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Abstract: Circuit simulation has become increasingly significant in circuit design with the devel-
opment of very large scale integration, and direct current (DC) analysis, which serves as the basis
of circuit behavior analysis, is the foundation for nonlinear electronic circuit simulation. Among
the several continuation algorithms for DC analysis, pseudo-transient analysis (PTA) methods have
gained great success. However, PTA tends to be computationally intensive without a proper time-step
control method. In order to improve this problem, we propose a novel time-step control method
enhanced by advanced deep learning in this paper. Specifically, a coarse and fine-grained hybrid
sampling strategy is introduced to find the optimal time step, which resolves the problem that the
optimal time step has no precise definition in PTA theory. After that, a long short-term memory
(LSTM) network, with the ability to process temporal information, can be employed to learn the
optimal time-step control method based on feature selection and a two-stage data preprocessing
strategy, which accelerates DC analysis. Furthermore, random forest (RF) is also used to evaluate
feature importance, which can achieve feature selection with reduced dimensions, thereby speeding
up the network’s training speed and improving the accuracy of prediction. Experimental results
demonstrate a significant speedup: up to 61.32 times.

Keywords: DC analysis; pseudo-transient analysis; time-step control; deep learning

1. Introduction

The progress of semiconductor and computer technology has resulted in the develop-
ment of highly integrated and complex integrated circuits, exhibiting exponential growth.
To simulate these circuits, DC analysis based on modified nodal analysis (MNA) [1] is
essential for solving nonlinear algebraic equations. However, the convergence of the
widely-used Newton–Raphson (NR) method [2] and its variants [3,4] depends heavily on
the diagonal dominance of the coefficient matrix and the appropriateness of the initial point.
These factors are difficult to guarantee for analog circuits, often leading to convergence
failure [5]. As a result, researchers have investigated continuation algorithms to address
the NR convergence problem, including Gmin stepping [6], source stepping [7], homotopy
methods [8–10], and PTA [11]. However, Gmin and source-stepping methods may have
inferior convergence when the solution curve is bifurcated, folded, or discontinuous; and
the practical implementations of homotopy methods are highly dependent on device mod-
els. PTA has shown to be a promising alternative due to the good continuity of its solution
curve and easy implementation.

PTA is used to convert a complex nonlinear algebraic system into an ordinary differen-
tial system, which can be solved with initial value problems by inserting pseudo-elements.
Once the PTA solver has formed the ordinary differential system, it is solved iteratively
through numerical integration using a time-step control technique to achieve a steady state.
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Since the efficiency of PTA is heavily influenced by its time-step control method, which
determines the discrete time points that require resolution, including the resource-intensive
NR iterations, it is crucial to optimize this aspect. Although some simplistic formula-based
time-step control methods have been introduced in recent years to speed up PTA, such
methods have not been adequate for large-scale nonlinear simulations. Therefore, a more
effective time-step control approach is required.

The emergence of deep learning technologies has enabled the resolution of complex
problems, such as computer vision [12], cloud computing [13], and natural language
processing [14], offering a promising avenue for researching time-step control methods.
However, developing an efficient time-step control approach presents several challenges.
Firstly, while different circuit types require different time-step requirements, conventional
process variables in circuit solving can be utilized as features, along with expert knowledge,
to identify the distinct time-step necessities. Secondly, since there is no precise definition
for the optimal time step in PTA theory, a sampling strategy is necessary to determine
the optimal time step. Thirdly, because PTA time-step control is temporal in nature, the
proposed algorithm must be able to process timing information.

In this paper, we present a novel approach to time-step control by leveraging deep
learning techniques to address Challenge 1. Our proposed method is illustrated in Figure 1
and features a hybrid searching strategy with coarse and fine-grained steps to find the
optimal time-step, thereby addressing Challenge 2. In addition, we utilized the LSTM
model to effectively manage timing information and resolve Challenge 3. Our contributions
are summarized as follows:

KCL

False

MNA

False

True

True

①

Parser

Partition
Nonlinear Equations

Ordinary Differential 

Equations

Nonlinear Equations

NR Converge?

PTA Converge?

DC Solution

②

③

①Insert pseudo elements(capacitor, inductor)

②Backward

③Forward

①Insert pseudo elements(capacitor, inductor)

②Backward

③Forward

Netlist

Discrete in 

Time-domain

Time-step

Features

Prediction

Deep 

Learning

Figure 1. The framework of the time-step control method enhanced by deep learning.

(1) We present a novel time-step control method that incorporates a deep learning
framework for offline training and online prediction. Our methodology yields superior
simulation efficiency and exhibits remarkable out-of-sample performance, surpassing
extant approaches in terms of extrapolation accuracy.

(2) We propose a hybrid searching strategy for identifying the optimal time-step,
addressing the key issue that cannot be theoretically defined. This approach also provides
fine-grained labels for the training set.
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(3) We incorporate the random forest model to evaluate feature importance during the
feature-selection stage, leading to faster network training, improved simulation efficiency,
and highly accurate predictions.

(4) We implemented our proposed approach in an out-of-the-box SPICE-like simu-
lator and demonstrate its effectiveness with benchmark circuits. We achieved significant
acceleration—the maximum speedup being 61.32 times on practical circuits.

2. Preliminaries
2.1. Pseudo-Transient Analysis

Conventional PTA methods mainly include pure PTA [15,16], damped pseudo-transient
analysis (DPTA) [17], and compound-element pseudo-transient analysis (CEPTA) [18,19].
Pure PTA methods insert pure capacitors or inductors into a circuit as pseudo-elements,
whose values are either constant or time-varying. With appropriate insertion element values
and time-step control algorithms, pure PTA methods can effectively solve the discontinuous
problem. However, pure elements may cause oscillation problems. Among these three
methods, DPTA uses a damped numerical integration method to artificially increase the
damping effect, thereby greatly reducing oscillation. Compared with the pure PTA method,
CEPTA uses compound branches as pseudo-elements, which have also been proved to be
effective at eliminating oscillation. Nonetheless, waveform continuity cannot be guaranteed
with CEPTA.

From the circuit equation viewpoint, PTA inserts specific pseudo-elements, including
capacitors and inductors, into the original circuit, transforming the original hard-to-solve
nonlinear algebraic system:

F(x) = 0 (1)

(F(·) : Rm → Rm, x = (v, i)T ∈ Rm, m = N + M, x represents the vector to be solved,
variable vector v ∈ RN denotes the node voltages, and vector i ∈ RM represents internal
branch currents) into the ordinary differential system

F(x) + D ∗ ẋ(t) = 0 (2)

(where ẋ(t) = (v̇(t), i̇(t)), ẋ denotes the differential of node voltage and internal current
with time and D represents the incidence matrix of inserted pseudo-elements) with an
initial value problem.

Use implicit numerical integration algorithms, which are shown in Equation (3), to
discrete Equation (2) in the time-domain and finally get the steady state through difference
approximation of the differential term iteratively.

ẋ(t)|t=tn+1 = (xn+1 − xn)/hn+1 (3)

How to select time-step size h (as shown in Equation (3)) for each PTA iteration
is known as the time-step control method. In addition, Equation (3) can support the
conclusion mentioned above: the time-step control method in PTA determines the number
of equations that need to be solved at discrete time points, which involves time- and
resource-consuming NR iterations. Generally, an efficient time-step control method can
not only reduce the number of NR iterations but also decrease the number of PTA rejected
steps due to non-convergence of NR iterations.

2.2. Time-Step Control Method

There are two time-step control methods based on simple formulas. Conventional
PTA methods use a simple iteration counting method [17] to determine time-step size. This
method implements time-step control through two options (IMAX and IMIN). It compares
the number of NR iterations at each time point with options to determine the next time-step.
The advantage of this method is that the time-step can be increased simply and quickly.
However, it is a very difficult problem to select appropriate parameters for different circuits,
including IMAX, IMIN, initial time-step, time-step growth rate, etc.
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Another adaptive time-step control method based on switched evolution/relaxation
(SER) was proposed in [20], which employs Equation (4) to control the time step.

hn+1 = E(hn, Nitrn, x, F(x))

= hn ·MAX(1, δ · γ · ‖F(xn−1)‖/‖F(xn)‖)
(4)

where δ determines the relative change of x per time step, γ assesses the difficulty level
for the convergence of NR in the previous steps, and ‖F(xn−1)‖/‖F(xn)‖ represents the
residuals’ reduction. It is a heuristic method that employs domain experiences, demonstrat-
ing great potential in speedup that can be obtained through intelligent time-step control.
However, the heuristic method still cannot guarantee that the time-step will always be as
large as possible.

2.3. Random Forest

Random forest [21] is an ensemble learning algorithm that belongs to the bagging
type. By combining multiple weak classifiers, the final results are voted or averaged, which
makes the results of the whole model have high accuracy and generalization performance.
The success of this method can be attributed to the use of both “random” and “forest”. The
former helps to prevent overfitting, and the latter improves accuracy. Figure 2 shows the
training process of the random forest.
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Figure 2. The training process of the random forest.
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2.4. Long Short-Term Memory Network

LSTM, as shown in Figure 3, is a special recursive neural network [22,23] which can
deal with the problem of gradient disappearance in time-sequence information from back
propagation and successfully be applied to complex computation and classification tasks
in various fields [24]. It is widely used for sequential tasks, such as speech recognition
and machine translation. LSTM consists of three gate structures, including a forget gate,
an input gate, and an output gate, which realize the protection and control of timing
information. The forget gate shown in Equation (5) is used to determine what information
needs to be discarded.

ft = σ(W f · [ht−1, xt] + b f ) (5)

where ft indicates the output of the forget gate, W f and b f are the weight and bias of
the forget-gate neuron, and σ represents the sigmod activation function. The input gate
described in Equation (6) is used to determine what new information needs to be retained
and what information needs to be updated.

it = σ(Wi · [ht−1, xt] + bi)

C
′
t = tanh(WC · [ht−1, xt] + bC)

Ct = it · C
′
t

(6)

where it indicates the partial input of the input gate through the sigmod function; C
′
t

represents the partial input of the input gate through the tanh function; Ct shows final
input of the input gate; and Wi, bi, Wc, and bc represent weight and bias of the input-gate
neuron.

The output gate represented in Equation (7) is used to determine which information
needs to be passed to the next cell.

ot = σ(Wo · [ht−1, xt] + bo)

ht = ot · tanh(Ct)
(7)

where ot indicates the partial output of the output gate, ht represents the output for the
next LSTM cell, and Wo and bo are the weight and bias of the output-gate neuron. In all of
the above equations, ht−1 represents the output of the previous layer, and xt represents the
input of the current cell.
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× 
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Figure 3. The construction of the LSTM cell.
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3. Proposed Methods
3.1. Overview

The time-step control for the PTA method is not determined by accuracy considera-
tions. Instead, the time-step is made as large as possible, which is consistent only with the
convergence of the NR iteration [20], and this time-step is defined as the optimal time step.
In the actual simulation, if each PTA step can use the optimal time-step, the simulation
efficiency can be greatly improved. According to the characteristics of the PTA time-step
mentioned above, we first introduce a hybrid searching strategy for finding the optimal
time step. Specifically, the hybrid search strategy consists of two parts: the coarse-grained
process and the fine-grained process. The coarse-grained process is responsible for increas-
ing the time step rapidly and without limitation under the precondition of NR convergence.
The fine-grained process is triggered when NR does not converge and is responsible for
reducing the time step, leading to NR non-convergence from large to small according to
the set granularity, until a time step is found that can ensure NR convergence. In this
case, the optimal time step is artificially defined—that is, the data labeling is completed.
Furthermore, feature selection based on random forest is adopted to obtain fine features,
which not only reduces the feature dimension through evaluating feature importance but
also improves simulation efficiency with high accuracy of prediction and accelerates the
network training.

Once optimal time steps and fine features are obtained, we utilize the key concepts
of the proposed method—first, mapping time-step control for the regression-prediction
problem. Then, the proposed method can fit the optimal time-step control function ( f ) with
the optimal time step (h) and selected features (s) on the training set.

h = f (s, θ) (8)

where θ represents the parameters needed to learn by training. Furthermore, LSTM is
employed to find parameters θ∗ on the training set, which makes model f (s, θ∗) have a
closed actual optimal time-step control function f (s, θ) through batch gradient descent.
Thus, the ordinary differential system reaches the steady state sufficiently quickly; that is,
the number of NR iterations used to complete PTA is as small as possible.

Figure 4 shows the entire flow of the proposed method. Samples were collected during
the PTA iteration for offline model training, and then the trained model was used for online
prediction during the PTA iteration.
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Figure 4. Entire flow of the proposed method.

3.2. Hybrid Searching Strategy for Finding the Optimal Time Step

As mentioned previously, searching for the optimal time step is the first task to be
solved. However, there is the issue that there is no precise definition of the optimal time
step in PTA. Therefore, we introduce a hybrid searching strategy, as shown in Figure 5, for
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finding the optimal time step to overcome above issue. In the traditional PTA iteration,
when solving the NR iteration convergence of the nonlinear equation at each time point,
the solution of this time point will be received and taken as the initial value to continue
solving the problem at the next time point until PTA convergence. In our hybrid search
strategy, when we start from a certain point in time to find the optimal time step of the next
step, we first use the traditional method to predict the next time step and solve it. When
the time point solution of the predicted time step is solved, NR iteration converges and
we do not accept the solution of this time point. Instead, it goes back to the time point
where the optimal time step is to be found, and a larger time step is given for solving. This
process is repeated until the NR iteration does not converge. When the NR solutions do not
converge, we believe that the optimal time step must be between the non-convergent time
point and the previous convergent time point. However, if the time step of NR iteration
convergence in the previous step is taken as the optimal time step directly, it is not accurate
and not the real optimal time step. At this time, we further use the fine-grained time step
to search between these two time points, and the time step obtained can at least ensure
that the convergence time is longer than the previous time step. To ensure the efficiency
of searching strategy, an adaptive granularity trick for a fine grained process is adopted,
which can choose different granularities according to the order of magnitude of time step.
In this way, we can find the optimal time step at each time point by mixing the aggressive
coarse-grained growth strategy while looking for a larger time step with the finer fine-
grained rollback strategy, and obtain a large number of samples with the optimal time-step
label through mass sampling, which makes subsequent supervised learning based on deep
learning possible.

Start
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Figure 5. Hybrid searching strategy for finding the optimal time step. The symbol n indicates PTA
iteration steps; hGmid and hGmax are threshold values for judging granularity(G); and Gmid, Gmin,
and Gmax represent different granularity for sampling efficiency.

Table 1 shows the speedup of several circuits simulated by using the introduced
sampling strategy, which verifies that this sampling strategy can provide a fine dataset for
implementing the optimal time-step control enhanced by deep learning.
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Table 1. Verifying the validity of the proposed sampling strategy on several circuits.

Circuit Conventional Proposed Sampling Speedup

fadd32 1968 121 16.26
ab_opamp 2417 213 11.35
ab_integ 4540 159 28.55

schmitfast 5681 68 83.54
THM5 5331 80 66.64

3.3. Feature Selection Based on Random Forest

Feature selection decides the performance of the trained model. Reasonable feature
selection not only reduces the computation of model training but also improves the accuracy
of prediction. In addition, once feature selection is completed, we simulate all training
netlists to get the total dataset.

The time-step control in PTA is not limited to the circuit but depends on the change
trends of the process variables in the simulation. Therefore, not only the features from the
circuit itself, such as circuit type, but also the process variables in simulation, are selected
as features. This enables our sample set not to be limited to a certain circuit type but can be
sampled in the simulation process of all circuits in order to get as many samples as possible.
Note that the features from five time points successively predict the sixth time step because
too-few time points cannot describe the voltage fluctuation of nodes well, and in order to
unify the inconsistent numbers of features caused by the different numbers of nodes in
different circuits, we uniformly select the ten solution curves with the largest fluctuation
for each circuit.

In our task, based on PTA theory and expert experience, we first select 17 features that
are related to the time step (including step number; multiples of the time step; residuals of
equations and NR iterations at the previous time point, and the standard deviation and
mean of the residual; the 10 solution curves with the largest standard deviation; and the
mean of the second-order norm of every solution curve along the row direction in a sliding
window). Furthermore, random forest is employed to evaluate the importance of each
feature. Each decision tree in a random forest is independent of the other. The information
divergence is adopted to implement splitting of nodes in a decision tree, which shows the
difference between the entropy of the set to be classified and the conditional entropy of
the selected feature. Specifically, a random forest consists of many decision trees, which
randomly select samples for training. The result of the random forest as a predictor (or
classifier) is the mean value (mode) of each decision tree’s output. Therefore, it has great
advantages over other traditional machine learning algorithms as follows: (1) It can handle
higher-dimensional data without feature reduction. (2) Unbiased estimation is used for
the generalization error, and the model has a strong generalization ability. (3) The training
speed is fast, and it is easy to parallelize. It can be clearly seen that Figure 6 shows a score
of feature importance based on random forest to the 17 features mentioned earlier. Finally,
the seven features with the higher scores, as shown in Table 2, were selected as inputs to
train the LSTM network. Although the number of NR iterations was slightly lower than
the values of other features (proportionally), it was still chosen as the training feature,
because the number of NR iterations is the only feature that can represent the degree of
difficulty of solving the equations. Our training sets were composed of 720 samples from
30 circuits to analyze the correlation between each feature and the label, so as to obtain
the importance of each feature in the time-step prediction task. In addition, these circuits
included a variety of different types of circuits, such as MOS, BJT, oscillating circuits, and
convergence difficulty circuits.
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Figure 6. Feature importance according to a random forest. The descriptions of features 1* to 7* are
shown in Table 2. The feature numbers 8 to 17 represent the standard deviations of the 10 solution
curves with the greatest fluctuations.

Table 2. The features selected using the random forest.

Feature Number Feature Name Description Data Structure

1* stepn−1 Evaluate the completion degree of the simulation scalar
2* mul The multiple of previous optimal time-step scalar
3* NRsn−1 The NR iterations of previous optimal time-step scalar
4* Res_stdn−5:n−1 The standard deviation of residuals in sliding window vector
5* Resn−1 The residual of previous optimal time-step scalar
6* Res_mean−5:n−1 The mean of residuals in sliding window vector
7* Vol_norm_mean1:5,1:all The mean value of the norm2 of all voltage solution curves in sliding window matrix

The detailed descriptions of the main features are given follows:
NRsn−1 represents the difficulty of NR convergence at the previous optimal time-step.

A smaller value for it means that NR converges more easily, and the next time step can
be larger.

Resn−1 represents the distance of PTA convergence. When the value of the residual
enters the PTA-convergence stage, a larger time step can also guarantee NR convergence.

Vol_norm_meann−5:n−1,1:all represents the mean value of the norm2 of all voltage so-
lution curves in the sliding window because there is a certain relationship between the
fluctuation of voltage-solution curves and the time step. In general, the more dramatic the
voltage fluctuation, the smaller the time-step.

3.4. Data Preprocessing

Individual data preprocessing for each feature. From the data structure in Table 2,
we can clearly know that different features have different data structures. However, the
model requires input features with a uniform data structure (one-dimensional row vectors).
Therefore, for residuals and voltages, we need to be unified. Firstly, for the voltage with a
matrix structure, in order to preserve as much information as possible about the solution
curve for all nodes Voli, the second order norm Volnorm2, as shown in Equation (9), is
applied to the resulting voltage row vector at each time point in the sliding window. At
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this time, the matrix is changed to a vector with size k of sliding window, and the mean
value Volmean is adopted to normalize a scalar.

Volnorm2 =

√
n

∑
i=1

Vol2
i

Volmean =
∑k

j=1 Volnorm2
j

k

(9)

Secondly, for residuals of one-dimensional column vector type in size k of a sliding win-
dow, in order to describe the fluctuation of convergence distance of the current equations,
the standard deviation Resstd shown in Equation (11) and mean value Resmean shown in
Equation (10) are used to normalize the residuals and yield two scalars, respectively. After
that, we can splice independent features based on column direction into a one-dimensional
row vector as a training sample.

Resmean = ¯̇Res = ∑k
i=1 Resi

k
(10)

Resstd =
√

Res2 =

√√√√ ∑k
i=1

(
˙Resi − ¯̇Res

)2

k− 1
(11)

Whole data preprocessing for training set. After individual data processing, we
spliced all the processed one-dimensional row vectors into a large matrix that is the training
set, as shown in Figure 7. As we all know, for the training set, the different value ranges
and dimensions of each column feature will increase the training time and even lead to
the non-convergence of the model. Therefore, for each column feature x of the training set,
the maximum and minimum normalization, as shown in Equation (12), should be used to
carry out numerical unification. Xmin indicates the minimum value of the current column,
and Xmax indicates the maximum value of the current column.

x
′
=

x− Xmin
Xmax − Xmin

(12)

It should be noted that the range of time steps may differ by dozens of orders of
magnitude, which undoubtedly increases the difficulty of model learning. Therefore, in
our work, in order to simplify the learning difficulty for the model, the time-step prediction
task is converted to a prediction task based on the multiples of the previous time step.
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3.5. LSTM-Enhanced Time-Step Control

Once all the data were ready to be sampled and processed, the deep learning model
(LSTM) was employed to accomplish our task because of its ability to process timing
information and avoid the gradient-disappearance problem in the recurrent neural network
(RNN). PyTorch, a famous machine learning library, was adopted to implement LSTM.
Firstly, we constructed a neural network structure with four hidden layers and a ReLU
activation function, and each hidden layer contained 120 cells. In addition, batch size and
learning rate were set to 32 and 0.0005, respectively. Adam and mean square error were
utilized for the optimizer and loss function, respectively. Finally, Algorithm 1 was used for
dealing with data and to train models. After training, the model for predicting time-step
was obtained.

Algorithm 1 LSTM-enhanced time-step control method for PTA.

Input: Training netlists ξ
Output: Time-step predictor f (s, θ∗)

1: Hybrid Searching Strategy for Finding Optimal Time-Step
2: Construct nonlinear equation F(x) by ξ
3: for PTA is not converge do
4: Execute NRsolverF(x)
5: Find the maximum time-step that ensures NR convergence and mark as the optimal

time-step
6: end for
7: Obtain optimal time-step set H1:n and features S1:n,1:k
8: Feature Selection Based on Random Forest
9: Select features S_sub1:n,1:m, and ensure m < k

10: Data Preprocessing
11: Execute S

′
_sub1:n,1:m, Ĥ1:n = Individual(S_sub1:n,1:m, H1:n)

12: Execute Ŝ_sub1:n,1:m = Whole(S
′
_sub1:n,1:m)

13: Modeling and Training
14: Construct LSTM model with trainable parameters θ
15: for i to n / Batch do
16: Loss (LSTM (Ŝ_sub1:m,i:i+Batch, Ĥ1,i:i+Bactch, θ))
17: Update θ ← θ
18: Update i← i + Batch + 1
19: end for
20: f (·)← LSTM(·)

4. Experiment Results
4.1. Experimental Setup

This study proposes a deep learning method for circuit simulation, which involved
training a deep learning model using Python and the PyTorch framework in the WSPICE
simulator based on SPICE3f5. WSPCIE is an in-house simulator and integrates state-of-the-
art DC analysis methods (including CEPTA and DPTA). The final model was obtained by
training on 745 samples of 5 circuits. To evaluate the performance of the proposed method,
it was compared with the conventional PTA algorithm and adaptive PTA algorithm in
terms of the total number of NR iterations required for simulation. All circuits used in the
experiments were selected from benchmark [25] and laboratory sources. The experiments
were conducted on a Windows workstation equipped with a 1.80 GHz Intel (R) Core (TM)
i7-8565U CPU and 512 GB memory. The proposed method demonstrated superior efficiency
and robustness in circuit simulation.

4.2. Acceleration Simulation Efficiency

To demonstrate the enhanced efficiency of the proposed method, we conducted a
comparison with the conventional and adaptive methods. Pseudo-elements were inserted
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into the transistors between each node and ground for all three time-step control methods.
The diagonal embedding position [19] yielded superior convergence. The efficacy of each
method was evaluated by considering the number of NR iterations required. The results,
as presented in Table 3, indicate that the proposed method achieves up to 61.32x and
61.13x improvements over the conventional and adaptive methods, respectively, in terms
of NR iterations in DPTA. DPTA, which is a variant of PTA, overcomes oscillation prob-
lems through artificially enlarged damping effects in the numerical integration algorithm.
Furthermore, we provide the circuit characteristics, including nodes, BJT, MOS, etc., in
Table 4, to demonstrate the algorithm’s superior generalization capability, which is a crucial
indicator of deep learning.

Table 3. Simulation efficiency for DPTA.

Circuit
Number of Iters Speedup

Conventional Adaptive Ours vs. Conventional vs. Adaptive

nagle 2093 1948 524 3.99 3.72
ab_ac 3961 3947 134 29.56 29.46

ab_integ 4540 4406 219 20.73 20.12
ab_opamp 2417 2536 263 9.19 9.64

e1480 5553 5514 197 28.19 27.99
mosrect 838 826 52 16.12 15.88

schmitfast 5681 5691 99 57.38 57.48
slowlatch 9382 9353 153 61.32 61.13

fadd32 1968 1859 137 14.36 13.57
TADEGLOW6TR 145 102 148 0.98 0.69

THM5 5331 5324 114 46.76 46.70

Table 4. Circuit characteristics with devices.

Circuit Nodes eqn bjt mos2 mos3 c r v

nagle 26 54 23 0 0 1 11 5
ab_ac 25 28 0 31 0 22 1 3

ab_integ 28 32 0 31 0 24 3 4
ab_opamp 28 31 0 31 0 24 4 3

e1480 145 204 0 28 0 17 130 3
mosrect 6 10 0 4 0 0 2 2

schmitfast 5 19 0 6 0 0 0 2
slowlatch 12 37 0 0 14 0 1 5

fadd32 161 178 0 288 0 25 0 17
TADEGLOW6TR 18 18 0 3 0 0 18 1

THM5 26 26 9 0 0 0 0 1

Moreover, we have specifically chosen two practical circuits, namely “THM5” and
“slowlatch”, for detailed analysis. The former comprises 9 BJT transistors and 1 voltage
source, and the latter includes 14 MOS transistors and 5 voltage sources. Generally, time-
step control in PTA can be divided into two stages, namely, the search phase and the
convergence phase. As depicted in Figure 8, the voltage waveforms of node 10 and node 5
in circuit “THM5” and node 15 and node 17 in circuit "slowlatch" show that the solution
of each pseudo-step is closely approximating the final solution during the convergence
phase. The proposed algorithm is capable of providing a larger time-step, which reduces
the number of discrete time points required during the convergence stage. The subfigures
in Figure 8a,b demonstrate the voltage waveforms of node 10 and node 5 in circuit "THM5"
during the search phase. It is evident that the time step during the search phase is small
and the number of time points is large, due to the voltage changing from zero to full
value during the search phase, resulting in relatively significant fluctuations in the voltage
waveform. The use of a small time step is crucial to ensure the convergence of NR. Similar
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observations can be made for the circuit "slowlatch". Additionally, the proposed algorithm
ensures the continuity of the voltage waveform and avoids causing oscillations, thereby
increasing its practicality.

(a) (b)

(c) (d)

Figure 8. The voltage waveforms of “THM5” and “slowlatch” at different nodes under the proposed
method. (a) The node 10 voltage waveform of the “THM5” circuit. (b) The node 5 voltage waveform
of the "THM5" circuit. (c) The node 15 voltage waveform of the “slowlatch” circuit. (d) The node 17
voltage waveform of the "slowlatch" circuit.

4.3. Improvement Simulation Convergence

Note that the interesting thing to point out is that for some DPTA non-convergence
(N/A) cases shown in Table 5, the proposed method makes them converge. This is par-
ticularly useful for PTA based on SPICE because non-convergence issues are extremely
difficult for the simulator to deal with, and the cause is often unable to be accurately located.
Therefore, the proposed algorithm enhances the robustness of DPTA.

Table 5. Improvement convergence for DPTA on some circuits.

Circuits
Convergence

Conventional Adaptive Ours

bjtff N/A N/A 144
schmitslow N/A N/A 170

toronto N/A N/A 316
add20 N/A N/A 345

mem_plus N/A N/A 692
ram2k N/A N/A 280

jge N/A N/A 654
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The proposed algorithm’s benefits are exemplified using a sizeable circuit, denoted
as “add20”, which comprises 958 mos transistors and 42 voltage sources. One portion
of the voltage waveform of node 20 in the “add20” circuit under the conventional time-
step control approach is depicted in Figure 9a. It is evident that the voltage waveform
exhibits oscillations and causes non-convergence, owing to limitations in the conventional
time-step control approach. In contrast, the voltage waveform of the same node by using
the proposed algorithm, as shown in Figure 9b, mitigates oscillations and enhances the
convergence of DPTA.

(a) (b)

Figure 9. Comparison of the node voltage waveform on the “add20” circuit under two time-step
control methods. (a) The voltage waveform of node 20 under conventional time-step control. (b) The
voltage waveform of node 20 under the proposed method.

4.4. Ablation Experiment

To demonstrate the efficacy of feature selection through random forest, we conducted
a comparative analysis of the simulation performance of the LSTM memory without the
use of random forest for feature selection. To ensure fairness in our assessment, we utilized
identical training and test sets for the ablation experiments. The results of these experiments
are shown in Table 6. In most test circuits, the feature-selection method based on random
forest is significantly better than that of the non-random forest, which is reflected in the
proposed algorithm having fewer NR iterations than the algorithm without a random forest,
and the total number of PTA iterations and the number of rejected steps were reduced in
most circuits. These findings provide empirical evidence to support the practical efficacy of
feature selection through random forest.

Table 6. Verify the effectiveness of feature selection based on a random forest.

Circuit
Number of PTA Iters Accepted Step Rejected Step Number of NR Iters

Ours without RF Ours Ours without RF Ours Ours without RF Ours Ours without RF Ours

nagle 111 69 91 43 20 26 672 524
ab_ac 66 39 61 38 5 1 265 134

ab_integ 85 42 73 37 12 5 402 219
ab_opamp 87 52 70 43 17 9 430 263

e1480 50 27 27 31 23 5 369 197
mosrect 18 14 16 14 2 0 84 52

schmitfast 50 24 48 24 2 0 176 99
slowlatch 60 37 56 36 4 1 264 153

fadd32 73 33 67 31 6 2 284 137
TADEGLOW6TR 15 26 15 20 0 6 70 148

THM5 142 29 122 27 20 2 127 114

5. Conclusions

In this paper, a novel time-step control method enhanced by deep learning was applied
to DPTA for completing nonlinear DC analysis efficiently — in particular, a hybrid searching
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strategy that is coarse and fine grained for identifying the optimal time step, addressing the
key issue that it cannot be theoretically defined. This approach also provides fine-grained
labels for the training set. Furthermore, feature selection based on random forest and a
two-stage data processing strategy provides a fine dataset for the training model, which
improves the training speed and prediction accuracy of model. Finally, the numerical
examples demonstrated a fine speedup to 61.32 times compared with other time-step
control methods. Fortunately, the proposed method can also improve the non-convergence
problem caused by step control in some circuits.
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