨ (1− yL

i )
·
(1− xU

i ) ∧ (1− yU
i )

(1− xU
i ) ∨ (1− yU

i )
,

(1−xL
i )∧(1−yL

i )

(1−xL
i )∨(1−yL

i )
+

(1−xU
i )∧(1−yU

i )

(1−xU
i )∨(1−yU

i )

2
].

(25)

INEα
(g−mean,a−mean),(0,2)(x̃, ỹ) =

1
3

3

∑
i=1

[

√
2(xL

i ∧ yL
i )

xL
i + yL

i
·

2(xU
i ∧ yU

i )

xU
i + yU

i
,

2(xL
i ∧yL

i )

xL
i +yL

i
+

2(xU
i ∧yU

i )

xU
i +yU

i

2
] (26)

4. Similarity Measures for Interval Neutrosophic Sets

Theoretically, it is not difficult to construct the similarity between interval neutrosophic
sets from the similarity between two interval neutrosophic values using some aggregation
operators. In this section, we propose a method to construct the similarity measures
between INSs using the interval neutrosophic fuzzy equivalencies.

Definition 9 ([27]). Let X be a finite set of objects. A function S̃ : INS(X)× INS(X)→ N[0,1] is
called a similarity measure for interval neutrosophic sets in X, if it satisfies the following properties:

(S̃1) S̃(A, B) = S̃(B, A).

(S̃2) S̃(A, B) = [1, 1], if and only if A = B.

(S̃3) S̃(∅INS, UINS) = [0, 0].

(S̃4) If A ⊆ B ⊆ C, then S̃(A, C) ≤ S̃(A, B), S̃(A, C) ≤ S̃(B, C).

Theorem 3. Let X = x1, x2, · · · , xn be a finite set of objects. Suppose that INE is an interval
neutrosophic fuzzy equivalence on D̃∗, then S̃INE : INS(X)× INS(X) → N[0,1] is a similarity
measure, where for any A, B ∈ INS(X),

S̃INE(A, B) =
1
n

n

∑
i=1

INE(A(xi), B(xi)). (27)

If the weight vector W = (w1, w2, · · · , wn) of objects X is added, wi ∈ [0, 1] and ∑n
i=1 wi = 1,

then, the similarity measure of A and B is defined as follows:

S̃INE(A, B) =
n

∑
i=1

wi · INE(A(xi), B(xi)). (28)

Proof. (1) For ∀xi ∈ X, INE(A(xi), B(xi)) = INE(B(xi), A(xi)), then S̃INE(A, B) =
S̃INE(B, A).

(2) ∀A, B ∈ INS(X), S̃INE(A, B) = [1, 1] ⇔ ∀xi ∈ X, INE(A(xi), B(xi)) = [1, 1] ⇔
∀xi ∈ X, A(xi) = B(xi)⇔ A = B.

(3) The conclusion immediately follows from Definitions 4 and 8.
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(4) For any A, B, C ∈ INS(X), if A ⊆ B ⊆ C, then A(xi) ≤ B(xi) ≤ C(xi), for any
xi ∈ X, thus S̃INE(A, C) = ∑n

i=1 wi · INE(A(xi), C(xi)) ≤ ∑n
i=1 wi · INE(A(xi), B(xi)) =

S̃INE(A, B). Similarly, we have S̃INE(A, C) ≤ S̃INE(B, C).

According to the above theorem, using the fuzzy equivalencies INEα
(µ,ϕ),(θ,ε) and

INEβ

(µ,ϕ),(θ,ε), it is easy to obtain the following similarity measures S̃ for INSs. Suppose we

take the weight w1 = w2 = · · · = wn = 1
n , then

S̃INEα
(1,0),(0,1)

(A, B) =
1

3n

n

∑
i=1

([
TL

A(xi) ∧ TL
B (xi)

TL
A(xi) ∨ TL

B (xi)
∧

TU
A (xi) ∧ TU

B (xi)

TU
A (xi) ∨ TU

B (xi)
,

TL
A(xi) ∧ TL

B (xi)

TL
A(xi) ∨ TL

B (xi)
∨

TU
A (xi) ∧ TU

B (xi)

TU
A (xi) ∨ TU

B (xi)
]

+[
IL
A(xi) ∧ IL

B(xi)

IL
A(xi) ∨ IL

B(xi)
∧

IU
A (xi) ∧ IU

B (xi)

IU
A (xi) ∨ IU

B (xi)
,

IL
A(xi) ∧ IL

B(xi)

IL
A(xi) ∨ IL

B(xi)
∨

IU
A (xi) ∧ IU

B (xi)

IU
A (xi) ∨ IU

B (xi)
]

+[
FL

A(xi) ∧ FL
B (xi)

FL
A(xi) ∨ FL

B (xi)
∧

FU
A (xi) ∧ FU

B (xi)

FU
A (xi) ∨ FU

B (xi)
,

FL
A(xi) ∧ FL

B (xi)

FL
A(xi) ∨ FL

B (xi)
∨

FU
A (xi) ∧ FU

B (xi)

FU
A (xi) ∨ FU

B (xi)
])

(29)

S̃INEα
(1,0),(0,2)

(A, B) =
1

3n

n

∑
i=1

([
2(TL

A(xi) ∧ TL
B (xi))

TL
A(xi) + TL

B (xi)
∧

2(TU
A (xi) ∧ TU

B (xi))

TU
A (xi) + TU

B (xi)
,

2(TL
A(xi) ∧ TL

B (xi))

TL
A(xi) + TL

B (xi)
∨

2(TU
A (xi) ∧ TU

B (xi))

TU
A (xi) + TU

B (xi)
]

+[
2(IL

A(xi) ∧ IL
B(xi))

IL
A(xi) + IL

B(xi)
∧

2(IU
A (xi) ∧ IU

B (xi))

IU
A (xi) + IU

B (xi)
,

2(IL
A(xi) ∧ IL

B(xi))

IL
A(xi) + IL

B(xi)
∨

2(IU
A (xi) ∧ IU

B (xi))

IU
A (xi) + IU

B (xi)
]

+[
2(FL

A(xi) ∧ FL
B (xi))

FL
A(xi) + FL

B (xi)
∧

2(FU
A (xi) ∧ FU

B (xi))

FU
A (xi) + FU

B (xi)
,

2(FL
A(xi) ∧ FL

B (xi))

FL
A(xi) + FL

B (xi)
∨

2(FU
A (xi) ∧ FU

B (xi))

FU
A (xi) + FU

B (xi)
])

(30)
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S̃INEα
(g−mean,a−mean),(0,1)

(A, B) =
1

3n

n

∑
i=1

([

√
TL

A(xi) ∧ TL
B (xi)

TL
A(xi) ∨ TL

B (xi)
·

TU
A (xi) ∧ TU

B (xi)

TU
A (xi) ∨ TU

B (xi)
,

TL
A(xi)∧TL

B (xi)

TL
A(xi)∨TL

B (xi)
+

TU
A (xi)∧TU

B (xi)

TU
A (xi)∨TU

B (xi)

2
]

+[

√
IL
A(xi) ∧ IL

B(xi)

IL
A(xi) ∨ IL

B(xi)
·

IU
A (xi) ∧ IU

B (xi)

IU
A (xi) ∨ IU

B (xi)
,

IL
A(xi)∧IL

B(xi)

IL
A(xi)∨IL

B(xi)
+

IU
A (xi)∧IU

B (xi)

IU
A (xi)∨IU

B (xi)

2
]

+[

√
FL

A(xi) ∧ FL
B (xi)

FL
A(xi) ∨ FL

B (xi)
·

FU
A (xi) ∧ FU

B (xi)

FU
A (xi) ∨ FU

B (xi)
,

FL
A(xi)∧FL

B (xi)

FL
A(xi)∨FL

B (xi)
+

FU
A (xi)∧FU

B (xi)

FU
A (xi)∨FU

B (xi)

2
])

(31)

S̃INEα
(g−mean,a−mean),(0,2)

(A, B) =
1

3n

n

∑
i=1

([

√
2(TL

A(xi) ∧ TL
B (xi))

TL
A(xi) + TL

B (xi)
·

2(TU
A (xi) ∧ TU

B (xi))

TU
A (xi) + TU

B (xi)
,

2(TL
A(xi)∧TL

B (xi))

TL
A(xi)+TL

B (xi)
+

2(TU
A (xi)∧TU

B (xi))

TU
A (xi)+TU

B (xi)

2
]

+[

√
2(IL

A(xi) ∧ IL
B(xi))

IL
A(xi) + IL

B(xi)
·

2(IU
A (xi) ∧ IU

B (xi))

IU
A (xi) + IU

B (xi)
,

2(IL
A(xi)∧IL

B(xi))

IL
A(xi)+IL

B(xi)
+

2(IU
A (xi)∧IU

B (xi))

IU
A (xi)+IU

B (xi)

2
]

+[

√
2(FL

A(xi) ∧ FL
B (xi))

FL
A(xi) + FL

B (xi)
·

2(FU
A (xi) ∧ FU

B (xi))

FU
A (xi) + FU

B (xi)
,

2(FL
A(xi)∧FL

B (xi))

FL
A(xi)+FL

B (xi)
+

2(FU
A (xi)∧FU

B (xi))

FU
A (xi)+FU

B (xi)

2
])

(32)
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S̃
INEβ

(g−mean,a−mean),(0,1)
(A, B) =

1
3n

n

∑
i=1

([

√
(1− TL

A(xi)) ∧ (1− TL
B (xi))

(1− TL
A(xi)) ∨ (1− TL

B (xi))
·
(1− TU

A (xi)) ∧ (1− TU
B (xi))

(1− TU
A (xi)) ∨ (1− TU

B (xi))
,

(1−TL
A(xi))∧(1−TL

B (xi))

(1−TL
A(xi))∨(1−TL

B (xi))
+

(1−TU
A (xi))∧(1−TU

B (xi))

(1−TU
A (xi))∨(1−TU

B (xi))

2
]

+[

√
(1− IL

A(xi)) ∧ (1− IL
B(xi))

(1− IL
A(xi)) ∨ (1− IL

B(xi))
·
(1− IU

A (xi)) ∧ (1− IU
B (xi))

(1− IU
A (xi)) ∨ (1− IU

B (xi))
,

(1−IL
A(xi))∧(1−IL

B(xi))

(1−IL
A(xi))∨(1−IL

B(xi))
+

(1−IU
A (xi))∧(1−IU

B (xi))

(1−IU
A (xi))∨(1−IU

B (xi))

2
]

+[

√
(1− FL

A(xi)) ∧ (1− FL
B (xi))

(1− FL
A(xi)) ∨ (1− FL

B (xi))
·
(1− FU

A (xi)) ∧ (1− FU
B (xi))

(1− FU
A (xi)) ∨ (1− FU

B (xi))
,

(1−FL
A(xi))∧(1−FL

B (xi))

(1−FL
A(xi))∨(1−FL

B (xi))
+

(1−FU
A (xi))∧(1−FU

B (xi))

(1−FU
A (xi))∨(1−FU

B (xi))

2
]).

(33)

5. Decision Applications

Assume that A = {Ai|1 ≤ i ≤ m} is the set of alternatives and that C = {Cj|1 ≤ j ≤
n} is a collection of attributes. For decision making, it is required to provide the information
ρ̃ij which is the evaluation on the alternative Ai for the attribute Cj. The evaluation
information can be represented as an interval neutrosophic value ρ̃ij = (Tρ̃ij , Iρ̃ij , Fρ̃ij) =

([TL
ρ̃ij , TU

ρ̃ij ], [IL
ρ̃ij , IU

ρ̃ij ], [FL
ρ̃ij , FU

ρ̃ij ]) [21,29,33]. When all the evaluations of the alternatives are

provided, the interval neutrosophic decision matrix (ρ̃ij)m×n can be constructed. Assume
that the weight vector of attributes W = (w1, w2, · · · , wn) is given by the experts, where
0 ≤ wi ≤ 1(1 ≤ j ≤ n) and ∑n

i=1 wi = 1.
In order to obtain the optimal alternatives, the computational procedure can be sum-

marized as:

• Step 1: Based on the decision matrix (ρ̃ij)m×n, we can compute the similarity
INEα

(µ,ϕ),(θ,ε)(ρ̃
ij, ρ̃∗) by using the equations on Theorem 2, where ρ̃∗ is denoted as the

positive ideal interval neutrosophic value in D̃∗ with respect to the product order
relation ≤.

• Step 2: We can aggregate these similarities INEα
(µ,ϕ),(θ,ε)(ρ̃

ij, ρ̃∗) to obtain the similarity

degree S̃(Ai, ρ̃∗) by

S̃(Ai, ρ̃∗) = w1 · INEα
(µ,ϕ),(θ,ε)(ρ̃

i1, ρ̃∗) + w2 · INEα
(µ,ϕ),(θ,ε)(ρ̃

i2, ρ̃∗)

+ · · ·+ wn · INEα
(µ,ϕ),(θ,ε)(ρ̃

in, ρ̃∗).
(34)

• Step 3: By ranking these similarity degrees S̃(Ai, ρ̃∗), we can select the best al-
ternative Ak, in which the best alternative Ak satisfies the condition S̃(Ak, ρ̃∗) =
max{S̃(Ai, ρ̃∗)|1 ≤ i ≤ m}.

5.1. Decision Applications in Resource Offloading of Edge Computing

An offloading resource is considered a key segment for edge computing. In order to
ensure the normal operation of services for clients, redundant work is allocated to edge
servers based on the load capacity. Therefore, selecting and matching clients and edge
servers is a very important decision problem for resource offloading. In this paper, we
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intend to present a multi-attribute decision-making method based on interval neutrosophic
valued fuzzy equivalencies.

Example 3. As shown in Figure 1, we set n clients and m edge servers. With the goal of achieving
a reasonable usage of the computing resource, when the load of the client is high, resources must be
offloaded to the edge server. That is, when the computing usage of the client end quickly exceeds its
own responsiveness, it is necessary to reasonably allocate the excess computing amount to the server
and reduce the burden. This can enable a faster response and improve the robustness of the network,
thus greatly improving the computing performance. As shown in Tables 1 and 2, we use four clients
and three edge servers as examples. These all have three criteria, including CPU, memory, and
network. C1 is the quantification of CPU. C2 is memory. C3 is network. Specifically, Figure 2
depicts how we quantify three criteria for clients, in practice, the reference interval set to [0.5, 0.9]
for CPU, [0.4, 0.8] for memory, [0.6, 0.9] for network. Figure 3 shows the quantification for edge
servers, the reference interval set to [0.3, 0.8] for CPU, [0.4, 0.8] for memory, [0.2, 0.6] for network.
Due to the rates of three criteria for clients being higher, this means that the client needs to perform
an offloading task. Furthermore, experiential values measure the intervals of T, I, and F for three
criteria. A denotes the client and B denotes the edge server. Using the interval-valued intuitionistic
fuzzy information, the idle S̃(Bi, ρ̃∗) can be selected to respond to the high-occupancy S̃(Aj, ρ̃∗).

Figure 1. The framework of edge computing.

Figure 2. The visualization of the truth-membership interval of clients compared with the reference
interval of three criteria.
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Table 1. The criteria of clients in Example 3.

C1 C2 C3

A1 ([0.25, 0.38], [0.10, 0.20], [0.55, 0.60]) ([0.22, 0.30], [0.11, 0.21], [0.51, 0.67]) ([0.22, 0.30], [0.12, 0.20], [0.55, 0.70])
A2 ([0.75, 0.86], [0.11, 0.13], [0.12, 0.13]) ([0.62, 0.77], [0.16, 0.22], [0.16, 0.23]) ([0.70, 0.82], [0.11, 0.20], [0.10, 0.18])
A3 ([0.70, 0.80], [0.17, 0.20], [0.10, 0.20]) ([0.71, 0.82], [0.13, 0.15], [0.13, 0.15]) ([0.38, 0.51], [0.44, 0.50], [0.12, 0.45])
A4 ([0.43, 0.62], [0.23, 0.30], [0.24, 0.31]) ([0.34, 0.41], [0.16, 0.30], [0.30, 0.50]) ([0.52, 0.73], [0.20, 0.30], [0.18, 0.26])

Table 2. The criteria of edge servers in Example 3.

C1 C2 C3

B1 ([0.23, 0.30], [0.22, 0.35], [0.42, 0.70]) ([0.23, 0.34], [0.22, 0.30], [0.47, 0.66]) ([0.40, 0.52], [0.31, 0.40], [0.20, 0.48])
B2 ([0.34, 0.53], [0.34, 0.50], [0.16, 0.47]) ([0.47, 0.79], [0.37, 0.40], [0.13, 0.21]) ([0.15, 0.27], [0.22, 0.31], [0.54, 0.70])
B3 ([0.13, 0.22], [0.17, 0.20], [0.67, 0.78]) ([0.31, 0.40], [0.26, 0.38], [0.31, 0.60]) ([0.10, 0.20], [0.15, 0.20], [0.70, 0.80])

Figure 3. The visualization of the truth-membership interval of edge servers compared with the
reference interval of three criteria.

Suppose that the weights of C1, C2, and C3 are 0.4, 0.35, and 0.25, respectively. Then, the
most desirable alternative for clients is as follows.

Step 1: By the equation of Theorem 2, ρ̃∗1 = ([0.8, 0.9], [0.1, 0.2], [0.1, 0.2]), we have

INEα
(1,0),(0,1)(ρ̃

11
1 , ρ̃∗1) =

1
3
([

0.25
0.8
∧ 0.38

0.9
,

0.25
0.8
∨ 0.38

0.9
] + [

0.10
0.10
∧ 0.20

0.20
,

0.10
0.10
∨ 0.20

0.20
]

+[
0.10
0.55
∧ 0.20

0.60
,

0.10
0.55
∨ 0.20

0.60
]) = [0.4981, 0.5852].

For the same reason, we have the following results,
INEα

(1,0),(0,1)(ρ̃
12
1 , ρ̃∗1) = [0.46, 0.5281], INEα

(1,0),(0,1)(ρ̃
13
1 , ρ̃∗1) = [0.4301, 0.5397],

INEα
(1,0),(0,1)(ρ̃

21
1 , ρ̃∗1) = [0.7458, 0.8993], INEα

(1,0),(0,1)(ρ̃
22
1 , ρ̃∗1) = [0.675, 0.8781],

INEα
(1,0),(0,1)(ρ̃

23
1 , ρ̃∗1) = [0.8946, 0.9704], INEα

(1,0),(0,1)(ρ̃
31
1 , ρ̃∗1) = [0.8211, 0.9629],

INEα
(1,0),(0,1)(ρ̃

32
1 , ρ̃∗1) = [0.7958, 0.8165], INEα

(1,0),(0,1)(ρ̃
33
1 , ρ̃∗1) = [0.3822, 0.6],

INEα
(1,0),(0,1)(ρ̃

41
1 , ρ̃∗1) = [0.4630, 0.6669], INEα

(1,0),(0,1)(ρ̃
42
1 , ρ̃∗1) = [0.4611, 0.5074],

INEα
(1,0),(0,1)(ρ̃

43
1 , ρ̃∗1) = [0.5685, 0.7490].

Step 2: By Equation (34), we have

S̃(A1, ρ̃∗1) = 0.4× [0.4981, 0.5852] + 0.35× [0.46, 0.5281] + 0.25× [0.4301, 0.5397] = [0.4678, 0.5538].

S̃(A2, ρ̃∗1) = [0.7582, 0.9097], S̃(A3, ρ̃∗1) = [0.7025, 0.8209], S̃(A4, ρ̃∗1) = [0.4887, 0.6316].
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Step 3: According to the product order ≤ of the interval-values, we can rank these similarity
measures:

S̃(A2, ρ̃∗1) > S̃(A3, ρ̃∗1) > S̃(A4, ρ̃∗1) > S̃(A1, ρ̃∗1)

The most desirable alternative for edge servers is as follows.
Step 1: By the equation of Theorem 2, ρ̃∗2 = ([0.1, 0.2], [0.8, 0.9], [0.8, 0.9]), we have

INEα
(1,0),(0,1)(ρ̃

11
2 , ρ̃∗2) =

1
3
([

0.10
0.23
∧ 0.20

0.30
,

0.10
0.23
∨ 0.20

0.30
] + [

0.22
0.80
∧ 0.35

0.90
,

0.22
0.80
∨ 0.35

0.90
]

+[
0.42
0.80
∧ 0.70

0.90
,

0.42
0.80
∨ 0.70

0.90
]) = [0.4116, 0.6111].

For the same reason, we have the following results,
INEα

(1,0),(0,1)(ρ̃
12
2 , ρ̃∗2) = [0.4324, 0.5516], INEα

(1,0),(0,1)(ρ̃
13
2 , ρ̃∗2) = [0.2958, 0.4541],

INEα
(1,0),(0,1)(ρ̃

21
2 , ρ̃∗2) = [0.3064, 0.4850], INEα

(1,0),(0,1)(ρ̃
22
2 , ρ̃∗2) = [0.2732, 0.3163],

INEα
(1,0),(0,1)(ρ̃

23
2 , ρ̃∗2) = [0.5389, 0.6210], INEα

(1,0),(0,1)(ρ̃
31
2 , ρ̃∗2) = [0.6064, 0.6659],

INEα
(1,0),(0,1)(ρ̃

32
2 , ρ̃∗2) = [0.3450, 0.5296], INEα

(1,0),(0,1)(ρ̃
33
2 , ρ̃∗2) = [0.6875, 0.7037].

Step 2: By Equation (34), we have

S̃(B1, ρ̃∗2) = 0.4× [0.4116, 0.6111] + 0.35× [0.4324, 0.5516]

+0.25× [0.2958, 0.4541] = [0.3899, 0.5510].

S̃(B2, ρ̃∗2) = [0.3529, 0.46], S̃(B3, ρ̃∗2) = [0.5352, 0.6276].

Step 3: According to the product order ≤ of the interval-values, we can rank these similarity
measures:

S̃(B3, ρ̃∗2) > S̃(B1, ρ̃∗2) > S̃(B2, ρ̃∗2)

As shown in Figure 4, it depicts the compared results of clients and edge servers. For clients,
A2 is the highest occupancy and needs to offload resources to the edge server. According to the
compared results between the edge servers, B3 with less resource usage is the most suitable for
receiving services from the client A2.

Figure 4. The visualization of the matching result.

5.2. Comparative Analysis of Decision Application

Let us consider the decision-making problem adapted from [21,22,30]. Ye [21] pre-
sented the multi-attributes decision-making method using the Hamming and Euclidean
distance. Sahin [22] proposed two multi-criteria decision-making methods using the inter-
val neutrosophic cross-entropy between an alternative and the ideal alternative. Yang [30]
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presented the multi-attributes decision-making method based on the similarity measure
using a new inclusion relationship.

Example 4. Suppose that there is a panel with four possible alternatives to invest the money: (1) A1
is a food company; (2) A2 is a car company; (3) A3 is an arms company; and (4) A4 is a computer
company. The investment company must make a decision according to the three criteria given below:
(1) C1 is the growth analysis; (2) C2 is the risk analysis; and (3) C3 is the environmental impact
analysis. Using the interval-valued intuitionistic fuzzy information, the decision maker evaluates
the four possible alternatives under the above three criteria and the evaluation are expressed as three
interval neutrosophic sets (Table 3).

Table 3. The evaluation of alternatives.

C1 C2 C3

A1 ([0.4, 0.5], [0.2, 0.3], [0.3, 0.4]) ([0.4, 0.6], [0.1, 0.3], [0.2, 0.4]) ([0.7, 0.9], [0.2, 0.3], [0.4, 0.5])
A2 ([0.6, 0.7], [0.1, 0.2], [0.2, 0.3]) ([0.6, 0.7], [0.1, 0.2], [0.2, 0.3]) ([0.3, 0.6], [0.3, 0.5], [0.8, 0.9])
A3 ([0.3, 0.6], [0.2, 0.3], [0.3, 0.4]) ([0.5, 0.6], [0.2, 0.3], [0.3, 0.4]) ([0.4, 0.5], [0.2, 0.4], [0.7, 0.9])
A4 ([0.7, 0.8], [0.0, 0.1], [0.1, 0.2]) ([0.6, 0.7], [0.1, 0.2], [0.1, 0.3]) ([0.6, 0.7], [0.3, 0.4], [0.8, 0.9])

Suppose that the weights of C1, C2, and C3 are 0.35, 0.25, and 0.4, respectively. Then, we use
the approach proposed to obtain the most desirable alternative.

Step 1: The positive ideal interval neutrosophic value is ρ̃∗ = ([1, 1], [0, 0], [0, 0]); by the
equation of Theorem 2, we have

INEα
(1,0),(0,1)(ρ̃

11, ρ̃∗) =
1
3
([

0.4
1
∧ 0.5

1
,

0.4
1
∨ 0.5

1
] + [

0
0.2
∧ 0

0.3
,

0
0.2
∨ 0

0.3
]

+[
0

0.3
∧ 0

0.4
,

0
0.3
∨ 0

0.4
]) = [

0.4
3

,
0.5
3
].

For the same reason, we have the following results:
INEα

(1,0),(0,1)(ρ̃
12, ρ̃∗) = [ 0.4

3 , 0.2], INEα
(1,0),(0,1)(ρ̃

13, ρ̃∗) = [ 0.7
3 , 0.3],

INEα
(1,0),(0,1)(ρ̃

21, ρ̃∗) = [0.2, 0.7
3 ], INEα

(1,0),(0,1)(ρ̃
22, ρ̃∗) = [0.2, 0.7

3 ],

INEα
(1,0),(0,1)(ρ̃

23, ρ̃∗) = [0.1, 0.2], INEα
(1,0),(0,1)(ρ̃

31, ρ̃∗) = [0.1, 0.2],

INEα
(1,0),(0,1)(ρ̃

32, ρ̃∗) = [ 0.5
3 , 0.2], INEα

(1,0),(0,1)(ρ̃
33, ρ̃∗) = [ 0.4

3 , 0.5
3 ],

INEα
(1,0),(0,1)(ρ̃

41, ρ̃∗) = [ 0.7
3 , 0.8

3 ], INEα
(1,0),(0,1)(ρ̃

42, ρ̃∗) = [0.2, 0.7
3 ],

INEα
(1,0),(0,1)(ρ̃

43, ρ̃∗) = [0.2, 0.7
3 ].

Step 2: By Equation (34), we have

S̃(A1, ρ̃∗) = 0.35× [
0.4
3

,
0.5
3
] + 0.25× [

0.4
3

, 0.2] + 0.4× [
0.7
3

, 0.3] = [0.1733, 0.2283].

Similarly, S̃(A2, ρ̃∗) = [0.16, 0.22], S̃(A3, ρ̃∗) = [0.13, 0.1867], S̃(A4, ρ̃∗) = [0.2117, 0.245].

Step 3: According to the product order ≤ of the interval-values, we can rank these similarity
measures:

S̃(A4, ρ̃∗) > S̃(A1, ρ̃∗) > S̃(A2, ρ̃∗) > S̃(A3, ρ̃∗)

Therefore, the most desirable alternative is A4.
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In order to validate the feasibility of the proposed decision-making method, a compar-
ative study was conducted with other methods as shown in Table 4.

Table 4. The comparison of results of the decision-making methods in Example 4.

Decision-Making Methods The Order of the Alternatives

Ye’s method based on the Hamming distance A4 > A2 > A3 > A1
Ye’s method based on the Euclidean distance A2 > A4 > A3 > A1

Sahin’s method based on cross-entropy A4 > A1 > A2 > A3
Yang’s method based on the new inclusion relationship A4 > A1 > A2 > A3

The method based on interval neutrosophic fuzzy equivalencies A4 > A1 > A2 > A3

For this example, using the new similarity measure based on the interval neutrosophic
fuzzy equivalencies proposed in this paper, we obtain the same ranking order of alternatives
as in [22,30]. This shows that the similarity measure of interval neutrosophic sets proposed
in this paper are effective and efficient.

6. Conclusions

The study of information measures is an important research topic in uncertain infor-
mation processing. This paper presents a new approach to constructing similarity measures
for interval neutrosophic sets using fuzzy equivalencies. The proposed method is based on
the framework of interval neutrosophic sets and is designed to retain more interval-valued
information. The similarity degree is expressed as an interval, and different similarities
can be obtained by selecting parameters in the fuzzy equivalence, depending on practical
situations. The effectiveness of the proposed method is discussed in edge computing
applications, where it can be used to select and match clients and edge servers for resource
offloading. An illustrative example is provided to verify the proposed method’s ability to
find a reasonable client and edge server.

In further research, on the one hand, since it is closely related to the parameters θ, ε
and the aggregation manner µ, ϕ for the definition of the interval neutrosophic valued
fuzzy equivalency INEα

(µ,ϕ),(θ,ε), if there are different values for these parameters, we
will subsequently discuss the relationship of these similarity measures. On the other
hand, there is another parallel generalization of fuzzy sets known by T-spherical fuzzy
sets (T-SFSs) presented by [4,5], which is characterized by the degrees of membership s,
abstinence i, and non-membership d of the form (s, i, d), and satisfies 0 ≤ sn + in + dn ≤ 1
for the positive integer n. This is similar to the triple structure of NSs in form, but we think
that each element in the triplet (T, I, F) of NSs is independent, as long as the triplet satisfies
0 ≤ sup T + sup I + sup F ≤ 3, so both NSs and T-SFSs enlarge the discussion space of
fuzzy information, and meanwhile, each has its own advantages. The comparison and
connection between NSs and T-SFSs will also be directions of future research works.
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