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Abstract: Traffic flow prediction is a critical component of intelligent transportation systems, es-
pecially in the prevention of traffic congestion in urban areas. While significant efforts have been
devoted to enhancing the accuracy of traffic prediction, the interpretability of traffic prediction also
needs to be considered to enhance persuasiveness, particularly in the era of deep-learning-based
traffic cognition. Although some studies have explored interpretable neural networks from the feature
and result levels, model-level explanation, which explains the reasoning process of traffic prediction
through transparent models, remains underexplored and requires more attention. In this paper, we
propose a novel self-constructed deep fuzzy neural network, SCDFNN, for traffic flow prediction with
model interpretability. By leveraging recent advances in neuro-symbolic computation for automatic
rule learning, SCDFNN learns interpretable human traffic cognitive rules based on deep learning,
incorporating two innovations: (1) a new fuzzy neural network hierarchical architecture constructed
for spatial-temporal dependences in the traffic feature domain; (2) a modified Wang–Mendel method
used to fuse regional differences in traffic data, resulting in adaptive fuzzy-rule weights without
sacrificing interpretability. Comprehensive experiments on well-known traffic datasets demonstrate
that the proposed approach is comparable to state-of-the-art deep models, and the SCDFNN’s unique
hierarchical architecture allows for transparency.

Keywords: intelligent transportation system (ITS); traffic flow prediction; hierarchical fuzzy inference
systems; fuzzy neural network; modified Wang–Mendel (MWM) method

1. Introduction

The implementation of information technology in the transportation system has led
to an increase in its complexity, resulting in several difficult challenges, such as traffic
congestion, which leads to significant economic losses and hidden risks [1]. Therefore, to
improve the management of complex transportation systems, research has been focused
on intelligent transportation systems that incorporate various technologies, including
information integration, data communication, and artificial intelligence [2]. The core of
an intelligent transportation system lies in intelligent traffic cognition, which involves
predicting traffic flow, an effective approach for enhancing traffic system efficiency and
resolving traffic congestion [3]. Accurate traffic flow prediction can aid urban traffic
planning and emergency management and mitigate traffic congestion and related issues [4].
Furthermore, traffic flow prediction plays a crucial role in smart city planning, including
reducing environmental pollution, shortening travel time, increasing road capacity, and
other aspects [5].

The goal of traffic flow prediction is to estimate future traffic conditions of a trans-
portation network based on historical observations. The predicted time span ranges from
a few minutes to a few hours. However, the multiple and complex properties of traffic
flow data, such as spatial-temporal dependence, external data dependence, high noise and
randomness [6,7], pose a very challenging problem. Existing approaches fall into two main
categories: knowledge-driven approaches and data-driven approaches. Knowledge-driven
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methods usually attempt to establish traffic network modeling through queuing theory
and simulated driver behavior in traffic [8,9]. However, this method is now rarely used,
because the complexity of traffic flow data is so high that it is difficult for knowledge-driven
methods to extract the deep information embedded in the data and the experimental ac-
curacy is often unsatisfactory. With the advent of the information age, available data has
shown explosive growth. Data-driven models have dominated this area, shifting from early
statistical-based models to recent deep-learning-based models. Benefiting from this trend,
prediction accuracy has reached unprecedented heights, and there is still much room for
improvement.

Although many data-driven models, such as Deep Spatiotemporal Network (DeepST) [10],
Spatiotemporal Residual Network (ST-ResNet) [11], Attention Convolutional Long Short-
Term Memory Network (AttoConvLSTM) [12], Diffusion Convolutional Recurrent Neural
Network (DCRNN) [6], Attentive Crowd Flow Machine (ACFM) [13] and Attentive Spatio-
Temporal Inception ResNet (ASTIR) [14], have achieved excellent results in traffic flow
prediction problems, the interpretability of these models is still an open issue, because
these models are based on deep neural networks, which have “black box” characteris-
tics. Although these models have superior performance, they often come at the cost of
high model complexity, and their results cannot be easily explained or understood by
humans [15]. When traffic flow prediction is applied to safety-related fields, such as emer-
gency management, the consequences of prediction errors can be catastrophic; therefore,
the interpretability of the model is a critical factor to be considered.

As we are aware, traffic flow prediction models that possess high interpretability could
aid in comprehending the decision-making process of the model. On one hand, from a
user’s perspective, this enhances the persuasiveness and trustworthiness of prediction
models. On the other hand, from the perspective of corporations and governments, this
allows prediction models to be easily regulated to mitigate ethical issues such as fairness
and privacy. However, there is a trade-off between accuracy and interpretability, since high-
precision models such as deep neural networks often have complex inference processes,
which makes obtaining model interpretability more difficult.

Improving the interpretability of the model while ensuring the accuracy of the traffic
flow prediction model is a great challenge. With the advancement of technology, many
studies have been proposed to try different methods for interpreting deep neural net-
works [16,17], among which fuzzy neural networks (FNN) stand out due to the high
interpretability of their IF-THEN fuzzy rules [18]. Overall, FNNs can be interpreted by
analyzing the internal structure and parameters of the model, indicating that they are
inherently transparent, and their results can be fully understood.

Based on the preceding discussion, this paper investigates a solution using fuzzy neu-
ral networks for traffic flow prediction and proposes a modified Wang–Mendel method to
extract IF-THEN fuzzy rules. The modified method not only achieves superior performance
on the BikeNYC dataset, but also precisely tracks errors.

This work addresses the following three research questions: (i) How can fuzzy neural
networks be used to build traffic flow prediction models? (ii) How can the Wang–Mendel
method be enhanced based on regional variations in data? (iii) How can IF-THEN fuzzy
rules improve model interpretability and error tracking accuracy?

To address these issues, we introduce a novel fuzzy-based approach for the traffic flow
prediction model by combining fuzzy inference mechanisms and deep neural networks.
Building on Wang [19] and Wang and Chen’s work [20], we design a novel self-constructing
deep fuzzy neural network model that leverages multiple traffic flow data characteristics
and has good anti-noise ability. Additionally, it is noteworthy that the SCDFNN exhibits a
high degree of interpretability, enabling accurate tracking of model errors by examining
the IF-THEN rules. We also propose a modified Wang–Mendel method to enable rapid
training of the SCDFNN. Our contributions are summarized as follows.

• Neuro-Fuzzy Hierarchical Architecture. We propose SCDFNN for model level traffic
data cognitive explanation. To our best knowledge, this is the first neuro-fuzzy
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hierarchical architecture that learns logical rules for traffic data cognitive systems
without relying on external resources.

• Modified Wang–Mendel Method. Considering the difference of data in different
regions, we propose a modified Wang–Mendel method. Compared with the ordinary
training method, its training model not only has fewer rules and faster training speed
but also retains traffic prediction results’ interpretability.

• Comprehensive Experiment. Comprehensive experimental comparisons and analysis
using two public and real datasets demonstrate the superiority of SCDFNN by its high
accuracy and high interpretability.

• Interpretable Rules. Thanks to SCDFNN, we can discover interpretable traffic flow
cognitive fuzzy-based rule sets for given datasets, the former of which have multiple uses.

The structure of this paper is as follows. In Section 2, we provide a review of prior
research on traffic flow prediction and fuzzy neural network development. Section 3 covers
the problem definition for traffic flow prediction and provides implementation details of
our modified Wang–Mendel method. In Section 4, we detail our data processing procedure.
Next, in Section 5, we present the design and training methods of the SCDFNN model.
Section 6 presents the experimental results. Finally, we conclude our findings in Section 7.

2. Related Work

In recent years, the explosion of data in the information age has led to the rapid
development of deep neural networks. Numerous excellent deep neural network models
have emerged for traffic flow prediction. However, the “black box” property of these
models has caused many accidents, leading to concerns about their interpretability. As
a result, fuzzy systems, known for their high interpretability, have garnered increasing
attention. To improve the interpretability of deep neural networks, some researchers have
attempted to combine neural networks with fuzzy systems to form fuzzy neural networks,
efforts which have shown promising results [21]. In this section, we will discuss the research
progress of traffic flow prediction models and fuzzy neural network models, respectively.

2.1. Research Progress of Traffic Flow Prediction

Extensive research has been conducted by numerous scholars on traffic flow prediction
using deep neural networks. Two approaches are commonly used for traffic flow prediction:
knowledge-driven and data-driven. Knowledge-driven approaches typically model traffic
network through queuing theory and simulated driver behavior in traffic. However, these
methods struggle to extract deep-level information from complex traffic flow data, resulting
in less accurate predictions. In contrast, data-driven methods have become more popular
due to the explosion of data in the information age. Recent studies on traffic flow prediction
have mostly used data-driven methods [22].

Data-driven methods can be categorized into two types: classical statistical models and
machine learning models, particularly deep learning network models, which have shown
better performance in terms of accuracy. Classical statistical models include autoregressive
integral moving average (ARIMA) [23], seasonal autoregressive integral moving average
(SARIMA) [24], vector autoregression (VAR) [25], etc. In contrast, machine learning models,
including deep-learning network models, are more effective in capturing the underlying
patterns in data. This paper will focus on the second type of model, which will be discussed
in detail below.

The Deep Brief Network (DBN) is a multitask model introduced into traffic research
by Huang et al. [26]. The researchers added a multi-task regression layer on top of the DBN
to predict traffic flow. Chen et al. developed a deep stacked denoising autoencoder model
to learn the effects of human movement dependencies on traffic flows by stacking the
autoencoder [27]. Yi et al. proposed a deep learning neural network based on TensorFlow
and achieved 99% accuracy in traffic flow prediction [28]. Zhang et al. proposed DeepST, a
deep-learning-based model for the prediction of spatial-temporal data, and applied it to
traffic flow prediction [10]. In 2017, Zhang et al. proposed the ST-ResNet model, which used



Electronics 2023, 12, 1885 4 of 23

the residual neural network framework to model the temporal closeness, period, and trend
properties of crowd traffic [11]. Liu et al. proposed the Attention Crowd Flow Machine
(ACFM), which used two progressive ConvLSTM units to form a unified neural network
module [13]. Zhou et al. proposed an encoder-decoder framework based on convolutional
and ConvLSTM units to identify complex features, incorporated a novel attention model
AttConvLSTM to emphasize the effects of latent citywide mobility regularities, and applied
it to predict Multi-step Citywide Passenger Demands [12]. Yao et al. proposed a Deep
Multi-View Spatial-Temporal Network (DMVST-Net) for taxi demand prediction, which
used views to model both spatial and temporal relations [29]. Mourad et al. proposed
the Attentive Spatio-Temporal Inception ResNet (ASTIR) for traffic flow prediction by
combining the Inception–ResNet structure with Convolution-LSTM layers and attention
module, which can capture short-term, long-term, period properties, and external factors as
well as better capture pattern movement changes [14]. Du et al. proposed DST-ICRL, a deep
irregular convolutional residual LSTM network model for urban traffic passenger flow
prediction, one which integrates irregular convolutional residential networks and LSTM
units to learn spatiotemporal feature representations and fuses external factors [30]. Zhou
et al. proposed a filter attention-based spatiotemporal neural network (FASTNN), which
used a 3D convolutional neural network to extract universal spatiotemporal dependencies
from three types of historical traffic flow and constructed a filtering spatial attention
module [31].

In recent years, graph convolutional neural networks (GCN) have emerged as one of
the most promising frontiers in deep neural network research, showing superior perfor-
mance across a variety of application scenarios [32]. To tackle the traffic flow prediction
problem, researchers have constructed a non-Euclidean graph input for GCNs by consider-
ing road intersections as nodes and road connections as edges. Several GCN-based neural
network models have been derived, such as the Spatio-Temporal Graph Convolutional Net-
work (STGCN) and the Attention-based Spatial-Temporal Graph Convolutional Network
(ASTGCN), which have achieved outstanding results [33,34].

2.2. Development of Fuzzy Neural Networks

Fuzzy neural networks are rooted in fuzzy logic, which was introduced by Zadeh in
1965 [35] to address the imprecision of complex problems. Fuzzy logic replaces the classical
Boolean value with a membership degree between 0 and 1 to deal with problems that
classical logic cannot represent.

In 1988, Zadeh proposed fuzzy inference systems (FIS) [36], which has since attracted
attention from many disciplines over the past three decades [37]. Peng, F. applied FIS to
the traffic field and proposed an efficient road traffic anti-collision warning system [38].
Although FIS could offer a more comprehensive understanding of how and why results are
generated, it may have to be simplified to meet the transparency requirement. Therefore,
FIS’s performance falls short compared to deep-learning-based models. Recently, there has
been growing research interest in combining the advantages of FIS and neural networks,
leading to a new model called the fuzzy neural network model (FNN). Due to its high
interpretability and excellent performance, FNN has been widely used in various appli-
cation scenarios, such as fuzzy clustering [39], nonlinear dynamic system modeling, fault
detection and stock prediction [18]. Miao et al. proposed a novel substation-based fire
early warning scheme based on fuzzy theory [40]. Huynh et al. proposed a new hybrid
algorithm for multi-objective optimum design, combining the Grey Taguchi method, the
fuzzy logic system, and an adaptive neuro-fuzzy inference system (ANFIS) algorithm [41].
In this study, we apply FNN to the intelligent traffic cognition field and propose a new
traffic flow prediction model.

As we know, one of the reasons that restrict the development of FNN is that the
number of rules of FNN will explode when faced with complex problems. To address this
issue, researchers have proposed various algorithms, of which the pruning algorithm is
the most commonly used. For example, G. Leng et al. proposed a self-organizing fuzzy
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neural network (SOFNN) that used adding and pruning techniques based on the geo-
metric growing criterion and recursive least square algorithm to extract the fuzzy rule
from input-output data [42]. N. Wang et al. introduced the parsimonious fuzzy neural
network (FAOS-PFNN) which utilized growing and pruning of rule-based error criteria
and distance criteria, and its parameters were updated by an extended Kalman filter (EKF)
method [43]. J. J. Rubio suggested the online self-organizing fuzzy modified least-squares
(SOFMLS) method [44], which generated the new rule based on distance criteria and was
capable of adding or pruning a neuron from the network in every step of the structure-
adjusting strategy. H. Han et al. proposed the GP-FNN model, which calculated the
significance of fuzzy rules through Fourier decomposition of the variance of the network
output [45]. Simulation studies showed that this model has greater generalization capa-
bility and compact and high-performing fuzzy rules. Although the pruning algorithm
can reduce the number of fuzzy rules, the setting of the pruning threshold remains chal-
lenging. A pruning threshold that is too large or too small can significantly decrease the
model’s accuracy.

Raju et al. proposed a hierarchical fuzzy system that decomposes a high-dimensional
fuzzy system into several layers of low-dimensional fuzzy systems, which reduces the
number of rules without using pruning [46]. Wang in 1998 proved that hierarchical fuzzy
systems have some discrete properties such as universal approximation [47]. Thereafter,
hierarchical fuzzy systems have been widely used in various fields, such as adaptive
control [48], multi-objective optimization [49], interpretability [50], and classification [51,52].
In 2020, Wang introduced the deep convolutional fuzzy system (DCFS), which imitates
the convolution operator of deep convolutional neural networks (DCNNs) to decompose
the high-dimensional fuzzy system into a multi-layer low-dimensional fuzzy system [19].
The Wang–Mendel method is then used to determine the parameters of the fuzzy system
layer-by-layer from the bottom-up. The Wang–Mendel (WM) method was first proposed
by Wang and Mendel in 1992 and refined by Wang in 2003 [53,54]. It is a method for
quickly generating fuzzy rules from data. DCFS has been proven effective in forecasting
chaotic random time series and the Heng Seng index (HSI) of the Hong Kong stock market.
However, the Wang–Mendel method used in DCFS divides membership functions evenly
without considering the regional differences in input data.

3. Preliminaries

In this section, we provide a detailed explanation of the structure and operational
mechanism of the FNN, along with instructions on how to build it using the modified
Wang–Mendel method. Furthermore, we conclude this chapter by defining the traffic flow
prediction problem. Table 1 lists the key symbols used in this article.

Table 1. List of Symbols.

Symbol Name Significance

N Number of samples
xi i-th dimension input, i = 1, 2, . . . , n
y Sample output

mi Initial score of i-th dimensional membership function
MSEl(y) the variance of output y corresponding to the sample in each region, l = 1, 2 . . . mi − 1

qi Number of membership functions in the i-th dimension after pruning
µji The j-th membership function corresponding to the i-th dimension input, ji = 1, 2, . . . , qi

Aji
i

Fuzzy semantics corresponding to µji
cj1 ,j2 ,...,jn Rule parameters of fuzzy rule (j1, j2, . . . , jn)
f j1 ,j2 ,...,jn
k

Activation strength of the k-th sample on rule (j1, j2, . . . , jn)
Xt Inflow and outflow matrix at time t, Xt ∈ R2×I×J

Pi, j, t Set of vehicles with time t grid (i, j)
card Finding the total number of elements in a set

xin/out
i,j,t Inflow/outflow in (i, j) grid at time t
Et External data at time t
τ Prediction time
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3.1. The Structure and Working Mechanism of the FNN

The FNN is a hybrid system composed of artificial neural networks and fuzzy systems,
where the former provides learning ability [55], and the latter provides interpretability
and handles uncertainty. Typically, the structure of the FNN is divided into layers, with
each layer responsible for executing specific tasks; it can be broadly categorized into two
parts: layers that implement the premise part of the rule, and layers that implement the
consequent part of the rule [37]. While the number of layers in the FNN design can vary
in specific implementations, the functions implemented are the same. In this section, we
introduce a commonly-used four-layer structure model known as the IMRO structure, as
illustrated in Figure 1.
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The IMRO structure of FNN is divided into four layers: input layer, membership
function layer, rule layer and output layer. In the input layer, the raw input is fed to the next
layer without any manipulation. In the membership-function layer, each input xi is input
into qi different membership functions. Each membership function represents a kind of
semantics, and its output is the membership degree that the input xi satisfies this semantics,
and its value is between 0 and 1. In the rule layer, each rule node selects a membership
function qji from the membership function corresponding to each input, which constitutes
the precondition of a fuzzy rule, and each rule node also corresponds to a rule parameter
cj1,j2,...,jn . The rule corresponding to this rule node is:

IF x1 is Aj1
1 and x2 is Aj2

2 . . . and xn is Ajn
n , THEN y is cj1,j2,...,jn , (1)

where xi is the input of FNN, i = 1, 2, . . . , n; Aji
i represents a kind of fuzzy semantics,

such as “fast”, “slow”, “high” or “low” that cannot be accurately expressed, which is
mathematically represented as a membership function, ji = 1, 2, . . . , qi; the rule parameter
cj1,j2,...,jn is a precise value.

The output of the rule node is the activation strength f j1,j2,...,jn
k of the rule, and the

formula for calculating f j1,j2,...,jn
k is:

f j1,j2,...,jn
k = ∏n

i=1 µji (xi(k)). (2)

In this formula, µji represents the membership function that represents the fuzzy semantic

Aji
i . The expression µji (xi(k)) means the membership degree of the k-th sample for the fuzzy

proposition “xi is Aji
i ”. The symbol ∏ represents the fuzzy intersection operator, which
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means “and”. Therefore, the activation strength f j1,j2,...,jn
k represents the degree to which the

input data meets the preconditions of the rule “IF x1 is Aj1
1 and x2 is Aj2

2 . . . and xn is Ajn
n ”.

Finally, in the output layer, we accumulate the outputs of each rule to obtain the
overall output y of FNN, where the output of each rule is the activation strength f j1,j2,...,jn

k
of the rule multiplied by the rule parameter cj1,j2,...,jn . The calculation formula for y is:

y = ∑q1
j1=1 ···∑

qn
jn=1 cj1,j2,...,jn × f j1,j2,...,jn

k . (3)

3.2. Modified Wang–Mendel Method

In 1992, Wang and Mendel proposed the Wang–Mendel (WM) method for extracting
rules from data to form a rule base for fuzzy systems [53]. Wang further improved the
method in 2003 [54]. The WM method has the advantage of training the fuzzy system
parameters using only one pass through the training data, making it faster than iterative
algorithms. However, it faces difficulties with high-dimensional problems due to rule
explosion. In 2020, Wang proposed the deep convolutional fuzzy system (DCFS) model to
address this issue by designing the low-dimensional fuzzy systems in a bottom-up, layer-
by-layer fashion using the Wang–Mendel method. However, the membership function
generated by the Wang–Mendel method in DCFS does not consider the regional differences
in data, leading to many redundant rules and increased training time. To address this,
we modified the membership function division of the Wang–Mendel method to generate
uneven rules. The modified Wang–Mendel method is presented below.

Step 1: Given N training input-output data pairs, each data pair is denoted as:

[x1(k), x2(k), . . . , xn(k); y(k)], (4)

where xi(k) is the input of data, y(k) is the output, k ∈ 1, 2, . . . , N, i ∈ 1, 2, . . . , n.
Determine a preset number of membership functions for each input dimension xi, ex-

pressed as mi. The mi is related to the physical meaning of the input dimension. Specifically,
the more complex the input dimension, the larger the mi should be set.

Step 2: Calculate the maximum value maxxi and minimum value minxi of each dimen-
sional variable x of the input data, and divide the region [minxi, maxxi] into mi − 1 blocks:[

x1, x2], [x2, x3], . . . ,[xmi−1, xmi

]
, (5)

where x1 = minxi, xmi = maxxi. Calculate the variance of output y(k) corresponding to the
sample in each region [xl , xl+1] in (5) and record it as MSEl(y), where l = 1, 2 . . . mi − 1. Note:

MSE′(y) = minMSEl(y) + d× (maxMSEl(y)−minMSEl(y)), (6)

where maxMSEl(y) and minMSEl(y) are the maximum and minimum values in MSEl(y),
respectively, and d is a hyperparameter, 0 < d < 1. The MSE′(y) will be used as a pruning
related threshold in subsequent steps.

Step 3: For the dimension whose partition number mi satisfies mi > m′, we perform a
pruning operation, where m′ is a hyperparameter. We traverse all regions from the first
region [x1, x2]. If the current traversal region is [xa, xb], and the region [xb, xc] has not been
traversed, and satisfy:

MSEab(y) < MSE′(y), (7)

MSEbc(y) < MSE′(y), (8)

xc − xa ≤ z′ × maxxi −minxi
mi

. (9)
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Then merge region [xa, xb] and region [xb, xc] into region [xa, xc] as

MSEac(y) =
MSEab(y) + MSEbc(y)

2
, (10)

where MSEab(y), MSEbc(y) and MSEac(y) are the variances of the output of corresponding
regions [xa, xb], [xb, xc] and [xa, xc], and z′ is a hyperparameter. The merged region must
be less than z′ times of the original region. After region merging, we will check whether
[xa, xc] can be merged with the next region [xc, xd]. If not, we will traverse the next region
until all regions are traversed.

Step 4: For each merged region, we take the center of the region as the vertex of the
membership function, and the center of the adjacent region as the endpoint of the member-
ship function to construct a triangle membership function. For the two regions on the edge,
the left and right endpoints of their corresponding membership functions are −∞ and
+∞, respectively. Then, we will obtain qi membership functions µji (x)( ji = 1, 2, . . . , qi);

each membership function represents a semantic Aji
i . Figure 2 shows the trigonometric

membership function cluster obtained by merging some inputs.
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Step 5: Generate a rule space, which contains ∏n
i=1 qi rule parameters cj1,j2,...,jn , and

the rule corresponding to each rule parameter is shown in (1).
Step 6: Traverse all training data, and for each training data [x1(k), x2(k), . . . , xn(k); y(k)],

calculate the activation strength f j1,j2,...,jn
k of each rule according to Equation (2), and save

the maximum activation strength f j∗1 ,j∗2 ,...,j∗n
k and output yk. The formula for calculating

f j∗1 ,j∗2 ,...,j∗n
k is

f j∗1 ,j∗2 ,...,j∗n
k = max

j1,j2,...,jn
f j1,j2,...,jn
k . (11)

After traversing all N training samples, if a rule has saved at least one
{

f j∗1 ,j∗2 ,...,j∗n
k , yk

}
data pair, the rule parameter cj∗1 ,j∗2 ,...,j∗n of this rule can be calculated according to the follow-
ing equation:

cj∗1 ,j∗2 ,...,j∗n =
∑N

k=1 f j∗1 ,j∗2 ,...,j∗n
k × yk

∑N
k=1 f

j∗1 ,j∗2 ,...,j∗n
k

, (12)

where N is the total number of training samples,
(

j∗1 , j∗2 , . . . , j∗n
)

represents the coordinates

of this rule in the rule space, and f j∗1 ,j∗2 ,...,j∗n
k is the activation intensity of the k-th sample on
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the rule, and is the maximum activation intensity among all rules triggered by the k-th
sample. yk is the output of the k-th sample.

Step 7: For a rule whose rule parameter is not calculated in Step 6, we will obtain its
rule parameter from its neighbor rules. Specifically, its rule parameter is the arithmetic
mean of the rule parameters of the neighbor rules with rule parameters. Repeat this
step until all rules in the rule space have a rule parameter. The sufficient and necessary
condition for rule (j1, j2, . . . , jn) and

(
j′1, j′2, . . . , j′n

)
to be neighbors is that there is and only

one r ∈ 1, 2, . . . , n, so that jr = j′r + 1 or jr = j′r − 1.
For the trained FNN, we use Equation (3) to obtain its output y.
In contrast to the ordinary Wang–Mendel method, our proposed improvement

involves adding pruning operations consisting of Steps 2, 3 and 4. The ordinary
Wang–Mendel method employs triangle membership functions to uniformly cover the
data, without considering the regional differences within the data. In our approach, we
first partition the input data into uniform regions, and then evaluate the influence of each
region using variance analysis. We combine adjacent regions with low influence to form
larger regions, for which we then obtain a membership function. This method reduces
the number of rules and accelerates the training speed. Our experiments show that the
modified Wang–Mendel method reduces the training time by more than half compared to
the ordinary Wang–Mendel method. The flowchart of the Modified Wang–Mendel Method
is presented in Figure 3.

Electronics 2023, 12, x FOR PEER REVIEW 10 of 24 
 

 

 

Figure 3. The flowchart of the Modified Wang–Mendel Method. 

3.3. Problem Definition 

In traffic flow prediction, two map representations are commonly used: the topology 

map structure and the grid map structure. The topology map structure represents inter-

sections as nodes, and the roads as edges, making it suitable for graph convolution (GCN) 

to capture spatial information. The grid map structure, on the other hand, divides the map 

into equally-sized areas based on longitude and latitude, with each area considered as a 

research object. After a comparative analysis, we found that the grid map structure is more 

appropriate for our study. We divided the map into 𝐼 × 𝐽 grid map using longitude and 

latitude information, as illustrated in Figure 4. 

 

Figure 4. Map divided into an 𝐼 × 𝐽 grid. 

Figure 3. The flowchart of the Modified Wang–Mendel Method.



Electronics 2023, 12, 1885 10 of 23

3.3. Problem Definition

In traffic flow prediction, two map representations are commonly used: the topology
map structure and the grid map structure. The topology map structure represents intersec-
tions as nodes, and the roads as edges, making it suitable for graph convolution (GCN) to
capture spatial information. The grid map structure, on the other hand, divides the map
into equally-sized areas based on longitude and latitude, with each area considered as a
research object. After a comparative analysis, we found that the grid map structure is more
appropriate for our study. We divided the map into I × J grid map using longitude and
latitude information, as illustrated in Figure 4.
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Let the set of vehicles contained in the (i, j) grid at time t be Pi, j, t, then the inflow of

the (i, j) grid at time t is xin
i,j, t = card({g

∣∣∣g /∈ Pi, j, t−1 ∧ g ∈ Pi, j, t}) . Similarly, the outflow

of the (i, j) grid at time t is xout
i,j, t = card({g

∣∣∣g ∈ Pi, j, t−1 ∧ g /∈ Pi, j, t}) .

In addition, we use Xt ∈ R2×I×J to represent the inflow and outflow at time t, and Et
to represent the external factors at time t, where Et includes the weather, weekend, holiday
and time location at time t. Then the traffic flow prediction problem can be described by
Definition 1.

Definition 1. Given historical values {Xt, Et|t = 0, . . . , τ − 1}, Predict Xτ .

Because fuzzy neural network is suitable for single output model, we decompose the
problem described by Definition 1 into 2 × I × J single output prediction tasks described
by Definition 2.

Definition 2. Given historical values {Xt, Et|t = 0, . . . , τ − 1}, predict xin/out
i,j,τ .

4. Data Processing

The characteristics of traffic flow data are diverse and complex, which presents sig-
nificant challenges for traffic flow prediction. In this section, we will provide details on
how to process raw data to extract spatial-temporal knowledge that is information-rich and
representative, as well as contextual knowledge that includes spatial-temporal dependence,
periodicity, and external data dependence.

4.1. Spatial-Temporal Dependence

For the inflow xin
i,j, t of the location (i, j) at time t, we calculate the sum of the outflow

from its neighbors in the previous s time slots and that of distant neighbors, denoted
as neighbor1out

i,j, t, neighbor2out
i,j, t respectively, so that to reflect both temporal and spatial
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dependence of the data. The intuitive is based on the observation that the inflow of
a location at a certain time slot usually comes from the outflow from its surrounding
locations, and vice versa for the outflow. The specific calculation formula for neighbor1out

i,j, t
and neighbor2out

i,j, t is:

neighbor1out
i,j, t = ∑ xout

ineighbori1,jneighbor1, t, (13)

neighbor2out
i,j, t = ∑ xout

ineighbori2,jneighbor2, t. (14)

where
(

ineighbor1, jneighbor1
)

is the eight adjacent grids of (i, j), and
(

ineighbor2, jneighbor2
)

is the sixteen grids separated by one grid from (i, j), as shown in Figure 5. If the(
ineighbor1, jneighbor1

)
or the

(
ineighbor2, jneighbor2

)
grid exceeds the map boundary, we set

the inflow or outflow corresponding to the grid to 0.
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4.2. Periodicity

Traffic flow data, as a typical time-series data, is naturally dependent on adjacent
time slots, known as temporal closeness in the literature. Moreover, traffic flow data also
exhibits a clear daily and weekly periodicity, generally attributed to regular human mobility.
Therefore, models that consider all three types of temporal factors consistently tend to
demonstrate superior performance. In this regard, we develop three types of periodicity
data, namely, closeness, period, and trend, to reveal the periodicity characteristics of traffic
flow data. Figure 6 illustrates these periodicity data types.
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For the missing values of period and trend, we fill them with the data of time slot t− 1.
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4.3. External Data Dependence

In addition to spatial and temporal factors, various external factors may influence
traffic patterns, such as weather, holidays, and temporal location. To investigate the impact
of external factors on traffic flow, we visualized the inflows and outflows at coordinates
(11, 23) in the TaxiBJ dataset during February 2016, as shown in Figure 7a. Clearly, the sig-
nificant decrease in traffic flow during holidays confirms our hypothesis. Additionally, we
created a flow heatmap at a specific time on 13 February 2016, as depicted in Figure 7b. The
clustering characteristics of high flow areas indicate that neighboring regions significantly
affect traffic flow.
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Figure 7. (a) Visualization inflow and outflow in February 2016; (b) flow heatmap on 13 February 2016.

We use isHt to indicate whether time t is a holiday, and isWt to indicate whether time
t is a weekend. Specifically, when the corresponding time is a holiday, isHt is set to 1,
otherwise 0, as is isWt.

Simultaneously, weather conditions may have a direct impact on human mobility. As
the TaxiBJ dataset contains 17 types of weather data, we map them to numbers 0 to 16 and
denote the weather at time t as Weathert. Note that the Bike NYC dataset doesn’t have
weather data.

In addition, we observe that the time of traffic peak is usually fixed in a day and
the traffic flow is closely related to the position of the sampled timestamp. Based on this
pattern, we use timet to represent the timestamp position of time t. For the TaxiBJ dataset,
there are 48 samples per day and the value of timet ranges from 1 to 48. For the Bike NYC
dataset, there are 24 samples per day and the value of timet ranges from 1 to 24.

5. Our Proposed Approach

Throughout this section, the structure of our proposed SCDFNN model and its learning
process are described in detail. The whole framework of the SCDFNN model is shown in
Figure 8. Taking the task of predicting the inflow xin

i,j,n as an example, we describe each
module in the framework in detail in Sections 5.1–5.3. For the task that predicts the outflow
xout

i,j,n, we swap the inflow and outflow, as below.
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5.1. Spatial-Temporal Data Module

The integral framework of the Spatial-temporal data module is shown in Figure 9. We
take the neighbor1out

i,j,t and neighbor2out
i,j,t of the past s time slots for time n to represent the

data spatial-temporal dependence, where t = τ − s, . . . , τ − 1. We feed neighbor1out
i,j,t to the

first s− 1 FNNs with a sliding window of size 2, and neighbor2out
i,j,t to the following s− 1

FNNs. Meanwhile, we feed external data that includes isHτ , isWτ , timeτ and Weatherτ−1 to
each FNN. For the BikeNYC dataset, the external data only includes isHτ , isWτ and timeτ .
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5.2. Periodic Data Module

The integral framework of the Periodic data module is shown in Figure 10, which
combines three useful temporal factors named closeness data, period data, and trend data,
respectively. For the closeness data, which includes the inflow data of the recent h time
intervals, similar to the spatial dependence module, we use a sliding window of size 2 to
map these c inflow data into h− 1 FNNs.

Period data includes inflow data of p time slots and the sampling interval is Tp.
Specifically, Tp is 48 (or 24 in BikeNYC dataset) which is equivalent to one day. Similarly,
we map the p inflow data into p− 1 FNNs with a sliding window of size 2.

Similarly to periodic data, trend data includes inflow data of q time slots with the
sampling interval Tq, which is set as one week. We also utilize a sliding window of size 2 to
map these q inflow data into q− 1 FNNs. It turns out that we achieve the best result when
p and q are set to 1, and the training process is the fastest too.
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Additionally, we also add external data to each FNN in this module, including all
the external data at time n, that is: isHτ , isWτ , timeτ , and Weatherτ−1. Meanwhile,
we add both isHτ−p∗Tp , . . . , isHτ−Tp and isWτ−p∗Tp , . . . , isWτ−Tp to the period data, and
isHτ−q∗Tq , . . . , isHτ−Tq to the trend data.

5.3. Hierarchical Fuzzy System

By leveraging the aforementioned two modules, we can obtain the first layer of g1
FNN, where g1 = 2s + h + p + q− 5. We train each FNN with the modified Wang–Mendel
method using the data pair [input; y] of the training set, where input is the input of each
FNN as described before, y = xin

i,j,τ . During training, we feed the training set data to the
first FNN layer, and the obtained output is then used as the input of the second FNN layer.
A sliding window of size 3 is used to map the first FNN layer to the second layer FNN. For
the second FNN layer, we also use y as the label to train all the FNNs with the modified
Wang–Mendel method. We will repeat this procedure, building the FNNs layer by layer
from the bottom up, until the entire SCDFNN is constructed. We take the output of the
final FNN in the last layer as the output of the entire model ŷ.

6. Experimental Design and Results

The experimental section of this paper begins by outlining the experimental setup
and then presents the results of the experiments in a comprehensive manner. The main
objective is to answer the following research questions:

Q1. Can the interpretable traffic flow prediction model SCDFNN achieve prediction
accuracy comparable to that of well-performed deep neural network models?

Q2. Did each component of the SCDFNN model contribute positively to the prediction
performance?

Q3. What are the advantages of using SCDFNN compared to deep neural network models?

6.1. Experiment Settings

In this subsection, we will describe the dataset used, as well as the baselines and
evaluation metrics employed.

6.1.1. Data Set

To ensure the reliability of our experiments, we employ two widely used and publicly
available datasets, namely, TaxiBJ and BikeNYC.

The TaxiBJ dataset consists of Beijing taxi GPS data, weather data, and holiday data.
It covers four time periods: 1 July 2013 to 30 October 2013, 1 March 2014 to 30 June 2014,
1 March 2015 to 30 June 2015, and 1 November 2015 to 10 April 2016. The dataset comprises
22,459 samples, and the time interval between each sample is 30 min. Each sample is
accompanied by its corresponding weather condition, which ranges from 0 to 16. We rank
the weather conditions based on their impact on traffic, with higher values indicating
greater impact. For instance, Sunny is ranked 0, while Dusty is ranked 16. The dataset also
includes holiday information for 41 days. We mark the samples corresponding to these
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41 days as holiday samples and set the value of isHn to 1. For this dataset, we use the most
recent 4 weeks of data as test data and all remaining data as training data.

On the other hand, the BikeNYC dataset comprises trip records and holiday informa-
tion for bicycles in New York. Each trip record contains details such as trip duration, origin
and destination IDs, and origin and destination time. It only covers one time span of 1 April
2014 to 30 September 2014, and the time interval is one hour. It consists of 4392 available
time slots. Although the dataset does not include weather information, it provides holiday
data for 20 days, which we label as holiday samples. For this dataset, we choose the last
10 days as test data and all other data as training data.

Table 2 summarizes the essential details of both datasets, such as data type, location,
time period, and time interval.

Table 2. Dataset used.

Dataset TaxiBJ BikeNYC

Data type Taxi GPS Bike rental
Location Beijing New York

Time span 7/1/2013–4/10/2016 4/1/2014–9/30/2014
Time interval 30 min 1 h
Gird map size (32, 32) (16, 8)

Average sampling rate (s) ~60 \
Number of taxis/bikes 34,000+ 6800+
Available time interval 22,459 4392

Holiday 41 20
Weather conditions 17 types \

6.1.2. Baselines

In order to demonstrate the superiority of the proposed method in this paper, we compare
SCDFNN with 12 widely-used baselines commonly applied in traffic flow prediction problems.

1. ARIMA: The Autoregressive Integrated Moving Average model is a well-known
model for analyzing and predicting time series data, and is often used for traffic
flow forecasting.

2. SARIMA: The Seasonal Autoregressive Integrated Moving Average model takes into
account seasonal properties of data, and is based on the ARIMA model, enabling it to
learn tightness and cyclical dependencies outside of ARIMA.

3. VAR: The Vector Autoregressive Model is an advanced spatiotemporal model that cap-
tures pairwise relationships between all streams, but it is computationally expensive
due to the large number of parameters it uses.

4. ST-ANN: This model extracts spatial and temporal information by taking 8 nearby
spatial values and 8 previous time steps, respectively, and feeds the resulting spa-
tiotemporal features into an artificial neural network.

5. DeepST: This model models spatiotemporal data as temporal compactness, cycles,
and seasonal trends using a deep neural network-based model that utilizes convolu-
tional layers.

6. ST-ResNet: The Residual network is based on deep convolution, using a traditional
square convolution kernel. It is used to capture temporal and spatial dependencies in
spatiotemporal data.

7. AttoConvLSTM: This model employs an encoder-decoder framework based on con-
volutional and attention LSTM to capture spatiotemporal features.

8. DMVST-Net: This model is a spatiotemporal neural network that predicts taxi de-
mand by integrating information from three views, namely, temporal view, spatial
view and semantic view.

9. DCRNN: DCRNN is a diffuse convolutional recurrent neural network that uses
bidirectional graph random walks to model spatial dependencies and recurrent neural
networks to capture temporal dynamics.
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10. DST-ICRL: This model uses LSTM units and an irregular convolutional residential
network to learn spatiotemporal features.

11. ACFM: The ACFM model is an attentive-LSTM-based spatiotemporal data model.
12. ASTIR: ASTIR combines an attention module, a convolution-LSTM layer, and the

Inception-ResNet structure.

6.1.3. Evaluation Metrics

We chose RMSE (Root Mean Squared Error) and MAE (Mean Absolute Error) to
evaluate our model, which are commonly used in literature.

RMSE =

√
1

Ntest
∑Ntest

i=1 (ŷi − yi)
2. (15)

MAE =
1

Ntest
∑Ntest

i=1 |ŷi − yi| (16)

where ŷi is the predicted value of the model, yi is the ground truth value, and Ntest is the
number of test-set samples.

6.2. Experimental Results

This section presents the extensive experimental results of the SCDFNN on the TaxiBJ
and BikeNYC datasets to address the three research questions raised earlier. First, we
comparatively analyzed the performance of SCDFNN and other baselines using both
datasets. We present the parameter settings used for the BikeNYC dataset in Table 3.
Next, we conducted ablation experiments and anti-noise experiments on SCDFNN to
demonstrate its excellent anti-noise capability. Finally, we analyzed the complexity of the
improved Wang–Mendel method in comparison to the original Wang–Mendel method.

Table 3. Parameters settings of SCDFNN on the BikeNYC dataset.

Name Significance Value

mPeriodic The initial number of divisions of Periodic Data Modules 38
mST Same as above, the Spatial-temporal data module 38

misW , misH Same as above, “is weekend” and “is holiday” 2
mtime Same as the above, the timestamp 20

mL, L ≥ 2 Number of initialization divisions above the second layer 28
m′ Minimum initial score for pruning 5
d Pruning Threshold 0.8
h Length of closeness data 8

p, q Length of period data or trend data 1
s Length of space data 2

6.2.1. Comparison Analysis (Q1)

We compared the SCDFNN model proposed in this paper with baseline models, and
the results are shown in Tables 4 and 5. The following results can be observed therein:

• Traditional regression-based models, such as VAR, ARIMA and SARMA, do not
perform as well as other models due to the following reasons: (1) VAR is a shallow
model and has lower model capacity than deep neural networks. It also lacks the ability
to capture external information. (2) ARIMA and SARMA were designed for time series
prediction, and are not optimized for traffic flow, thus they lack the mechanism to use
spatial dependency and external information.

• Among the deep neural network models, DCRNN, AFCM and ASTIR perform better
than DeepST and ST ResNet because they integrate more components, similarly
to AttoConvLSTM and AFCM, which utilize convolution and attention LSTM, and
ASTIR, which leverages Inception-ResNet, Convolution-LSTM, and attention module,
which enable them to capture more information from the data. Thus, it is common
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to stack modules or layers to achieve good performance in deep neural networks.
However, this also makes the model more complex and difficult to interpret.

• SCDFNN performs better than deep neural networks on the BikeNYC dataset, but
its performance on the TaxiBJ dataset is not as expected. This could be due to taxis
being faster than bicycles and using overpasses, making it challenging for SCDFNN
to capture spatial information on the TaxiBJ dataset. Improving the design of space
modules may bring better results for SCDFNN.

• The SCDFNN model outperforms the deep neural network models (i.e., ACFM and
ASTIR) on the BikeNYC dataset, indicating its superiority in achieving sufficient accu-
racy and interpretability. Additionally, utilizing the modified Wang–Mendel method
to train the SCDFNN model yields better performance than using the traditional
Wang–Mendel method. As discussed later, the modified Wang–Mendel method is
significantly faster than the traditional approach.

Table 4. Comparison results of different methods on TaxiBJ datasets.

Method
TaxiBJ

RMSE MAE

ARIMA 22.78 7.25
SARIMA 26.88 8.51

VAR 22.88 7.47
ST-ANN 19.57 6.23
DeepST 18.18 6.21

ST-ResNet 16.69 5.41
AttoConvLSTM 17.41 6.04

DMVST-Net 15.57 5.28
DCRNN 15.04 5.10
ACFM 15.4 -

SCDFNN (WM) 17.24 11.14
SCDFNN (modified WM) 16.82 10.23

Table 5. Comparison results of different methods on BikeNYC datasets.

Method
BikeNYC

RMSE MAE

ARIMA 10.07 6.41
SARIMA 10.56 5.44

VAR 9.92 6.33
DeepST 7.43 4.25

ST-ResNet 6.33 4.03
AttoConvLSTM 7.09 4.19

DMVST-Net 6.01 3.95
DST-ICRL 5.93 3.11

ACFM 5.64 -
ASTIR 4.18 -

SCDFNN(WM) 3.78 2.23
SCDFNN (modified WM) 3.44 1.91

6.2.2. Ablation Experiment (Q2)

In order to evaluate the significance of each component of the model, we conducted
ablation experiments, and present the resulting comparisons in Table 6. Specifically, we
replaced the removed data with 0 values to ensure that the model’s overall structure
remained unaffected.
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Table 6. Ablation experiment results.

SCDFNN (Modified WM)
TaxiBJ BikeNYC

RMSE MAE RMSE MAE

No closeness 20.62 11.94 4.10 2.95
No period 17.12 10.69 3.45 1.92
No trend 17.46 10.74 3.44 1.91

No Spatial 17.79 10.80 3.50 1.94
No external 20.53 12.21 3.90 2.21

Complete 16.82 10.23 3.44 1.91

Comparing the complete SCDFNN with the “no external” and “no Spatial” models, we
observe that external and spatial data contribute to the performance gains of the full model.
Furthermore, the “no closeness” and “no external” models significantly underperform the
complete SCDFNN, suggesting that the model extracts the most information from adjacent
and external data.

Meanwhile, the “no period,” “no trend,” and “no spatial” models demonstrate slightly
worse performance than the complete SCDFNN. This could be attributed to either:
(1) less effective information being contained within these data; or (2) SCDFNN’s inability
to effectively extract information from these datasets. Given other deep neural network
models’ emphasis on spatial information, the latter is more probable.

6.2.3. Anti-Noise Experiment (Q3)

In order to assess the noise resistance of our model, we conducted experiments using
Gaussian and Poisson perturbation on the TaxiBJ test set at varying noise intensities. The
experimental results, shown in Figure 11, demonstrate the model’s robustness to noise.
Notably, we only added noise to the data of the spatial-temporal module and periodic
module, while the external factors were kept accurate.
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Figure 11. RMSE of TaxiBJ dataset under different intensities of Gaussian perturbation.

The x-axis of Figure 11 represents the standard deviation of the Gaussian and Poisson
perturbations, with larger values indicating stronger noise interference, and 0 representing
no noise. We observed that the model’s accuracy remained stable under various intensities
of noise. Even when adding Gaussian perturbation or Poisson perturbation with a standard
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deviation of 10, the model’s RMSE only increased by 3.27% or 2.97%. These results confirm
the model’s excellent anti-noise ability, which is due to the combination of multiple modules
and fuzzy rules.

6.2.4. Training Time Comparison (Q3)

A comparison of the training time and root mean square error (RMSE) for the two
Wang–Mendel methods, learned under different initial affiliation functions of the spatial-
temporal module, is shown in Figure 12. It is apparent that the training time for the
improved Wang–Mendel method is significantly reduced while maintaining accuracy
comparable to that of the original Wang–Mendel method.
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where (𝑗1
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Figure 12. RMSE and training time of the model given different m.

As the value of m increases, the RMSE obtained by both methods is similar, with
minimal change. However, the training time of the original Wang–Mendel method increases
significantly. Specifically, when m = 10, the training time of the ordinary Wang–Mendel
method is only 1.375 times that of the modified Wang–Mendel distribution. As m increases
to 20 and 30, the ratio of training time further increases to 2.175 and 3.154, respectively.
This finding demonstrates that the modified Wang–Mendel method effectively combines
the membership function and prunes the fuzzy rules, resulting in a significant reduction in
training time.

6.3. Interpretability Analysis (Q3)

Compared with ordinary neural networks, the biggest advantage of our model is its
high interpretability. This interpretability is mainly reflected in two aspects: on the one
hand, the rule parameters cj1,j2,...,jn of the model have clear mathematical meanings, and on
the other hand, the model can easily track and correct erroneous predictions. Below, we
will elaborate on the interpretability of SCDFNN from these two aspects, respectively.

Firstly, according to Equations (2), (11) and (12), it can be found that the rule parameter
cj1,j2,...,jn of rule (j1, j2, . . . , jn) in the model is designed as the weighted average of the
output y of the samples falling on this rule, and the weight is equal to the activation
strength f . A sample falling on a rule refers to the rule whose corresponding activation
strength is the highest among all the rules for the sample. If a rule is not triggered by
any sample, the extrapolation scheme in step seven of Section 3.2 is used to determine the
rule parameter cj1,j2,...,jn . Therefore, cj1,j2,...,jn can be regarded as an estimate of the expected
output y of the fuzzy IF-THEN rule represented by (j1, j2, . . . , jn). This reveals the clear
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mathematical meaning of the rule parameters cj1,j2,...,jn , which is beneficial for researchers
in better understanding the underlying principles of the model.

In addition, the interpretability of SCDFNN is also reflected in its ability to easily
track and correct erroneous predictions, which is a capacity lacking in “black box” models.
Specifically, for any input sample, each FNN will activate several rules, and we can easily
identify the most influential rules among them, as shown in Figure 13. We can also represent
them in IF-THEN form to help humans understand the model, as shown in Table 7. For the
rules activated by erroneous samples, we can use the corresponding correct output data to
update all rule parameters c according to the following equation to correct the model:

cj∗1 ,j∗2 ,...,j∗n
new = α f j∗1 ,j∗2 ,...,j∗n yright +

(
1− α f j∗1 ,j∗2 ,...,j∗n

)
cj∗1 ,j∗2 ,...,j∗n

old , (17)

where
(

j∗1 , j∗2 , . . . , j∗n
)

is the most influential rule triggered by the sample, cj∗1 ,j∗2 ,...,j∗n
old is the

original rule parameter, f j∗1 ,j∗2 ,...,j∗n is the activation strength of the sample on this rule, yright
is the correct output, α is the update weight, 0 < α < 1, the larger the value of α, the greater
the updating force, and cnew is the updated rule parameter.
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Table 7. IF-THEN rule triggered by an input of TaxiBJ dataset in the first layer of SCDFNN.

Number Meaning of Rule

1
IF neighbor1out

6,5,τ−2 is A12
1 and neighbor1out

6,5,τ−1 is A11
2 and today is not a holiday, and it′s a weekday

and timeτ is A8
5 and Weatherτ−1 is A0

6, THEN y1
1 is c12,11,0,1,8,0

2
IF neighbor2out

6,5,τ−2 is A11
7 and neighbor2out

6,5,τ−1 is A14
8 and today is not a holiday, and it′s a weekday

and timeτ is A8
11 and Weatherτ−1 is A0

12, THEN y1
2 is c11,14,0,1,8,0

3
IF Xin

6,5, τ−4 is A12
13 and Xin

6,5, τ−3 is A12
14 and today is not a holiday, and it′s a weekday

and timeτ is A8
17 and Weatherτ−1 is A0

18, THEN y1
3 is c12,12,0,1,8,0

4
IF Xin

6,5, τ−3 is A12
19 and Xin

6,5, τ−2 is A11
20 and today is not a holiday, and it′s a weekday

and timeτ is A8
23 and Weatherτ−1 is A0

24, THEN y1
4 is c12,11,0,1,8,0

5
IF Xin

6,5, τ−2 is A11
25 and Xin

6,5, τ−1 is A11
26 and today is not a holiday, and it′s a weekday

and timeτ is A8
29 and Weatherτ−1 is A0

30, THEN y1
5 is c11,11,0,1,8,0

6
IF Xin

6,5, τ−48 is A8
31 and one day ago is not a holiday, and it′s a weekday and today is not a holiday,

and it′s a weekday and timeτ is A8
36 and Weatherτ−1 is A0

37, THEN y1
6 is c8,0,0,1,1,8,0

7
IF Xin

6,5, τ−48∗7 is A9
38 and a week ago was not a holiday and today is not a holiday, and it′s a weekday

and timeτ is A8
42 and Weatherτ−1 is A0

43, THEN y1
7 is c9,0,0,1,8,0
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7. Conclusions

We have proposed a self-built deep fuzzy neural network model, named SCDFNN
and based on fuzzy theory, to address the lack of interpretability in models in the intel-
ligent transportation field. Our model is more interpretable than are traditional deep
neural network models, which provides clearer and more intuitive prediction results for
intelligent transportation systems. This can better assist the government with congestion
prediction, accident prediction and road network planning. Additionally, the interpretable
SCDFNN model can help the public to better understand and accept the decisions made
by policymakers and government departments. We evaluated our proposed model using
two publicly-available and widely-used datasets, and the results showed that our model
outperformed other existing methods on the BikeNYC dataset.

We also improved the Wang–Mendel method by incorporating pruning ideas and
utilized the modified Wang–Mendel method to train our model. The experiment demon-
strated that our modified method’s training process was over twice as fast as the original,
while maintaining accuracy. Additionally, we performed anti-noise experiments, and the
results revealed that our model exhibited excellent anti-noise ability. Finally, we have
explained the model’s mathematical significance and its capability to track precise errors.

However, our SCDFNN model exhibited weak spatial information extraction capabili-
ties, which hindered its performance on the TaxiBJ dataset. Additionally, the model only
used triangular membership functions, which limited its potential. Future research might
explore combining the spatial information extraction capabilities of the GCN model with
the SCDFNN model, or exploring different membership function forms.
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