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Abstract: Infectious disease-related illness has always posed a concern on a global scale. Each
year, pneumonia (viral and bacterial pneumonia), tuberculosis (TB), COVID-19, and lung opacity
(LO) cause millions of deaths because they all affect the lungs. Early detection and diagnosis can
help create chances for better care in all circumstances. Numerous tests, including molecular tests
(RT-PCR), complete blood count (CBC) tests, Monteux tuberculin skin tests (TST), and ultrasounds,
are used to detect and classify these diseases. However, these tests take a lot of time, have a 20%
mistake rate, and are 80% sensitive. So, with the aid of a doctor, radiographic tests such as computed
tomography (CT) and chest radiograph images (CRIs) are used to detect lung disorders. With CRIs or
CT-scan images, there is a danger that the features of various lung diseases’ diagnoses will overlap.
The automation of such a method is necessary to correctly classify diseases using CRIs. The key
motivation behind the study was that there is no method for identifying and classifying these (LO,
pneumonia, VP, BP, TB, COVID-19) lung diseases. In this paper, the DeepLungNet deep learning (DL)
model is proposed, which comprises 20 learnable layers, i.e., 18 convolution (ConV) layers and 2
fully connected (FC) layers. The architecture uses the Leaky ReLU (LReLU) activation function, a fire
module, a maximum pooling layer, shortcut connections, a batch normalization (BN) operation, and
group convolution layers, making it a novel lung diseases classification framework. This is a useful
DL-based method for classifying lung disorders, and we tested the effectiveness of the suggested
framework on two datasets with a variety of images from different datasets. We have performed two
experiments: a five-class classification (TB, pneumonia, COVID-19, LO, and normal) and a six-class
classification (VP, BP, COVID-19, normal, TB, and LO). The suggested framework’s average accuracy
for classifying lung diseases into TB, pneumonia, COVID-19, LO, and normal using CRIs was an
impressive 97.47%. We have verified the performance of our framework on a different publicly
accessible database of images from the agriculture sector in order to further assess its performance
and validate its generalizability. This study offers an efficient and automated method for classifying
lung diseases that aids in the early detection of lung disease. This strategy significantly improves
patient survival, possible treatments, and limits the transmission of infectious illnesses throughout
society.

Keywords: COVID-19; pneumonia; tuberculosis; DeepLunNet deep learning

1. Introduction

Each year, thousands of people suffer lung diseases and eventually die due to their
illnesses; some of these diseases include lung opacity (LO), pneumonia, COVID-19, tuber-
culosis (TB), bacterial pneumonia (BP), and viral pneumonia (VP) [1]. Every year, the ratio
is anticipated to rise [2]. According to the WHO, the three diseases that kill the most people
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worldwide are COVID-19, pneumonia, and TB [3]. There are 450 million afflicted individu-
als. Additionally, there are more cases involving minors (657 out of 1000). Furthermore, the
rapid development of COVID-19 patients has put massive stress on the worldwide health
care structure. COVID-19 has been a terrible pandemic. TB, LO, and pneumonia both pose
a serious risk of death [4,5]. Therefore, the prompt and correct diagnosis of these disorders
is essential for providing effective care and sparing lives [6,7].

An LO on chest radiographs, which is frequently used by radiologists, basically refers
to a white area of an unknown significance. Any object that prevents CRIs from passing
through will appear white on a CRI because the lungs are typically dark on a CRI. Therefore,
among other things, a white area among the normally black lungs could represent cancer,
an infection, hemorrhage, fluid, or a foreign substance. The radiologist who reads the
CRI makes an effort to provide an accurate and specific diagnosis using the medical data
available, such as coughing and temperature, previous investigations, and laboratory
results. So, if a patient visits the emergency room with a cough and fever, pneumonia will
probably be found as an opacity on a CRI. An opacity that is more rounded in a long-term
smoker is much more probable to be cancerous. White opacities in both lungs of a person
with heart failure are most likely caused by edema or fluid in the lungs.

Globally, pneumonia is thought to be the main factor of child fatalities. A lung
infection known as pneumonia can be brought on by either bacteria or viruses. Fortunately,
antibiotics and antiviral medications work well in the treatment of this bacterial or viral
infectious condition. However, the quicker identification of viral or BP and the subsequent
administration of the appropriate medication can considerably aid in preventing a patient’s
health from deteriorating, which ultimately results in mortality [8]. Different kinds of
pneumonia have been identified using CRIs, CT scans, and complete blood count (CBC)
tests. Another kind of pneumonia affected by a ronavirus-2 is COVID-19. COVID-19,
which now ranks as the largest pandemic in history, causes acute respiratory infections
in humans. The virus initially infected people in China (Wuhan) in December 2019 [9].
Due to its rapid spread, COVID-19 is fatal to people. According to the WHO, there have
been 761,402,282 confirmed COVID-19 cases reported globally to date, with 6,887,000
fatalities [10]. According to the WHO, there have been reported instances of COVID-19
in America, Europe, Africa, and Southeast Asia, respectively, of 268,252,496, 184,161,028,
60,719,433 and 9,431,508 cases. The Pakistani government reports that 1,518,083 COVID-
19 cases have been documented there, with 30,304 deaths and 1,469,930 recoveries [11].
COVID-19 is typically detected with an antibody and PCR (polymerase chain reaction) test
all over the world. These COVID-19 identification techniques are laborious and inefficient,
and they take a while to receive results. So, with the aid of a doctor, chest radiology
procedures such as CT scans and CRIs are performed to obtain outcomes more quickly. The
signs of both illnesses include sneezing, coughing, fever, shortness of breath, and fatigue.

Furthermore, millions of individuals lose their lives to TB each year because it is
a serious infection that primarily attacks the lungs. With timely detection and proper
classification from other conditions with comparable radiologic features, TB can be treated
to lessen the disease burden. With a worldwide death amount of approximately 1.8 million
individuals and 10.4 million additional cases of human immunodeficiency virus (HIV)
every year, the second most frequent reason for infectious illness deaths is tuberculosis,
according to the WHO. Many underdeveloped countries are witnessing an increase in TB
cases. Although both women and men can be affected, it seems to affect men more often.
A lengthy course of antibiotic therapy and treatment is provided to patients with active
TB [12]. Chest radiography has been recommended by the WHO and other organizations
as an efficient approach for effective case discovery and existence examinations for the
identification of TB.

All of the aforementioned illnesses share indications such as cough, sneezing, tem-
perature, shortness of breath, and exhaustion. These lung disorders are categorized and
identified utilizing CBC tests, RT-PCR, ultrasounds, and TST tests. These tests might take
longer and still miss 20% of cases because the RT-PCR test has only an 80% sensitivity. After



Electronics 2023, 12, 1860 3 of 25

24 h, a CT scan and a CRI were conducted in order to effectively control the false negatives
in both asymptomatic and symptomatic individuals. A big issue with CT scans and chest
radiographs, though, is the potential for COVID-19, pneumonia, LO, and TB diagnoses
to be made at the same time. Moreover, manual tests are time-consuming and costly. To
solve this, we require an efficient method that quickly and accurately categorizes CRIs
employing trained convolutional neural networks (CNNs). Because they are less expensive,
offer clean air sacs, and process more quickly than CT scans, CRIs are utilized frequently.

According to recent studies, DL-based artificial intelligence (AI) approaches can accu-
rately diagnose a variety of disorders using CRIs with a level of precision comparable to
that of experienced radiologists [13,14]. In resource-constrained situations when qualified
radiologists are not easily accessible, these computer-aided detection (CAD) systems can
increase practitioners’ CRIs inter-reader variability and interpretation accuracy [15]. Similar
to this, it has been shown that CAD approaches based on DL or conventional machine
learning (ML), which might be utilized in clinical settings, can reliably categorize COVID-19
and other lung infections on chest radiographs [16,17]. A lot of novel DL architectures are
created by researchers to identify different diseases using CRIs. For identifying COVID-19
using CRIs, the authors of [18] presented a novel COVID-Net DL framework and a COVIDx
(easily accessible COVID-19 dataset). CRIs can be categorized by COVID-Net into any of
the three categories. The framework consisted of two phases of projections, expansions,
depthwise representations, and extensions, all relying on lightweight residual projection–
expansion–projection–extension process models. The innovative TB-Net, a self-attention
DL network for TB detection employing CRIs, was developed by the researchers in [19].
A highly specialized DL network containing attention condensers was called the TB-Net.
They also tested TB-Net’s decision-making abilities using an explainability-driven effec-
tiveness verification process. In [20], the authors created a COVID-CXDNetV2 model for
pneumonia and COVID-19 identification using CRIs. The model was based on ResNets and
YOLOv2 architectures. Furthermore, in order to select the inputs (images or clinical data)
and objectives of the system that could help obtain a trustworthy DL-based tool for difficul-
ties related to COVID-19, the most pertinent and current medical studies and articles were
examined in [21]. However, DL approaches use unstructured data in contrast to traditional
ML methods, robotically extract robust traits, and generate reliable outcomes. Here are
some advantages of DL over ML and other categorization techniques. This might lead to
an increased accuracy with a bigger dataset. It will be quick and effective to evaluate and
classify. It is not necessary to manually choose and extract features. This will be handled
for you by a CNN. An unstructured, unclassified dataset is utilized for this procedure. DL
makes it simple to build frameworks that create more precise outcomes in identifying and
predicting particular lung diseases using chest radiographs.

According to our understanding, there are some drawbacks to current lung disease
classification research: most (majority) previous studies utilized datasets with fewer images,
(small datasets) or used the images of one dataset, which limits the generalization ability
of the models. Less training data are available, the DL-based models are not completely
generalizable, and the chances of overfitting are high. The vast majority of research
uses transfer learning (TL) and conventional ML methods to detect lung diseases. Yet,
the major issue with conventional ML (such support vector machines, or SVMs) is the
extended training time for large datasets. The most significant restrictions in TL systems,
however, are overfitting and negative transfer. One of its drawbacks is that pre-trained
classification systems are frequently honed using the ImageNet database, which contains
images unrelated to medical imagery. Moreover, pre-trained TL models require a lot of
computing effort. It is still difficult to set up an effective CADS to promptly and effectively
diagnose lung illness using chest radiographs. Furthermore, numerous researchers have
suggested categorizing COVID-19, different kinds of pneumonia, TB, and standard CRIs.
To the best of our knowledge, there is no single model and single dataset for lung disease
classification into COVID-19, LO, pneumonia (or VP and BP), TB, and images of healthy
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individuals. This motivates the development of an automatic and reliable model for the
classification of various lung illnesses.

The DeepLungNet DL model is suggested as a solution to these constraints. It makes
use of feature extraction that is based on filters, which can aid in obtaining an excellent
classification performance. DeepLungNet extract features hierarchically and is capable of
producing end-to-end learning, in contrast to traditional methods for feature extraction and
selection that demand specialized knowledge. The convolutional layer and Leaky ReLU
(LReLU) activation functions utilized to create the proposed framework extract the utmost
important and in-depth features from the CRIs. The framework can minimize a range of
weight characteristics by using a max-pooling procedure. We added batch normalization
(BN) operations, convolutional layers, and group convolutional layers, a squeeze ConV
layer with numerous 1 × 1-filter layers, and a combination of 1 × 1 and 3 × 3 ConV
layers (expand layer) to make the suggested model a novel lung disease classification
technique. Our approach is cost-effective, inexpensive, and less time consuming compared
to traditional lung disease detection and classification approaches. Additionally, using
the common Kaggle datasets that are open to the public, the proposed architecture was
verified. Finally, the performance of our framework was compared with hybrid approaches
(DL-based model plus SVM). To further show the model’s usefulness, the suggested model
was evaluated on a different publicly accessible dataset from the agriculture domain.
The proposed structure works admirably in test accuracy for lung disease classification,
according to the results. The following is a summary of the study’s primary contributions:

• For the purpose of lung disease classification utilizing chest radiographs, an effective
DeepLungNet model is proposed.

• Five-class classifications are made of CRIs into TB, Pneumonia, COVID-19, LO, and
normal.

• Six-class classifications are made of CRIs into VP, BP, COVID-19, normal, TB, and LO.
• To improve the model’s performance, demonstrate the model’s generalizability, and

prevent the overfitting issue, data augmentation is used.
• To determine the effectiveness of the DeepLungNet framework, we used hybrid

methodologies to assess the classification performance of the presented approach on
the similar experimental setting and dataset. For this goal, we employed a range of
categorization criteria, including precision, f1-score, recall, and accuracy.

• The proposed framework is validated on another publicly accessible dataset from the
agriculture domain to prove the generalization ability and usefulness of the frame-
work.

The remainder of this article is structured as follows: Section 2 provides details about
related work, Section 3 considers our used method, Section 4 describes the experiments
and model’s results, Section 5 hosts a discussion, and conclusions are made in Section 6.

2. Related Work

In the majority of nations, CRIs are routinely employed as a feasible choice for the
identification of COVID-19 and other lung diseases. However, detecting COVID-19 is a
challenging method that requires the clinical imaging of individuals. Lung cancer (LC)
is one of the main reasons why people die. A prompt diagnosis may increase human
survival. Image processing and ML have demonstrated significant potential for the analysis
of pulmonary illnesses. To detect and categorize lung disorders, an issue that is still being
studied and deserves more attention, a number of hybrid, ML, and DL methods have been
published in the past. In-depth analyses of the DL approaches for LO, TB, COVID-19, VP,
pneumonia, and BP are included in this section.

The authors of [22] used SVM and multi-level thresholding for COVID-19 detection
or identification. The authors enhanced the contrast of input CRI by employing a median
filter after examining the patient’s CRIs. After that, a multi-level picture segmentation
threshold is applied utilizing the Otsu objective function. After that the SVM was employed
to distinguish between lungs with an infection and lungs without an infection. In [23], the
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author presented a method based on autoregressive integrated moving average and least-
squares SVM (LS-SVM) to identify or detect COVID-19 (ARIMA). The five countries with
the maximum number of COVID-19 patients that have been confirmed are Italy, the United
States, Spain, France, and the United Kingdom. The method used the verified cases as an
input to forecast the disease’s transmission one month in advance. For accuracy, LS-SVM
surpassed ARIMA. A novel COVID-19 detection procedure built on a self-organization map
and locality-weighted learning was proposed by the authors in [24]. (LWL-SOM). They
utilized the SOM technique to gather the CRIs images into clusters on the basis of the same
features in order to differentiate between healthy and COVID-19 patients. Furthermore,
the LWL technique was utilized to develop a framework for recognizing COVID-19. The
recommended framework enhanced the performance results for the correlation coefficients
between normal and COVID-19 and pneumonia and COVID-19 cases. The present ML-
based techniques that utilize AI assessment measures to differentiate between normal and
COVID-19 patients outperform the suggested framework.

Unfortunately, standard ML approaches underperform DL approaches since they
significantly trust human feature extraction and precise feature selection. DL approaches
extract more robust deep features, make use of unstructured data, and make more precise
outcomes compared to traditional ML algorithms. Nowadays, it has become standard
procedure to automatically extract classification features using DL algorithms. Classifiers
built on DL can be used to fully and automatically detect COVID-19 from CRIs.

For the categorization of CRIs, in [25], the authors proposed a DL framework with
nine layers. The two-class classification of three illness categories, i.e., TB, pneumonia,
and COVID-19, was accomplished by the means of six diverse datasets obtained from
publicly accessible CRIs employing a DL framework that was completely trained from
scratch. In [26], the authors trained a DL model with 6587 CRIs using stochastic gradient
descent. The model successfully classified CRIs into four classes (normal, TB, pneumonia,
and COVID-19) using 128 × 128 CRIs. In [27], the authors developed TL with VGG16 for
TB diagnosis on CRIs. They refined the model using 1324 CRIs, and it produced satisfactory
classification results for TB and healthy CXR images. In [28], the authors used a pre-trained
DCNN-based Inception-V3 framework with TL. The collected dataset had 3532 CRIs in
total, each of which were improved and scaled to 299 × 299. However, the study did not
categorize TB in CRIs. In order to categorize CRIs, the authors of [29] combined VGG16
and attention mechanism. The techniques used to classify CRIs into COVID-19, normal, no
findings, BP, and VP achieved a good classification performance on three CRI datasets.

Similar to this, in [30], the authors compared seven different popular DL neural
network topologies. The small dataset employed in the study consisted of 50 CRIs and
25 CRIs from each of the COVID-19 and healthy patients. Only the classifier underwent
training utilizing radiography; all other models underwent pre-training using the ImageNet
database, which comprises about 14 million images of diverse types and is a broad image
dataset. The best-performing designs in their tests were the VGG19. A similar approach
was used to offer a modification of the VGG model that incorporates the convolutional
COVID-19 block in [31]. The framework was assessed utilizing a diverse dataset consisting
of 1887 images from 2 distinct publicly accessible datasets. Three categories of photographs
were created: normal (654), pneumonia (864), and COVID-19 (300 images). In [32], many
chest x-ray photographs from diverse sources were combined to form one of the main
freely accessible collections of CRIs. Last, COVID-CXNet was created by the authors
of [32] utilizing the TL approach and the well-known CheXNet model. This reliable model
was able to recognize new COVID-19 pneumonia founded on important and relevant
features with an accurate localization. In [33], the authors classified CRIs as belonging to
COVID-19 and healthy people or VP patients using eleven CNN models. They considered
three possible approaches to improving the COVID-19 identification designs by including
extra layers. The models under examination were all well-known frameworks that have
proved to be effective in applications for image recognition and detection. Using a COVID-
19 radiography database, the recommended techniques for each explored design were
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assessed, with the Xception and EfficientNetB4 models producing the best performance
results. Moreover, the authors of [34] proposed a CNN-based architecture for COVID-19
detection from CRIs, increasing the test’s efficacy and reliability. The suggested method
combines a custom model with a TL approach to increase accuracy. Many pre-trained
DL networks, including MobileNetV2, InceptionV3, VGG16, and ResNet50, were used
to extract features. The performance indicators in this study were categorization and
classification accuracy. The results of this research demonstrate that DL can identify
COVID-19 in CRIs. InceptionV3 has attained the highest level of accuracy compared to
other TL methods.

Previous studies have also used hybrid approaches, which integrate both DL- and ML-
based procedures, in addition to ML approaches and DL models. In [35], the authors used
a hybrid technique (SVM and deep-feature-based approach) to use CRIs to identify patients
who were infected with COVID-19. SVM is utilized for classification instead of a DL-based
framework since DL models require a sizable amount of training data. For COVID-19
categorization and classification, deep features from the fully connected (FC) layers of
DL models are gathered and input into the SVM. Pneumonia, the norm, and COVID-19
are the distant CRIs data sources employed in the technique. The method helps doctors
differentiate among normal, pneumonia, and COVID-19 cases. The characteristics of 13 DL
frameworks were used to assess the SVM algorithm’s COVID-19 identification performance.
Resnet50 and SVM attained the highest classification performance. Furthermore, in [36],
the authors used CRI data to train CNN frameworks as feature extractors and the SVM as a
classification algorithm to assess whether the individuals were healthy, had pneumonia,
or were suffering from COVID-19. The tests compared various classes, feature extraction
frameworks, feature selection algorithms, and kernels. To discriminate among the three
groups of pneumonia, COVID-19, and normal, the investigators employed the resnet50,
resnet18, resnet101, and GoogleNet TL methods. Using resnet101, resnet50, resnet18, and
GoogleNet, they were able to achieve the highest average accuracy.

The previous works could be expanded much more. According to the aforementioned
literature review, different ML, DL, and hybrid techniques were used to classify various
lung illnesses based on CRIs. However, existing approaches are unable to classify lung
diseases into TB, VP, pneumonia, BP, COVID-19, and LO. Additionally, to evaluate the
generalizability and robustness of models, we need to train and test models on multiple
datasets or datasets with images from multiple datasets. The majority of studies employed
only one dataset for model performance validation. This paper proposes a DeepLungNet
model which is trained on the images from multiple datasets to verify the robustness of the
model. This study’s main objective is to detect multiple lung diseases using a single model
with an adequate accuracy while minimizing false positives. Analysis of the data reveals
that the suggested system for lung disease classification is useful and reliable.

3. Methodology

The application of DL approaches has already had a significant positive impact on
the fields of image processing (more specifically, medical imaging). In this study, we
suggested the DeepLungNet DL framework for lung disease classification using chest
radiographs. Using (our integrated) dataset, we will categorize chest radiographs into the
following four groups: TB, normal, LO, COVID-19, and pneumonia. Figure 1 depicts the
suggested strategy’s abstract representation. To put the suggested technique into practice,
we provided the model images of chest radiographs. The input images for the datasets
were a variety of sizes. Then, we used pre-processing to shrink the dimensions of the input
images to 224-by-224 pixels in order to assure homogeneity and speed up the procedure.
To further categorize CRIs into the 5 ideal configurations, a DeepLungNet architecture
with only 20 convolutional layers was created. For each experiment, independent datasets
were used for testing and training. We specifically utilized 80% of the dataset for training,
whereas we used 20% for testing purposes. The two datasets were then used to evaluate
the proposed model.
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3.1. Data Pre-Processing
3.1.1. Data Augmentation

One of the issues when attempting to use DL frameworks for medical imaging de-
tection and classification tasks is the lack of suitable data (balanced data) to train the DL
frameworks. It is necessary to collect more medical imaging data, yet doing so requires
a large amount of time and money. By applying data augmentation strategies to the pre-
existing data without gathering any new medical imaging data, we boosted the amount
of data that are now available; we used data augmentation techniques to overcome the
class imbalance issue. The radiograph scans in the dataset were randomly rotated at an
arbitrary angle between −20 and 20 degrees and moved up to 30 pixels in both the vertical
and horizontal directions. To create new images, we translated the existing images at
random between 0.9 and 1.1. It is critical to keep in mind that in each training session,
the imageDataAugmenter function continuously produces sets of enhanced images. By
dramatically increasing the dataset’s image count, we were able to train our deep learning
framework with more training images and improve its performance.

3.1.2. Image Resizing

The datasets input CRIs come in a variety of dimensions. To ensure homogeneity
and improve the processing speed, we pre-processed the radiographs to scale them to
224 × 224 pixels in accordance with the requirements (input picture) of our model.

3.2. Dataset Partitioning

The CRIs were separated into testing and training groups for each experiment. More
exactly, the framework was trained on 80% of the dataset, then tested on the remaining
20%.
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3.3. Deep DeepLungNet Architecture Details

In this study, we proposed the DeepLungNet framework for lung illness classifica-
tion. Only 20 learnt layers, i.e., 18 convolutional layers and 2 FC layers, make up the
DeepLungNet model. In total, there are 64 layers in our architecture: 1 for the picture input,
16 for convolutions, 2 for group convolutions, 18 for batch normalization (BN), 19 for leaky
ReLU (LReLU), 1 for maximum pooling, 2 for fully connected, 1 for average pooling, 1 for
dropout, 1 for softmax, and 1 for classification. The leaky ReLU activation function comes
after the ConV and group convolutional layers.

Table 1 displays the DeepLungNet model’s architecture. In the DeepLungNet model,
the first (input) layer is the top (initial) layer. Its size is equivalent to the size of the input
features, and it contains I × J elements. For processing, our framework takes input images
with a 224 × 224-pixel size. ConV layers with a kernel size of 7 × 7, 3 × 3, and 1 × 1
are used, which performs a ConV operation to create feature maps. The first ConV layer
extracts the feature from the CRIs (of size 224 × 224) by using 64 filters of size 7 × 7 with
a shift of 2 × 2 and padding of 3 × 3. Following the use of convolutions and kernel, the
output of the ConV layers (feature map) can be derived by using Equation (1). Equation (1)
represents the ConV operation between the image and kernel [34]:

f k
c (m, n) = ∑

d
∑ Jd(r, s).ik

c(v, w) (1)

Table 1. DeepLungNet architecture details.

S No Operation Layers Kernel No of Filters Padding Stride

1 Input
2 ConV ConV (BN, LReLU) 7 × 7 64 3 × 3 2 × 2

3 Fire module
ConV (BN, LReLU) 1 × 1 16
ConV (BN, LReLU) 3 × 3 64 1 × 1
ConV (BN, LReLU) 1 × 1 64

4 Pooling Max-Pooling 3 × 3 1 × 1 2 × 2
5 ConV Group ConV (LReLU, CCN) 5 × 5 128 [2 2 2 2]
6 ConV ConV (BN, LReLU) 3 × 3 64 1 × 1
7 ConV ConV (BN, LReLU) 3 × 3 64 1 × 1
8 ConV ConV (BN, LReLU) 3 × 3 128 1 × 1 2 × 2
9 ConV ConV (BN + LR) 1 × 1 128 2 × 2
10 ConV ConV (BN + LR) 1 × 1 256 2 × 2
11 ConV ConV (BN + LR) 3 × 3 256 1 × 1 2 × 2
12 ConV ConV (BN + LR) 3 × 3 512 1 × 1 2 × 2
13 ConV ConV (BN + LR) 1 × 1 512 2 × 2
14 ConV ConV (BN + LR) 3 × 3 32 Same 2 × 2
15 ConV Group ConV (BN + LR) 3 × 3 32 Same
16 ConV ConV (BN + LR) 1 × 1 16 Same
17 ConV ConV (BN + LR) 1 × 1 96 Same
18 ConV Group ConV (BN + LR) 3 × 3 96 Same 2 × 2
19 ConV ConV (BN + LR) 1 × 1 24 Same
13 FC + LReLU + dropout
15 Average pooling + FC + softmax + classification

f k
c represents the output feature map, and jd (r, s) represents the chest radiographs

which are multiplied by the ik
c (v, w) index of the kth kernel of the cth layer. After employing

convolutions on the input chest radiographs, the output of size o = ((i− k) + 2p)/(s + 1)
is formed, whereby i stands for the input, p for padding, k for kernel size, and s for steps.

All ConV and group ConV layers are followed by activation functions. Following
convolutional layers are the activation functions. The most popular activation functions in
the past were sigmoid and tanh. These limitations led researchers to develop substitute
activation functions, such as the rectified linear unit (ReLU) and its derivatives (ELU, Noisy
ReLU, and LReLU), which are presently utilized in the bulk of DL applications. A node in
a layer uses the activation function to transform the weighted sum of the input into the
output. All neurons with negative values are deactivated by the ReLU activation function,
rendering a significant percentage of the framework (network) indolent. To enhance the
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model’s classification performance, we applied an enhanced ReLU activation function
(LReLU activation function) to describe the ReLU activation function as a very minor linear
percentage of x rather than stating that it be 0 for negative input values. Here is how this
activation function was intended: the LReLU, in contrast to ReLU, does not deactivate the
inputs and also generates an output for negative values. The LReLU activation function
works according to Equation (2):

f (x) = max(0.01× x, x) (2)

When given a positive input, the LReLU function returns x, but when given a negative
input, it returns 0.01 times x (small value).

To normalize the outputs of ConV layers, we used the BN operation. BN enables
regularization and accelerates the learning process of neural networks, and it also helps to
prevent overfitting.

The output feature of the first ConV layer is delivered into the next convolutional layer
(fire module) after employing the activation function (LRelU) and BN operation. Three
ConV layers make up the Fire module: a squeeze ConV layer with numerous 1 × 1-filter
layers, then 3 × 3 and 1 × 1 ConV layers (expand layer). To decrease the total parameters,
we chose 1× 1 layers. The number of input channels multiplied by the number of filters and
the filter size, which is three, yields the total number of parameters in the layer. Therefore,
we utilized fewer kernels in the squeeze layer than in the expand layer to reduce the
number of inputs to 3 × 3 kernels. We used the padding of 1 pixel in the ConVlayers with 3
× 3 filters in order to make the output of the 3 × 3 and 1 × 1 filters the same size. After the
fire module, we employed a maximum pooling layer. The maximum pooling layers with
a stride of 2 × 2 after the fourth convolutional layer were used for down-sampling. The
spatial size, computational complexity, the number of parameters, and calculations were
all reduced by this layer. Equation (3) shows the working of the maximum pooling layer.

f (x) = {x1, x2, x3, . . . , xk} (3)

The f (x) represents the optimal feature map. In our model, a filter size of 3 × 3 and
a stride of 2 × 2 is utilized to select the highest value from the neighboring pixels (in a
radiograph image) using maximum pooling.

The output of the fire module is passed as an input to the ConV layer taking, 64 kernels
of size 3 × 3 and padding 1 × 1. Similarly, the next ConV layer also applies the 64 kernels
of size 3 × 3 with padding of 1 × 1. The activation function after this convolutional layer
comes after the additional layer. We applied the activation after the addition layer. The next
six convolutional layers are connected using shortcut connections, whereas the remaining
(last) six convolutional layers are connected sequentially.

The first FC layer receives the output of the final (i.e., eighteenth) ConV layer. A
one-dimensional feature vector is created from the two-dimensional feature map that was
taken from the ConV layers by the FC layer. The operations of a FC layer are elaborated in
Equation (4).

ai =
m×n−1

∑
j=0

wij × xi + bi (4)

where i, m, n, d, w, and b stand for the output index, width, height, depth, weights, and
bias of the FC layer, respectively. We used the dropout layer after the initial FC (to prevent
overfitting). The final FC layer is followed by the softmax and classification layers.

3.4. Hyper-Parameters

The choice of hyper-parameters is central to the effectiveness of DL architectures. In
order to discover the appropriate value for each hyper-parameter given the wide range
of alternatives available, we investigated the effectiveness of the suggested DeepLungNet
model using a number of hyper-parameter settings. We choose a few hyperparameters for



Electronics 2023, 12, 1860 10 of 25

a model to determine how the DL architecture hyperparameter affects the representation of
the entire network. The model is trained on dataset 1 using different parameters, and the
model performance metrics are examined. Until the model has reached optimal accuracy,
as shown in Table 2, this process is repeated using a new set of values for hyperparameters.
Table 3 shows the final hyper-parameter values. We employed the stochastic gradient
descent optimization approach since it is effective for larger datasets, rapid, and memory
efficiency. In order to account for the possibility of overfitting, we trained the model for
50 epochs.

Table 2. Hyperparameters tuning results.

Experiment No Learning Rate Epochs Dropout Accuracy

1 0.1 30 0.5 96.89
2 0.5 35 0.4 97.12
3 0.01 30 0.2 97.26
4 0.05 35 0.6 97.0
5 0.001 40 0.5 97.47

Table 3. Hyperparameters of proposed architecture.

Parameter Value

Learning rate 0.001
Optimization algorithm SGDM

Validation frequency 30
Verbose false

Activation Function LReLU
Test Size 0.2

Train Size 0.8
Dropout 0.5

Iterations per epoch 42
Shuffle Every epoch

Maximum Epochs 40

4. Results

This segment thoroughly examines the outcomes of the several tests conducted to
gauge how well our model works. We outline the experimental strategy and performance
metrics we used to evaluate the efficacy of our strategy. Further information about the
datasets is also provided in this section. We made use of publicly accessible Kaggle datasets
to evaluate the efficacy of our strategy.

4.1. Datasets

We tested the usefulness and robustness of our proposed approach by using images
from multiple datasets and created two integrated datasets and evaluated our model on the
integrated datasets. The CRIs of the datasets are diverse in terms of illumination conditions,
format, angles, dimensions, bit depth, and size, etc. The datasets contain PNG and JPG
images of different resolutions. All images of the datasets are grayscales, and the bit depth
of all the images in the datasets is eight.

4.1.1. Dataset 1

We created a dataset combining CRIs from publicly available datasets since there
was a lack of a standard dataset for classifying lung illnesses (normal, TB, COVID-19,
LO, or pneumonia). To create our own integrated dataset for five-class classifications, we
have used the COVID-19 and LO images of the standard “COVID-19 Chest Radiography
Database” dataset [37]. This dataset contains four types of chest radiographs, i.e., COVID-
19, LO, Pneumonia, and normal. We have utilized pneumonia and normal CRIs of the
publicly available “Chest X-ray (COVID-19 & Pneumonia)” dataset [38]. Furthermore,
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we have used TB CRIs of the “Lung Disease Dataset (4 types)” dataset [39]. This dataset
contains images of four types of lung diseases (i.e., VP, coronavirus disease, BP, TB) along
with normal CRIs. The details of the dataset are provided in Table 4.

Table 4. Details of the datasets used.

Dataset Training Images Testing Images Total Images

Dataset 1 11,277 2819 14,096

Dataset 2 9639 2410 12,049

4.1.2. Dataset 2

We have created another dataset by combining the CRIs from publicly available
datasets with different lung diseases, i.e., VP, BP, COVID-19, normal, TB, and LO. As there
does not exist any single dataset which can be used to classify the aforementioned lung
diseases, we have combined the images of three publicly available datasets and used that
integrated dataset to validate the performance of our framework. More specifically, we used
COVID-19 and LO images from the “COVID-19 Chest Radiography database” dataset [37].
We applied augmentation on all images of the “Chest X-ray (COVID-19 & Pneumonia)”
dataset [38] and used normal chest radiographs. Furthermore, we have used TB, BP, and
VP CRIs of the “Lung Disease Dataset (4 types)” dataset [39]. The details of the dataset are
provided in Table 4. Furthermore, Figure 2 shows some representative samples of dataset 2.
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Figure 2. Representative samples from dataset 2: the first column shows COVID-19, the second
column shows LO, the third column shows normal, the fourth column shows pneumonia, and the
fifth column shows TB radiograph images.

4.2. Evaluation Metrics

We assessed the effectiveness of our system using the metrics for precision, sensitivity,
accuracy, and F1-score. The following is the formula for these measures:

Accuracy = (TN + TP)/TS (5)
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Precision =
TP

TP + FP
(6)

Sensitivity (recall) =
TP

TP + FN
(7)

F1_score = 2·Precision× Recall
Precision + Recall

(8)

where TP, TN, TS, FN, and FP denote the true positive, true negative, total samples, false
negative, and false positive, respectively.

4.3. Experimental Setup Ad Evaluation

All of the studies were carried out on a laptop with an Intel (R) Core (TM) i5-5200U
CPU and 8 GB of RAM. The strategy was carried out using MATLAB R2020a. The datasets
for training and testing were separated for each experiment. We performed several exper-
iments to assess the classification performance of our proposed model for CRIs. Table 5
provides the details of the software and hardware utilized for the implementation of the
proposed method.

Table 5. Details of software and hardware utilized for implementation.

Sr. No Name Experiment Parameters

1 CPU Intel (R) Core (TM) i5-5200U
2 Type of system 64-bit, Windows 10
3 RAM 8 GB
4 ROM 500 GB
5 Development tool MATLAB R2020a

4.3.1. Performance Evaluation on Dataset 1 (5-Class Lung DISEASE Classification)

The vital aim and goal of this experiment is to validate the multi-class classification
ability of our proposed DeepLungNet model and to categorize CRIs into TB, pneumonia,
COVID-19, LO, and normal. For this experiment, we combined the images of three publicly
available datasets and used that integrated dataset to validate the performance of our model
(dataset 1). More specifically, we used a total of 4000 CRIs from the “COVID-19 Chest
Radiography database” dataset (2000 COVID-19, 2000 LO). We applied augmentation on
all the images of “Chest X-ray (COVID-19 & Pneumonia)” and used 4420 normal and 4456
pneumonia chest radiographs in this experiment. Furthermore, we have used 1220 TB CRIs
of the “Lung Disease Dataset (4 types)” dataset. We utilized 11,277 CRIs (1600 COVID-19,
976 TB, 1600 LO, 3536 normal, and 3565 pneumonia chest radiographs) to train our model.
The outstanding 2819 CRIs (400 COVID-19, 244 TB, 400 LO, 884 normal, and 891 pneumonia
chest radiographs) were utilized for testing our model. The training set for DeepLungNet
architecture for lung disease classification is composed of the parameters specified in
Table 3. The suggested model required 2383 min and 23 s for training for lung disease
classification. However, this time is determined by the total number of iterations and
epochs. Throughout the training phase, DeepLungNet underwent a total of 3520 iterations
(88 iterations per epoch), with a total of 40 epochs. At epoch 50, the framework’s average
testing precision, accuracy, f-measure, and recall were 93.2%, 97.47%, 93.4%, and 93.6%.
In Figure 3, accuracy and loss are shown so that you can see how well our framework is
trained. The loss function reveals how fine the system can identify the CRIs in dataset.
After epoch 27, our model’s training accuracy and loss mostly remain the same, whereas
the model’s testing accuracy basically remains the same after epoch 37, showing that it can
classify lung diseases with a higher classification performance even at less epochs than 40.



Electronics 2023, 12, 1860 13 of 25Electronics 2023, 12, x FOR PEER REVIEW 14 of 26 
 

 

 
Figure 3. Testing and training loss and accuracy of proposed model (five-class lung disease classi-
fication). 

The confusion matrix (CM) for our framework’s lung disease classification testing 
phase is revealed in Table 6. The proposed design misclassified 160 CRIs out of 2819, in-
cluding 29 COVID-19, 11 TB, 59 LO images, and 61 Pneumonia images. It is significant to 
mention that our framework classified all normal images correctly. The results show that 
our model (method) has higher TN and TP values and lower FN and FP values. 

Table 6. CM obtained by the DeepLungNet framework (five-class lung disease classification). 

Predicted Class  

True class  

Disease Class COVID-19 TB LO Normal Pneumonia 
COVID-19 371 1 27 0 1 

TB 2 233 9 0 0 
LO 42 9 341 2 6 

Normal 0 0 0 884 0 
Pneumonia 0 0 3 58 830 

To evaluate the effectiveness and validity of the suggested approach, several chest 
radiograph images must be precisely identified and categorized. To do this, we assessed 
how well the offered technique classified each radiological image (i.e., TB, COVID-19, 
LO, pneumonia, or normal). Table 7 displays the recall, F1-score, precision, and accuracy 
results of the recommended strategy’s class-wise radiograph classification performance. 
The suggested approach demonstrates a cutting-edge performance for each evaluation 
criterion, as verified in Table 5; the bar chart of the results are shown in Figure 4. Ac-
cording to the results, the majority of radiological images were identified accurately, 
producing the maximum level of accuracy. The strength of the recently established DL 
framework, which more properly replicates each class, is primarily responsible for the 
increased radiograph classification accuracy.  

  

Figure 3. Testing and training loss and accuracy of proposed model (five-class lung disease classifica-
tion).

The confusion matrix (CM) for our framework’s lung disease classification testing
phase is revealed in Table 6. The proposed design misclassified 160 CRIs out of 2819,
including 29 COVID-19, 11 TB, 59 LO images, and 61 Pneumonia images. It is significant to
mention that our framework classified all normal images correctly. The results show that
our model (method) has higher TN and TP values and lower FN and FP values.

Table 6. CM obtained by the DeepLungNet framework (five-class lung disease classification).

Predicted Class

True class

Disease Class COVID-19 TB LO Normal Pneumonia
COVID-19 371 1 27 0 1

TB 2 233 9 0 0
LO 42 9 341 2 6

Normal 0 0 0 884 0
Pneumonia 0 0 3 58 830

To evaluate the effectiveness and validity of the suggested approach, several chest
radiograph images must be precisely identified and categorized. To do this, we assessed
how well the offered technique classified each radiological image (i.e., TB, COVID-19,
LO, pneumonia, or normal). Table 7 displays the recall, F1-score, precision, and accuracy
results of the recommended strategy’s class-wise radiograph classification performance.
The suggested approach demonstrates a cutting-edge performance for each evaluation
criterion, as verified in Table 5; the bar chart of the results are shown in Figure 4. According
to the results, the majority of radiological images were identified accurately, producing the
maximum level of accuracy. The strength of the recently established DL framework, which
more properly replicates each class, is primarily responsible for the increased radiograph
classification accuracy.
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Table 7. Class-wise performance of the DeepLungNet framework.

Class N(Classified) N(Truth) Precision Accuracy Recall F1-Score

COVID-19 400 415 93.0 97.41 89.0 91.0

TB 244 243 95.0 99.26 96.0 96.0

LO 400 380 85.0 96.52 90.0 87.0

Normal 884 944 100 97.87 94.0 97.0

Pneumonia 891 837 93.0 97.59 99.0 96.0

Electronics 2023, 12, x FOR PEER REVIEW 15 of 26 
 

 

Table 7. Class-wise performance of the DeepLungNet framework. 

Class  N(Classified) N(Truth) Precision Accuracy Recall F1-Score 
COVID-19 400 415 93.0 97.41 89.0 91.0 

TB 244 243 95.0 99.26 96.0 96.0 
LO 400 380 85.0 96.52 90.0 87.0 

Normal 884 944 100 97.87 94.0 97.0 
Pneumonia 891 837 93.0 97.59 99.0 96.0 

 
Figure 4. Bar chart of class-wise performance of six-class classification. 

The suggested DeepLungNet’s Receiver Operating Characteristic (ROC) curve, 
shown in Figure 5, expresses the lung disease classification performance of the 
DeepLungNet framework. We used the MATLAB function perfcurve to calculate the 
ROC. Threshold values were applied by the ROC to the outputs in the [0,1] range. For 
each threshold, the FP Ratio and TP Ratio were calculated. The FP to TP ratio is depicted 
on the ROC curve, illuminating the sensitivity of the classification model. The area under 
the curve (AUC) is a crucial assessment criterion for classifiers since it shows how dis-
similar different categories are from one another; it establishes how well the model can 
differentiate between classes. The model more effectively distinguishes between different 
(i.e., COVID-19, LO, normal, pneumonia, or TB) individuals when the AUC value is near 
to one. This demonstrates a high level of competence. It is clear that DeepLungNet re-
ported an AUC value of 0.9940. The proposed DeepLungNet framework was more ac-
curate in classifying lung diseases because it is better at extracting distinctive features 
from CRIs. The batch normalization method of the suggested model standardizes, regu-
larizes, and minimizes generalization error for each mini-batch of inputs to a layer. 

75

80

85

90

95

100

N(classified) N(truth) Precision Accuracy Recall F1-Score

Class-wise performance five-class classification

COVID-19 TB LO Normal Pneumonia

Figure 4. Bar chart of class-wise performance of five-class classification.

The suggested DeepLungNet’s Receiver Operating Characteristic (ROC) curve, shown
in Figure 5, expresses the lung disease classification performance of the DeepLungNet
framework. We used the MATLAB function perfcurve to calculate the ROC. Threshold
values were applied by the ROC to the outputs in the [0,1] range. For each threshold, the
FP Ratio and TP Ratio were calculated. The FP to TP ratio is depicted on the ROC curve,
illuminating the sensitivity of the classification model. The area under the curve (AUC) is a
crucial assessment criterion for classifiers since it shows how dissimilar different categories
are from one another; it establishes how well the model can differentiate between classes.
The model more effectively distinguishes between different (i.e., COVID-19, LO, normal,
pneumonia, or TB) individuals when the AUC value is near to one. This demonstrates a
high level of competence. It is clear that DeepLungNet reported an AUC value of 0.9940.
The proposed DeepLungNet framework was more accurate in classifying lung diseases
because it is better at extracting distinctive features from CRIs. The batch normalization
method of the suggested model standardizes, regularizes, and minimizes generalization
error for each mini-batch of inputs to a layer.
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4.3.2. Performance Evaluation on Dataset 2 (Six-Class Lung Disease Classification)

To further evaluate and validate the reliability and performance of our DeepLungNet
model, we have designed an experiment for (six-class classification) lung disease classifica-
tion. We have used the proposed model to classify chest radiographs with different lung
diseases, i.e., VP, BP, COVID-19, normal, TB, and LO. As there does not exist any single
dataset which can be used to classify the aforementioned lung diseases, we have combined
the images of three publicly available datasets and used that integrated dataset to assess
the performance of our technique. More precisely, we used a total of 4000 CRIs from the
“COVID-19 Chest Radiography database” dataset (2000 COVID-19, 2000 LO). We applied
augmentation on all images of “Chest X-ray (COVID-19 & Pneumonia)” and used 4420
normal chest radiographs in this experiment. Furthermore, we have used 1220 TB, 1205 BP,
and 1204 VP CRIs of the “Lung Disease Dataset (4 types)” dataset. We used 9639 images
(1600 COVID-19, 976 TB, 1600 LO, 3536 normal, 964 BP, 963 VP, and 3565 pneumonia chest
radiographs) to train our model. The outstanding 2410 images (400 COVID-19, 244 TB,
400 LO, 241 BP, 241 VP, and 884 normal chest radiographs) were utilized for testing our
model. The training set for our DeepLungNet architecture for lung disease classification
is composed of the parameters specified in Table 3. The suggested model required 1884
min and 43 s for training for lung disease classification into COVID-19, LO, BP, VP, TB, and
normal. However, this time is determined by the total number of iterations and epochs.
Throughout the training phase, DeepLungNet underwent a total of 3000 iterations (75 it-
erations per epoch), with a total of 40 epochs. The model’s f-measure, average validation
accuracy, precision, recall, and accuracy were 95.57%, 80.0%, 82.16%, and 81.06% at epoch
40, respectively. You can assess how well our framework is trained by looking at the
accuracy and loss in Figure 6. Our model’s testing accuracy essentially stays the same after
epoch 37, although the model’s training accuracy and loss essentially stay the same after
epoch 27. This indicates that the model can classify lung diseases with the best accuracy
even at epochs lower than 40.
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The CM for our framework’s lung disease classification testing phase is revealed in
Table 8. The proposed design misclassified 320 CRIs out of 2410, including 19 COVID-19,
151 TB, 57 LO images, 11 VP, and 82 BP images. It is vital to mention that our method
classified all normal images correctly. The results show that our approach has higher TP
and TN values and lower FP and FN values.

Table 8. CM obtained by the proposed model (six-class lung disease classification).

Predicted Class

True class

Disease Class TB COVID-19 VP BP LO Normal

TB 93 2 15 114 9 11
COVID-19 1 381 5 0 13 0

VP 0 4 230 0 7 0
BP 22 7 17 159 18 18
LO 2 49 5 1 343 0

Normal 0 0 0 0 0 884

It is necessary to accurately identify and categorize multiple CRIs to assess the worth
and validity of the presented strategy. To do this, we evaluated how well each radiological
image was classified by the proposed technique (i.e., VP, BP, TB, COVID-19, LO, or normal).
The class-wise radiograph classification performance of our new technique is shown in
Table 9 in terms of the recall, accuracy, F1-score, and precision (Figure 7). As shown
in Table 9, the suggested approach demonstrates a cutting-edge performance for each
evaluation criterion. The improved radiograph classification accuracy is mostly attributable
to the stability of the recently developed DL framework, which more accurately reflects
each class.
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Table 9. Class-wise performance of the proposed framework.

Disease
Class N(Truth) N(Classified) Accuracy Precision Recall F1-Score

TB 118 244 92.7 38.0 79.0 51.0
COVID-19 443 400 96.64 95.0 86.0 90.0

VP 272 241 97.8 95.0 85.0 90.0
BP 274 241 91.83 66.0 58.0 62.0
LO 390 400 95.68 86.0 88.0 87.0

Normal 913 884 98.8 100.0 97.0 98.0
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4.3.3. Performance Evaluation on Lemon Quality Dataset

Even though the experiments show that the DeepLungNet model performs well in
the case of lung disease classification utilizing multiple datasets of CRIs, more testing on a
different dataset in other domains is required to show that the proposed model is resilient,
stable, and generally applicable. We performed an experiment to assess our DeepLungNet
framework on another dataset for a different classification task. The aim of this experiment
is to assess how well the suggested method performs in the agriculture domain. The
dataset used for this purpose is the lemon quality dataset [40], which has been created
to explore potential solutions to the fruit quality control problem. It has 2.533 images
(300 × 300 pixels). On a concrete surface, photographs of lemons are taken. This surface’s
empty images are also included in the dataset. The dataset includes images of lemons of
various qualities in various sizes and lighting settings (all in the daytime). The dataset
contains 452 empty backgrounds, 951 bad-, and 1125 good-quality lemon images. We
used 2076 (761 bad-quality and 900 good-quality) images in this experiment. We used
1661 images for the training of our model, whereas the remaining 415 (190 bad-quality
and 225 good-quality) images were used for the testing of our model. We achieved a
classification precision, accuracy, recall, and F1-score of 95.0%, 95.3%, 95.0%, and 95.0%,
respectively. The accuracy of 95.3% demonstrates the usefulness and generalization power
of our method for lemon image classification.

4.3.4. Comparison with Hybrid Approaches

The effectiveness of our DeepLungNet classifier is investigated in this part through
the development of a hybrid experiment for CRI classification to identify COVID-19, Pneu-
monia, LO, and TB diseases. As we have achieved the greatest classification performance



Electronics 2023, 12, 1860 18 of 25

in the case of five-class classifications, we have compared our approach with the hybrid
approaches on dataset 1. It is emphasized that using an SVM for classification at the end
of the model in place of a softmax will result in dramatically higher classification results.
The most popular deep CNNs, such as Alexnet [41], Squeezenet [42], MobileNetv2 [43],
Shufflenet [44], and GoogleNet [45], were applied to extract features in order to overcome
this issue. We then used such values as inputs to construct a linear SVM as the deci-
sion function using these features. C and Gamma hyperparameter values were tuned
to 1.0 and 0.1, correspondingly, to obtain the best results. These models require input
images of various sizes and have multiple layers. While the densenet201 framework has
201 layers and processes input CRIs with a size of 224 × 224, the Squeezenet framework
has 18 layers and processes an image with a size of 227 × 227. Therefore, employing
enhanced image datastore functionality, we scaled the chest radiographs to match the
input picture specifications of these models. We trained these DL-based models using the
identical experimental setup (hyperparameter values were chosen utilizing the identical
strategy as the suggested technique). We employed activations on the deeper layer be-
cause it contains more high-level information than the preceding levels (final FC layer).
After using activation functions, these layers combine the input features’ global spatial
positions to yield separate features (i.e., Alexnet and Shufflenet produces a total of 1000
and 544 features). In order to conduct this experiment, we aggregated the images from
three publicly accessible datasets and utilized the combined dataset to verify how well our
model performed (dataset 1). Training sets make up 80% of the dataset, whereas testing
sets make up 20%. Precisely, we used a total of 4000 CRIs from the “COVID-19 Chest
Radiography database” dataset (2000 COVID-19, 2000 LO). We applied augmentation on
all images of “Chest X-ray (COVID-19 & Pneumonia)” and used 4420 normal and 4456
pneumonia chest radiographs in this experiment. Furthermore, we have used 1220 TB CRIs
of the “Lung Disease Dataset (4 types)” dataset. We utilized 11,277 CRIs (1600 COVID-19,
976 TB, 1600 LO, 3536 normal, and 3565 pneumonia chest radiographs) for training our
model. The outstanding 2819 CRIs (400 COVID-19, 244 TB, 400 LO, and 884 normal, 891
pneumonia chest radiographs) are utilized for the testing of our model. According to the
results (Table 10), as shown in Figure 8, the deep features of these DL-based models and
the SVM approach yielded less accurate results (in terms of precision, accuracy, recall,
and F-measure) when contrasted to DeepLungNet. The suggested DeepLungNet strategy
successfully extracts more distinctive characteristics from the chest radiographs, and, as a
consequence, the new approach outperformed the existing methodology in terms of chest
radiograph classification to identify TB, LO, pneumonia, normal, and COVID-19-infected
people. We achieved the extraction of more strong and more detailed features by using
small kernels with 1 × 1 and 3 × 3 dimensions. We used filters of different sizes, i.e., 7 × 7,
3 × 3, and 1 × 1, to extract both global and local features. Additionally, the suggested
model’s batch normalization approach regularizes and decreases the generalization error
and normalizes the inputs to a layer for each mini batch.

Table 10. Comparison with CNN + SVM approaches.

Model Accuracy Precision Recall F-Measure

Alexnet 97.12 92.2 91.4 91.79
Squeezenet 97.30 92.4 92.8 92.59

Mobilenetv2 97.06 92.8 92.8 92.8
Shufflenet 97.24 93.00 93.00 93.00
GoogleNet 97.13 93.2 92.8 92.99

DeepLungNet 97.47 93.2 93.6 93.4
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4.3.5. Performance Evaluation on “Tumor Classification Data” Dataset

According to experimental studies, the DeepLungNet model works well for a variety
of CRIs datasets (lung disease classification); however, additional validation on various
datasets is needed to demonstrate our model’s flexibility, robustness, and power across all
domains. We evaluated the proposed DeepLungNet system utilizing benchmark medical
images with the purpose of classifying brain tumors. Brain tumors were divided into benign
and malignant categories using this study’s “Tumor Classification Data” (dataset for tumor
classification), which is freely accessible on the Kaggle website [46]. This collection includes
images of the healthy brain together with MRI scans of tumors, both malignant and benign.
The dataset is separated into three subfolders, malignant, normal, and benign, in each of the
two directories train and test. The only images we used for training and testing our model
were the 350 benign and 350 malignant MRI scans from the training folder, i.e., no other
images were used. While we only need 70 images of each class for testing, the remaining
280 images of each class were used to train our model. To train our model, we used the exact
same experimental setup as that shown in Table 2. For training, our framework required 29
min and 44 s. The outcomes showed that the suggested DeepLungNet technique worked
as intended, as evidenced by the achievement of f1-scores of 94.76%, 93.3%, 93.5%, and
93.4% in the relevant medical area. This demonstrates the suggested strategy’s efficacy.

4.3.6. Lung Disease Classification Comparison with State-Of-The-Art Approaches

This study attempts to validate the DeepLungNet framework’s effectiveness in rec-
ognizing and categorizing lung illnesses from CRIs. Table 9 displays the findings of our
comparison between the suggested strategy and the most recent DL frameworks. The
comparative procedure was assessed on the basis of its architectural performance, dataset
utilized, DL techniques used, and the number of classes. Using eight pre-trained CNNs,
the authors of [47] divided various lung illnesses into pneumonia, TB, pneumothorax,
and COVID-19. The categorizing process was split into two steps. During the phase of
training, the CNNs were trained using a mini-batch size of 32 and Adam optimizer with
a maximum epoch of 30. During the categorizing stage, these trained frameworks were
utilized to categorize diseases. In each phase, the dataset was colored-preprocessed, the
size of images was reduced, and the data augmentation was applied to increase the number
of images. Darknet-19, Alexnet, Darknet-53, GoogleNet, Densenet-201, InceptionResnetV2,
Resnet-18, and MobilenetV2 were the eight pre-trained CNNs. One of these frameworks,
Densenet-201, has the best accuracy rating at 97.2%. The authors in [48] suggest a DL
design for the multi-class categorization of LC, LO, pneumonia, TB, and COVID-19. To
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meet the DL requirements, enormous chest x-ray images, including 10,192 normal shots,
20,000 LC images, 1400 TB images, 5870 pneumonia images, 3615 COVID-19 images, and
470 and 6012 LO images, were compressed, standardized, and randomly split. For classi-
fication, they employed a pre-trained method comprising VGG19 and three CNN blocks
for feature extraction and a FC layer for classification. The experimental results showed
that the suggested CNN + VGG19 performed better than other works with a 96.48% accu-
racy rate. In [49], the authors proposed a straightforward CNN for diagnosing infection
on CRIs and evaluated it using 7132 CXR images from publicly available datasets. The
results were additionally interpreted and explained to make them more intelligible using
Gradient-weighted Class Activation Mapping (Grad-CAM), Shapley Additive Explanation
(SHAP), and Local Interpretable Modelagnostic Explanation (LIME). ConV features were
first developed to gather thorough object-based data. Then, utilizing shapely values from
SHAP, expectedness findings from LIME, and heatmap from Grad-CAM, the black-box
technique of the DL framework was investigated; this resulted in an average validation
and test accuracy of 94.54% and 94.31%, respectively, for 10-fold cross-validation.

Note that since we do not have the same dataset or size, our comparison may not be
fair. Table 11 displays the results of some of the most modern approaches for identifying
or categorizing various lung illnesses. However, the anticipated system outperformed the
current models with an average accuracy of 97.47%. It is crucial to emphasize that because
findings were generated using various datasets, our comparison may not be fair. Further-
more, to the best of our knowledge, no research work in the past has classified lung diseases
into LO, pneumonia, VP, BP, TB, and COVID-19. This comparison also demonstrates how
effective the DeepLungNet framework is when compared to alternative strategies. It is
important to note that these methods use deeper frameworks than the proposed ones,
which can unavoidably result in overfitting, making them more computationally expensive.
The usefulness of the suggested technique and its extra benefits, including computer effi-
ciency, are demonstrated by these studies. All CNNs layers’ biases are not active because
the proposed DeepLungNet model only comprises twenty learnable layers, followed by
BN and the LReLU layers. We can therefore conclude that the suggested DeepLunNet
approach is more successful and efficient at classifying different lung diseases.

Table 11. Lung diseases classification performance comparison with state-of-the-art approaches.

S. No Work Classes Medical
Images Method Year Accuracy (%)

1 Karaddi et al.
[47]

TB, pneumonia,
normal,

COVID-19, and
pneumothorax

3500 CRIs

Eight pre-trained
models including

Alexnet, Mobilenetv2,
and GoogleNet

2023 97.2

2 Alshmrani et al.
[48]

LO, normal,
pneumonia,

COVID-19, TB,
and LC

47,089 CRIs VGG19 + CNN 2023 96.48

3 Bhandari et al.
[49]

TB, normal,
pneumonia,

and COVID-19
7132 CRIs CNN + a black box

strategy with XAI. 2023 94.54

4 This work

Pneumonia, LO,
normal,

COVID-19, VP,
BP, and TB

Dataset 1 with
14,096 CRIs DeepLungNet model 2023 97.47

5. Discussion

The aim and key goal of this paper was to present a DL-based framework for effective
lung disease classification and identification including LO, pneumonia, TB, VP, COVID-19,
and BP from chest radiographs. Because DL approaches provide better results for the
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classification or detection of different diseases of both plants and humans [50–54], we
have created an end-to-end solution that does not employ feature extraction or selection.
We validated the robustness and generalizability of our suggested technique using two
datasets that contained photographs from various databases. In this work, we suggested a
DeepLungNet DL-based framework that, when trained on chest radiographs, surpasses
competing models in terms of accuracy (97.47). The framework’s testing and training
accuracy increases and its training and testing loss rapidly decreases after each epoch. The
proposed framework is evaluated against both state-of-the-art frameworks that may be pre-
sented in the past and hybrid methods (DL + SVM). To evaluate the system’s effectiveness
and generalizability, we evaluated it using the “Lemon Quality Dataset,” a popular and
openly available Kaggle dataset from the agriculture domain. The suggested framework
outperforms innovative and hybrid techniques and works well.

Since the DeepLungNet framework employed the LReLU activation function instead
of the ReLU activation function, our research methodology performs well. We also used
the LReLU activation function to address the issue of dying ReLU. In the event of a dying
ReLU issue, the DL framework will remain inactive. Using an LReLU, we applied the
DeepLungNet approach that was suggested to resolve this issue. When the unit is not
active, the LReLU activation mechanism permits for a non-zero (small) gradient. So, it
continues to learn rather than coming to a halt or running into a brick wall. As a result,
the proposed DeepLungNet model’s lung disease classification performance is improved
by the LReLU activation function’s enhanced feature extraction capability. The vanishing
gradient and degradation issues are resolved by DeepLungNet’s skip connections method.
Each layer that impairs the framework’s effectiveness will be skipped, and the gradient will
have access to an alternative shortcut path. Learning does not decrease from the first layers
to the last layers since the skip connection transfers the output from a previous layer to a
following layer. These results are further explained by the fact that our suggested method
can effectively extract the most robust, distinctive, and in-depth features to represent the
CRI for exact and reliable categorization. Color, edges, and other (low-level) features
are extracted by the first convolutional layers. On the other hand, higher layers are in
charge of detecting high-level features, such an anomaly in the CRIs. Furthermore, our
architecture is based the following concepts. We used filters of different sizes, i.e., 7 × 7,
3 × 3, and 1 × 1 to extract both local and global features. The max-pooling layer in our
model aids in the reduction in model dimensions and parameters and the retention of
critical feature information. The model also lessens the calculations, i.e., computation cost
(to speed up training) by using group ConV operations. A 50% dropout rate is used to
reduce co-adaptation and overfitting. When many neurons in a layer extract extremely
comparable or same deep features from the input images or data, this is referred to as
co-adaptation, which leads to overfitting. Moreover, the BN is utilized to speed up training,
standardize the inputs, stabilize the framework, reduce the number of epochs, and provide
regularization to prevent the model from overfitting.

It is time consuming and requires a lot of effort to detect lung problems. The images
from chest radiographs are also less clear due to noise and fluctuating contrast. As a result,
it became difficult for professionals to immediately inspect the CRI. This study provides
an automated system for classifying lung disorders that aid in the early detection of lung
ailments. This method significantly enhances patient survival and treatment options. The
suggested approach provides a trustworthy and efficient way to recognize lung conditions
on chest radiographs, supporting the physician in making quick and accurate decisions.

Although the suggested strategy yielded good outcomes, we pointed out a few flaws
and made some recommendations for future investigations. The proposed method is
unable to categorize many lung disorders, such as pneumothorax, LC, asthma, etc. How
successfully the system detects lung disorders when using additional imaging modalities,
such as computer tomography, is uncertain from the proposed DeepLungNet technique (CT
scans). In the suggested method, image data are repeatedly divided into a test set (20%) and
a training set (80%). Yet, different divisions can lead to various consequences. Despite the
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fact that our technique accomplished exceptionally well on two CRIs datasets, this study’s
conclusions have not been validated in real clinical investigations. We will try to employ
the suggested approaches to demonstrate the effectiveness of the DeepLungNet algorithm
using larger and more varied datasets in the future to resolve the above-mentioned limita-
tions. Just now, we contrasted the effectiveness of our framework and method with hybrid
methods, and in the future, we will evaluate the effectiveness of our method with alterna-
tive TL-based methods in which we will utilize the FC layer for classification rather than the
SVM. Future work will examine how well the suggested model performs in classifying CRIs
into more precise categories, such as pneumothorax, LC, asthma, etc., by incorporating
data from additional research datasets. In order to use the proposed DeepLungNet model
in practical applications to diagnose diseases such as TB, breast cancer, LO, etc., we plan to
test its generalizability in the future using more datasets on lung diseases or other datasets
(detection and bone crack detection datasets) in the medical domain using CT scans, MRI
images, etc. Additionally, in order to validate the outcomes of the suggested method, we
wish to judge the DeepLungNet technique using actual clinical cases.

6. Conclusions

The early identification and detection of lung disorders is essential to reducing mortal-
ity rates and aiding medical personnel. This work uses CRIs to design and test a multiclass
categorization of chest disorders based on a DL architecture for TB, LO, VP, BP, pneumonia,
normal, and COVID-19. Following image scaling, the generated images were fed into
a DeepLungNet framework created to identify various lung illnesses for this purpose.
Our DeepLungNet model outperformed other current hybrid techniques with an accu-
racy of 97.47% for CRIs classification (lungs diseases detection). Our thorough testing
has shown that our suggested model performs better than other modern methods. The
proposed DeepLungNet identification and classification approach is anticipated to create
a framework for classifying lung diseases and to lessen the workload and viral spread
associated with COVID-19 medical diagnosis. The proposed DeepLungNet framework can
automatically identify lung diseases from CRIs without the need for any physical feature
extraction methods because it features an end-to-end learning procedure. A quick and
automatic system helps a proficient radiologist in this way by acting as a decision support
system. Misdiagnosis can be prevented, and radiologists’ efforts can be decreased. Despite
the accomplishment of the presented methodology, various DL-based approaches for iden-
tifying lung disorders will be created in subsequent works to enhance the DeepLungNet
approach’s performance.
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