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Abstract: With the gradual maturity of autonomous driving and automatic parking technology,
electric vehicle charging is moving towards automation. The charging port (CP) location is an
important basis for realizing automatic charging. Existing CP identification algorithms are only
suitable for a single vehicle model with poor universality. Therefore, this paper proposes a set of
methods that can identify the CPs of various vehicle types. The recognition process is divided into
a rough positioning stage (RPS) and a precise positioning stage (PPS). In this study, the data sets
corresponding to four types of vehicle CPs under different environments are established. In the RPS,
the characteristic information of the CP is obtained based on the combination of convolutional block
attention module (CBAM) and YOLOV7-tinp, and its position information is calculated using the
similar projection relationship. For the PPS, this paper proposes a data enhancement method based
on similar feature location to determine the label category (SFLDLC). The CBAM-YOLOV7-tinp
is used to identify the feature location information, and the cluster template matching algorithm
(CTMA) is used to obtain the accurate feature location and tag type, and the EPnP algorithm is used
to calculate the location and posture (LP) information. The results of the LP solution are used to
provide the position coordinates of the CP relative to the robot base. Finally, the AUBO-i10 robot is
used to complete the experimental test. The corresponding results show that the average positioning
errors (x, y, z, rx, ry, and rz) of the CP are 0.64 mm, 0.88 mm, 1.24 mm, 1.19 degrees, 1.00 degrees,
and 0.57 degrees, respectively, and the integrated insertion success rate is 94.25%. Therefore, the
algorithm proposed in this paper can efficiently and accurately identify and locate various types of
CP and meet the actual plugging requirements.

Keywords: deep learning; multi-type vehicle charging ports; YOLOv7; location and posture (LP)
estimation; automatic charging

1. Introduction

With the worldwide continuous reduction in the availability of fossil energy, the
advantages of new energy vehicles have been gradually highlighted [1–3]. Electric vehicles
rely on clean and pollution-free features to get strong support from the government [4–6].
In recent years, the shortage of urban land resources has become increasingly prominent,
and the application of stereo charging garages has promoted the development of tram
charging towards unmanned direction [7]. Automatic parking and driverless technology
are gradually becoming mature. With this technology, a vehicle will arrive at the parking
lot by itself and should be charged automatically. For publicly used electric vehicles or
those on time-sharing lease, when the user returns a vehicle, the charging is often delayed
that affects the user experience and utilization. The charging pile is damaged by weather
and human factors, and manual charging will have significant safety risks. At the same
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time, the DC charging gun line is heavy, which is not conducive to manual plugging [8].
Based on the aforementioned problems, automatic charging of electric vehicles is an urgent
problem that needs to be solved.

At present, some companies and research institutions have proposed their own solu-
tions [9–19]. These solutions show that the core of automatic charging of electric vehicles
mainly consists of two parts: the identification and positioning of charging port (CP)
and the plug-in mechanism. The identification and positioning of CP is the premise of
plugging. Furthermore, the accuracy and universality of CP identification are important
guarantees for the successful plugging of robots. Therefore, the high-precision identifi-
cation and positioning of the CP is of great significance towards realization of automatic
charging technology.

At present, the main CP recognition method uses visual positioning, which is divided
into two categories: (1) with feature recognition and (2) without feature recognition. In
terms of feature recognition, Lv [20] added white labels around the CP, used feature
matching for rough positioning, and inserted the CP according to the six-axis force sensor
compensation. The author did not provide recognition and positioning accuracy. Pan
et al. [21] added five black and white labels around the CP. Based on the contour of the
open operation, the geometric solution method was used to calculate the location and
posture (LP) of the CP. The LP errors were 1.4 mm and 1.6 degrees, respectively, and the
insertion success rate was 98.9%. The CP recognition methods without feature recognition
include Li et al. [22] that proposed a CP identification and location method based on the
Scale-invariant feature transform and semi-global block matching. The method achieved
an average error of 1.51 mm. Zhang et al. [16] improved the canny edge detection and
the CP image correlation algorithm of combined morphology. The authors did not specify
any recognition accuracy, and the overall insertion success rate was 95.55%. Yao et al. [23],
based on the template matching algorithm in Halcon commercial vision software, tested
the CP LP error in a room, achieving average errors of 2.5 mm in position and 0.8 degrees
in angle. Quan et al. [24] tested the CP identification accuracy in multiple environments
using the cluster template matching algorithm (CTMA). The LP errors were 0.91 mm and
0.87 degrees, respectively, and the plugging success rate was 95%.

In recent years, deep learning has achieved rapid development in the field of target
recognition, with the emergence of a series of target detection models such as Faster-RCNN,
YOLO and SSD [25–32]. These models have improved the universality of target recognition,
especially for specific targets, significantly improving the recognition accuracy in complex
scenes and light. The YOLO algorithm is highly favored for its relatively high accuracy
while ensuring high speed [33,34].

Based on the above research, CP recognition can only adapt to a single type of CP.
Although the size of the CP has a unified standard, the CPs from different manufacturers
and even different batches of CP from the same manufacturer will result in the inconsistency
of the detailed texture and surface roughness of the CP. Due to the limitations of traditional
algorithms, different CPs require adjustment of different characteristic parameters, and
the universality is poor. At present, among the target detection algorithms, there is no
recognition optimization algorithm with structural features. In view of the specificity
of CP features, this paper proposes a data enhancement method based on the YOLOV7-
tinp algorithm. The locations of similar features determine the label cate-gory (SFLDLC),
which improved the target classification accuracy of similar feature location-determining
categories. At the same time, using the convolutional block attention module (CBAM)
attention mechanism combined with the CTMA, the universality and accuracy of the
algorithm are improved, and a guarantee for the LP calculation algorithm of CP is provided.
The rough positioning stage (RPS) and precise positioning stage (PPS) use the similar
projection relationship and EPnP algorithm, respectively, to solve the LP of the recognition
results. Subsequently, the robot is guided to complete the insertion work, which realizes
automatic charging of various vehicle CPs. Our contributions in this paper are as follows:
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(1) We propose a solution that combines deep learning methods to identify charging port
pose information.

(2) We propose an SFLDLC and CTMA for CP recognition and positioning, which im-
proves the accuracy of recognition.

(3) We have integrated CBAM into YOLOV7-tinp for CP recognition and positioning,
improving recognition accuracy.

This paper is organized as follows: Section 2 introduces the data collection process
and the identification and location methods. Section 3 conducts experimental verification
in different scenarios, providing positioning accuracy and insertion success rate. Section 4
discusses the sources of positioning errors. Section 5 summarizes the experimental results
and further research directions.

2. Materials and Methods
2.1. Construction of Experimental Test Platform

The experimental test platform mainly includes three components: visual module,
control module and plug-in actuator, as shown in Figure 1. To meet the requirements of the
experimental insertion workspace, the actuator uses the AUBO-i10 articulated robot with
six degrees of freedom. This paper uses the camera manufactured by Daheng Image Vision
Co., Ltd. in Beijing, China, where the model of the camera is MER-125-30GM/C-P series
industrial camera. The camera lens is the M0814-MP2 lens of Comstar. The light intensity is
measured using the Taiwan Taishi TES-1335 digital illuminometer. The specific information
is shown in Table 1. This paper adopts the camera calibration method of Zhang [35] and
the hand-eye calibration method of Zhu et al. [36].
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Table 1. Detailed information of robots.

Composition of Robots Parameter Detailed Information

Robotic arm
Maximum execution force 10 kg

Arm span length 1563.2 mm
Repeated positioning accuracy 0.05 mm

Camera
Pixel size 3.75 µm × 3.75 µm

Camera resolution 1292 × 964
Lens size 8 mm

2.2. Image Data Acquisition

This study is aimed at the DC CP with the national standard number of GBT 20234.3-
2011. During data collection, the robot is fixed on the base in order to obtain the actual
LP information of the CP relative to the camera. The base world coordinates are kept
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unchanged, and the robot is moved into the CP in the state of teaching, which is the zero
LP state. The robot is then moved out of the CP randomly within the recognition range,
and the LP information of the camera relative to the CP is obtained based on the robot’s LP
information and zero LP information.

Four types of CPs are used in this paper. In order to reduce the interference of
the environment, i.e., the collected image is too dark or too bright, this paper designs
an automatic exposure algorithm to adjust the average brightness value of the image
between 100–160. The data in this paper were collected in the Songjiang District, Shanghai
(120.5924 E, 31.3036 N). This article considers indoor, outdoor, morning, afternoon, noon,
evening, sunny, and cloudy environments. There are 12 scenarios in total. Because of the
similarity of the scenarios, six scenarios are finally determined, as shown in Table 1. In
order to improve the actual positioning accuracy, this paper divides positioning into two
stages: RPS and PPS, as shown in Figure 2.
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Figure 2. Schematic diagram of identification stage scope.

The purpose of RPS is to find the CP target and achieve rough positioning. According
to the actual application scenario, the ranges of the x, y, and z directions are [−150, 150]
mm, [−100, 100] mm, and [245, 600] mm, respectively, and the ranges of the angles in the
Rx, Ry, and Rz directions are [−15, 15] degrees, [−15, 15] degrees, and [−10, 10] degrees,
respectively. The data information is shown in Table 2. The PPS is the secondary positioning
near the focal length and is aimed at achieving accurate positioning. Based on the actual
application scenario, the ranges of the x, y, and z are [−6, 6] mm, [−6, 6] mm, and [250, 275]
mm, respectively, and the ranges of the angles in the Rx, Ry, and Rz directions are [−15, 15]
degrees, [−15, 15] degrees, and [−10, 10] degrees, respectively. The data are shown in
Table 3.

Table 2. Collection of CP data in RPS.

Scenes Weather Time Minimum Light
Intensity (Klux)

Maximum Light
Intensity (Klux) Quantity

Indoor All All 3.3 5.6 800

Outdoor

Sunny A.M./P.M. 7.5 44.9 800
Sunny Noon 11.6 54.5 800

Overcast A.M./P.M. 6.1 14.2 800
Overcast Noon 5.1 21.6 800

All All Night 0.6 3.1 800



Electronics 2023, 12, 1855 5 of 20

Table 3. Collection of CP data in PPS.

Scenes Weather Time Minimum Light
Intensity (Klux)

Maximum Light
Intensity (Klux) Quantity

Indoor All All 4.6 5.7 800

Outdoor

Sunny A.M./P.M. 8.6 45.2 800
Sunny Noon 13.4 53.6 800

Overcast A.M./P.M. 7.1 18.0 800
Overcast Noon 7.8 22.4 800

All All Night 3.1 3.6 800

2.3. Feature Recognition Method
2.3.1. Feature Selection

The feature recognition is divided into RPS and PPS in order to ensure accurate feature
location. The RPS is mainly used to identify and locate the CP target with a long distance
and a wide range. The main problem is that when the target is far away, the image is blurred
in the non-focal position, the characteristics of the CP vary greatly, and the proportion of
the target in the field of vision is small. To deal with the aforementioned problems, we
choose a larger target as the feature of the CP. Although the outermost feature of the CP is
the most obvious, the outermost dimension of the CP from each manufacturer is different
and there is no standard size. Therefore, we choose a relatively large feature and regard the
round feature of the CP as a whole. The PPS is mainly aimed at the target near the focal
length, which requires a high recognition accuracy. Therefore, we consider the individual
circular feature contour as the target feature for recognition, and the feature range of RPS is
as follows: 

Xmin = min(x1 − w1, x5 − w5, x7 − w7)
Ymin = min(x1 − h1, x2 − h2, x3 − h3)

Xmax = max(x3 − w3, x6 − w6, x9 − w9)
Ymax = max(x7 − w7, x8 − w8, x9 − w9)

(1)

where xn, yn represent the center point coordinates of the nth feature; wn, hn represent the
length and width of the nth feature, and (Xmin, Ymin) and (Xmax, Ymax) represent the pixel
coordinate positions of the upper left and lower right corners of the feature box, respec-
tively. The center position of the CP is calculated according to the obtained characteristic
information of the CP as {

Xm = xm
Ym = (ym − amh)

(2)

where (xm, ym) and (Xm, Ym) represent the recognized feature center point coordinates and
the actual feature center point coordinates, respectively, and am represents the conversion
coefficient between pixel features and physical features. Using the calculated (Xm, Ym), the
coordinate value of the CP in the physical coordinate system can be obtained according to
the similar projection relationship.

2.3.2. Identification Algorithm Model

In the YOLOv7 network, the number of times the model performs feature extraction
will increase as the depth of the model increases, which will lead to a high computational
complexity. Based on the characteristics of image data set at different recognition stages of
the CP, and considering the requirements of image resolution, GPU memory and detection
accuracy, the image data sets of the two stages are input into the neural network for training
in this paper. The input image resolution is set to 960 × 960 in order to reduce the impact
of image compression on the accuracy. Three different sizes of detector heads are used to
output the results, including the location information, category information, and confidence
of the CP features. Figure 3 shows the network structure.
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Figure 3. SFLDLC-CBAM-YOLOV7-tinp-CTMA network structure. CONV is the convolution
operation, LeakyRelu is the nonlinear activation function, MP is the maximum pooling operation, Up
is the upper sampling operation, Concat is the feature fusion function, and Maxpool is the maximum
pooling operation. Note: The backbone of YOLOV7-tinp network is divided into four parts: Input,
Backone, Neck, and Prediction.

The feature type and location of the CP have a coupling relationship based on the
CBAM-YOLOV7-tinp-CTMA network structure. This paper proposes a data enhancement
method for the input image. It is based on the SFLDLC, which enhances the data general-
ization ability and improves the detection accuracy. The CBAM attention mechanism is
fused to identify the feature location information in YOLOV7-tinp. The above methods are
combined with CTMA; the accurate feature location and label type are obtained, which
provide a guarantee for the LP calculation of the CP relative to the camera.

2.3.3. Data Enhancement Method

The RPS feature is unique and there is no mutual substitution relationship between
the spatial positions. Therefore, the image is randomly scaled and clipped, and the Mosaic
method is used to achieve data enhancement. The characteristic type and position of
the CP have a coupling relationship during PPS. The determination of the label type is
not based on the characteristics of the label type, but more importantly depends on the
position relationship of the label. Therefore, when the data are enhanced, their location
characteristics cannot be changed but can be zoomed, cropped, enhanced using the Mosaic
data enhancement method, etc. The categories can be changed at the same time, but
the original category characteristics of the feature do not change. In addition, this paper
proposes a data enhancement method based on the SFLDLC, which enhances the ability of
data generalization and improves the target recognition accuracy. In this paper, the round
features of the CP from left to right, top to bottom, are defined as features 1 to 9, as shown
in Figure 4.
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During data enhancement, when each feature is enhanced by traditional data methods,
the feature is first extracted from the image for use. When the feature is replaced by its
position, the label category of the feature is related to its position and has no relation with
the feature itself. Different features define the label category according to the replaced
position. The constraint conditions of the data during enhancement are as follows:

xn+1 > a1(xn + wn + wn+1)(n = 1, 2, 7, 8)

max(y1, y2, y3) + max(h1, h2, h3) < a2y4 − h4√
(yn − yn+1)

2 + (xn − xn+1)
2 > a3(wn+wn+1+hn+hn+1)

2

max(y5, y6) > a4y4

(3)

where xn, yn represents the center point coordinates of the nth feature, and wn, hn represents
the length and width of the nth feature. The adjustment coefficients of the distance between
the first and third floors, first and second floors, and second and third floors are denoted by
a1, a2, and a4, respectively, while a3 represents the degree of adhesion between all features.

2.3.4. Attention Mechanism

The CBAM is a convolution attention mechanism module that combines space and
channels. As Figure 5 shows, given the intermediate feature graph F = RC×H×W as the
input, the CBAM module will judge the attention graph in turn along two independent
channels. Subsequently, it will multiply the attention graph with the input feature graph
to optimize the features, which not only reduces the size and computation of the feature
graph, but also improves the expression ability of the network. In order to extract the
effective contour features of the target and obtain the main content of the target detection,
the channel attention module is introduced, which is calculated as follows:

MC(F) = σ
(

W1

(
W0

(
Fc

avg

))
+ W1(W0(Fc

max))
)

(4)

where σ represents the sigmoid function, W0 ∈ Rc/r×c and W1 ∈ Rc×c/r, where W0 and
W1 represent two inputs shared weights. The ReLU activation function is followed by W0,
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and Fc
avg and Fc

max represent the feature map generated in space by using average pooling
and maximum pooling, respectively. The height is denoted by H, W is the width, C is the
number of channels, and r is the reduction rate.
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In order to accurately locate the detected target and improve the target detection
accuracy, the spatial attention module is introduced to focus on key features. It is calculated
according to the following expression:

Ms(F) = σ
(

f 7×7
([

Fs
avg; Fs

max

]))
(5)

where Fs
avg and Fs

avg represent the characteristics of average pooling and maximum pooling
of channels, respectively, and f 7×7 represents the convolution operation with a filter size of
7× 7.

2.3.5. CTMA

The classification accuracy of model recognition in the output layer is improved
in this paper by introducing the CTMA. It defines all contour pixel positions and pe-
ripheral rectangle contour information that meet the feature points as

(
xpn, ypn, wpn, hpn

)
,

(n = 1, 2, 3 · · · n), and thus establishes the contour matching function between features 1, 2
and 8. The specific optimization method is as follows:

Dnm =

[√
(yn − ym)

2 + (xn − xm)
2 − (rom + ron)

]
· cbnwbn+cbnhbn

2ron√
(xbn − xbm)

2 + (ybn − ybm)
2 = clengthnm [(cbnwbn + cbnhbn+cbmwbm + cbmhbm)/4 + Dnm]√(

xbn − xbj

)2
+
(

ybn − ybj

)2
= clength_nj(cbnw bn + cbnhbn+cbjwbj + cbjhbj

)
/2

loga

(
1−

∣∣∣1− clengthnm

∣∣∣)+ loga

(
1−

∣∣∣1− clengthnj

∣∣∣) = R(n)

, (6)

where Dnm represents the nearest distance between the outer surface of features n and
m; clength_nm represents the deviation coefficient of features m and n; clength_nj represents
the deviation coefficient of features j and n; a represents the adjustment coefficient, and R
represents the contour matching degree.

According to all the detected contour information, use Equation (6) to match and
locate the contour points, and use the located contour information to calculate the labels of
all features based on Equation (7). The specific optimization method is as follows:

xbn = sin(θbn)·
√

xn2 + yn2

ybn = cos(θbn)·
√

xn2 + yn2

θbn = arccot
(

yon
xon

)
− arccot

(
2
√
(xb5−xb6)

2+(yb5−yb6)
2

xb6−xb5

)
·s + arccot

(
2(yo8−yo5)

xo6−xo5

)
·s

(7)

where s represents the direction of the feature point: s in features 1, 3, 4, 6, 7 and 8 is 1, and
s in features 2, 5 and 9 is −1; θbn represents deflection angle.
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Based on the above matching conditions, the label of the feature is reassigned to ensure
the accuracy of the feature label and reduce the situation where the LP cannot be solved
due to the abnormal classification label.

2.3.6. Loss Function

The loss function used in YOLOV7-tinp is CIoU-Loss. It is calculated as follows:

CIoU = 1− IOU +
ρ2(A, B)

c2 + αv (8)

where IOU represents the overlapping area of the prediction box; A represents the pre-
diction box; B represents the real box; α is the weight function; v is the consistency of the
aspect ratio; ρ(A, B) is the Euclidean distance between the center point coordinates of the
A box and the B box, and c is the diagonal distance of the smallest box wrapping box A
and box B.

2.3.7. Model Evaluation

The main evaluation indicators selected to verify the effectiveness of the proposed
model are precision (P), recall (R), and mean average precision (mAP). The formulas for
calculating these indicators are as follows:

P =
Tp

Tp+Fp
× 100%

R =
Tp

Tp+FN
× 100%

mAP = ∑c
i=1 APi

C

(9)

where Tp represents the actual positive case and is judged as a positive case by the classifier;
Fp represents the actual negative case is judged as a positive case by the classifier; FN
represents the actual positive case but is judged as a negative case by the classifier; and C
represents the number of detection categories. This study only needs to identify the circular
features of the CP; therefore, C ≤ 9. The average value of AP is represented by mAP, which
can measure the overall performance of the target detection algorithm.

2.4. Calculation of CP LP
2.4.1. Location Solution in RPS

Using the calculated (Xm, Ym), the coordinate value of the CP in the physical coordinate
system can be deduced according to the similar projection relationship. It is calculated
as follows: 

X = Lw
Liw
·x

Y = Lh
Lih
·y

Dz =
√

X2+Y2√
(sc ·(u−sw))2+(sc ·(v−sh))2

· f

(10)

where (X, Y, Dz) is the actual spatial position of the target point relative to the camera;
(x, y) is the position of the target point in the pixel in the image; Lw and Lh represent the
length and width of the target circular feature, respectively; Liw and Lih represent the pixel
size of the CP feature in the length and width directions, respectively; sc represents the
pixel size of the camera, and sw and sh represent the length and width pixel sizes of the
image, respectively.

The location information of the CP can be calculated using (10), which guides the
robot end to move to the focal length of the camera and provide guarantee for the PPS of
the CP.
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2.4.2. PPS LP Solution

The pixel position information of effective feature points can be obtained using the
above algorithm. Combined with the three-dimensional spatial position of the CP, it can
be converted into a PNP problem [37]. Therefore, we use the pixel coordinate

(
xapn, yapn

)
and its corresponding spatial position coordinate (xon, yon, zon). Subsequently, the position
information

(
xpos, ypos, zpos

)
and attitude information

(
xang, yang, zang

)
of the CP coordinate

origin relative to the camera center point can be obtained. For the solution to the PNP
problem, different methods need different number of effective feature points.

In space, based on the vector set composed of three-dimensional coordinates of at least
six feature points, the position of any coordinate point can be represented by setting the
weight size as follows: 

pw
i =

n
∑

j=1
αijcw

j

n
∑

j=1
αij = 1

(11)

where pw
i is the point with known three-dimensional coordinates in the world coordinate

system; cw
j is the jth control point of pw

i in the world coordinate system, and αij is the weight
coefficient. Figure 6 shows the EPnP algorithm location process.
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According to the above positioning process, the pixel coordinates of each feature
based on the target recognition result are taken as input. In order to ensure the calculation
accuracy, the weight coefficient αij is calculated only when the number of feature points is
not less than six. Subsequently, the feature points are calculated in the camera coordinate
system. The error is defined by the Gauss–Newton algorithm, and the translation vector t
and rotation vector R are calculated. Finally, the position and orientation information of
the CP can be obtained.



Electronics 2023, 12, 1855 11 of 20

3. Results

The test process is conducted under the Windows 10 operating system. A processor
of model Intel (R) Core (TM) i7-10700K CPU @ 3.80 GHz, 3.79 GHz memory, and Nvidia
GeForce RTX 3080 graphics card is used. The programming language used is Python 3.9
on the PyCharm programming platform, and PyTorch 1.6 is selected as the deep learning
framework. The training is based on the GPU. During the performance test, the CPU is used
for comparative testing in order to ensure that it is similar to the actual application scenario.

3.1. Judgment Basis of CP LP Error

During data collection, this research fixed the robot on the base in order to obtain the
actual position and orientation information of the CP relative to the camera. The world
coordinates of the base were kept unchanged, and the robot was inserted into the CP
while teaching. This state was considered as the zero LP. The robot was moved randomly
out of the CP within the recognition range. Based on the LP information of the robot
during data collection and combining it with the zero LP information, the LP information
of the CP relative to the end of the manipulator was obtained. Subsequently, the actual
LP information of the CP relative to the camera was calculated. The absolute difference
between the actual LP information and the theoretical relative LP calculated in this paper
was used as the basis for evaluating the accuracy of this algorithm.

3.2. LP Accuracy Test in RPS

The RPS is mainly divided into feature recognition and LP resolution of the CP.
Figure 7 shows the recognition performance of the feature points in different scenarios. The
theoretical LP information is obtained based on the LP resolution algorithm proposed in
this paper, and subsequently, the actual LP error information is obtained. A comparison of
the different recognition methods in the RPS is provided in Table 4.

Table 4. Comparison of different recognition methods in RPS.

Stage Class Precision Recall mAP@ 0.5 mAP@ 0.5:0.95 Time-Consuming
(s)

RPS

Faster RCNN 0.997 0.998 0.994 0.984 0.701
YOLOV3 0.996 0.998 0.993 0.981 0.493
YOLOV4 0.998 0.998 0.995 0.984 0.439
YOLOV5s 0.998 0.999 0.995 0.986 0.296

YOLOV7-tinp 0.998 0.999 0.996 0.990 0.271
CBAM-YOLOV7-tinp 0.999 1 0.997 0.995 0.305

The experimental results in Table 4 show that the precision of CBAM-YOLOV7-tinp is
0.002 higher than that of Fast RCNN, 0.003 higher than that of yolov3, and 0.001 higher than
those of YOLOV4, YOLOV5, and YOLOV7-tinp. The recall value of CBAM-YOLOV7-tinp
is 0.02 higher than those of Faster RCNN, YOLOV3, and YOLOV4, and 0.001 higher than
those of YOLOV5s and YOLOV7-tinp. In this paper, considering mAP @ 0.5:0.95 as an
example, CBAM-YOLOV7-tinp has the highest accuracy, which is 0.005 higher than that
without the CBAM. In the actual positioning, we try to improve the detection accuracy
by reducing the false recognition in order to avoid damaging the manipulator. Therefore,
CBAM-YOLOV7-tinp performs the best in terms of the detection accuracy. Although
the detection time increases slightly due to the addition of the attention mechanism, this
increased time is acceptable due to the improved accuracy weight in each index.

Based on the comparison of the above results, we use CBAM-YOLOV7-tinp to identify
the position of the feature target, substitute the feature position information into the LP
solution model, and obtain the LP information in different scenarios, as shown in Table 5.
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sunny morning/afternoon; (c) outdoor sunny noon; (d) outdoor cloudy morning/afternoon; (e) outdoor
cloudy noon; (f) all scenes at night.

The positioning results in Table 4 show that the indoor accuracy is basically the same
as that at night, and the relative accuracy is relatively high. The average accuracy values of
X, Y, and Z are 2.34 mm, 2.51 mm, and 2.64 mm, respectively. The accuracy in the sunny
morning is basically the same as that on the cloudy day. The average accuracy values of X,
Y, and Z are 2.72 mm, 2.92 mm, and 2.98 mm, respectively. The accuracy values of X, Y, and
Z are 2.81 mm, 2.99 mm, and 3.17 mm, respectively, at noon on the sunny day. The average
accuracy values of all cases are 2.61 mm, 2.79 mm, and 2.90 mm, which can meet the needs
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of the RPS. The reason for the above accuracy difference is related to the shooting clarity
and light difference of the image under different light field conditions.

Table 5. LP error in RPS.

Scenes Weather Time X, mm Y, mm Z, mm RX, deg RY, deg RZ, deg

Indoor Sunny A.M./P.M. 2.36 2.51 2.54 / / /

Outdoor
Sunny A.M./P.M. 2.76 2.95 2.97 / / /

Noon 2.81 2.99 3.17 / / /

Overcast
A.M./P.M. 2.72 2.93 3.02 / / /

Noon 2.68 2.88 2.96 / / /

/ / Night 2.31 2.50 2.74 / / /

Note: “/” represents parameters that cannot be calculated or described.

3.3. LP Accuracy Test in PPS

The PPS is mainly divided into feature recognition and LP resolution of the CP. Figure 8
shows the effect of feature recognition in different scenarios. The theoretical LP information
is obtained based on the LP resolution algorithm in this paper, and subsequently the actual
LP error information is obtained. Table 6 shows the LP error of the CP in different scenarios.

Table 6. Comparison of different recognition methods in PPS.

Stage Class Precision Recall mAP@ 0.5 mAP@ 0.5:0.95 Time-Consuming
(s)

PPS

Faster RCNN 0.995 0.996 0.994 0.981 0.704
YOLOV3 0.995 0.997 0.993 0.980 0.494
YOLOV4 0.995 0.997 0.994 0.982 0.442
YOLOV5s 0.997 0.997 0.994 0.983 0.304

YOLOV7-tinp 0.998 0.998 0.996 0.984 0.272
CBAM-YOLOV7-tinp 0.999 1 0.997 0.986 0.308

SFLDLC-CBAM-YOLOV7-
tinp-CTMA 1 1 0.998 0.989 0.314

It can be concluded based on the experimental results in Table 5 that out of Faster
RCNN, YOLOV3, YOLOV4, YOLOV5s, and YOLOV7-tinp, YOLOV7-tinp outperforms
the other models in terms of various indicators. It can further be noted that the results
of the PPS directly affect the positioning results. In order to improve the accuracy and
meet the insertion accuracy, YOLOV7-tinp is further improved. The precision of SFLDLC-
CBAM-YOLOV7-tinp-CTMA algorithm proposed in this paper is 0.002 and 0.001 higher
than YOLOV7-tinp and CBAM-YOLOV7-tinp, respectively. Its recall value is 0.002 higher
than that of YOLOV7-tip; mAP @ 0.5 value is 0.002 and 0.001 higher than those of YOLOV7-
tinp and CBAM-YOLOV7-tinp, respectively, and the mAP @ 0.5:0.95 value is 0.005 and
0.003 higher than those of YOLOV7-tinp and CBAM-YOLOV7-tinp, respectively. In the
actual positioning, damage to the manipulator can be avoided by improving the detection
accuracy as much as possible by reducing misidentification. Therefore, SFLDLC-CBAM-
YOLOV7-tinp-CTMA performs the best in terms of the detection accuracy. However, its
detection time is slightly increased due to the addition of SFLDLC, CBAM, and CTMA.
This increased time is acceptable due to the improved accuracy of each index.

Based on the comparison of the above results, we use SFLDLC-CBAM-YOLOV7-
tinp-CTMA to identify the position of the feature target, substitute the feature position
information into the LP solution model, and obtain the LP information in different scenarios.
The corresponding errors are shown in Table 7.
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Table 7. LP error in PPS.

Scenes Weather Time X, mm Y, mm Z, mm RX, deg RY, deg RZ, deg

Indoor Sunny A.M./P.M. 0.63 0.87 1.23 1.15 0.9 0.52

Outdoor

Sunny A.M./P.M. 0.68 0.93 1.29 1.23 1.13 0.62
Noon 0.71 0.96 1.32 1.25 1.14 0.65

Overcast A.M./P.M. 0.61 0.86 1.19 1.15 0.99 0.57
Noon 0.59 0.83 1.21 1.17 0.94 0.54

/ / Night 0.60 0.85 1.20 1.16 0.92 0.51

Note: “/” represents that scenes and weather are not fixed.

The positioning results in Table 6 show that the features of PPS and RPS have a
common feature of circular edges. Therefore, the detection and positioning accuracy
trends are similar. The positioning accuracy is basically the same in indoor sunny days,
outdoor cloudy days, and at night, and the relative positioning accuracy is relatively high.
The average accuracy values of x, y, z, Rx, Ry, and Rz are 0.61 mm, 0.85 mm, 1.21 mm,
1.16 degrees, 0.94 degrees, and 0.54 degrees, respectively. The positioning accuracy is low in
outdoor sunny days, especially at noon. The average accuracy values of x, y, z, Rx, Ry, and
Rz in outdoor sunny days are 0.70 mm, 0.95 mm, 1.30 mm, 1.24 degrees, 1.14 degrees, and
0.64 degrees, respectively. The positioning accuracy can meet the needs of PPS. The reason
for the above accuracy difference is related to the shooting clarity and light difference of
the image under different light field conditions.

3.4. Comparison of Results

In order to evaluate the progressiveness of the algorithm proposed in this paper, this
paper compared it with three advanced electric vehicle CP identification and location
methods. Table 8 shows the comparison results.

Table 8. Comparison of positioning results.

Identification Stage Method x y z rx ry rz

RPS
our 2.61 2.79 2.90 / / /

quan / / / / / /
yinkai / / / / / /

Li / / / / / /

PPS
our 0.64 0.88 1.24 1.19 1.00 0.57

quan / / / / / /
yinkai / / / / / /

Li / / / / / /

Note: “/” represents a high error or inability to locate.

Table 7 shows that when the three advanced methods are used to identify multi-
category CPs, the robustness of the algorithm is low, the error is high, and they are unable
to identify and locate. Therefore, it is verified that the algorithm proposed in this paper
exhibits robustness with respect to the identification of multiple types of CPs and has a
significant application value.

3.5. Plug Test Verification

As the positioning accuracy in outdoor sunny days is low in the above tests, and the
positioning accuracy of other scenes is basically the same, we define two cases as scene 1
and scene 2. We carried out 200 plug-in tests for each of these two situations. In these tests,
the algorithm proposed in this paper is used for positioning, combined with the minimum
mechanism of three iterations, and the 6-DOF articulated robot of AUBO-i10 is used for
plugging. Table 9 shows the test results.
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Table 9. CP connection test.

Positioning Stage Scene Total Experiment
(Times)

Success Plug
(Times) Plug Rate (%)

RPS/PPS
scene 1 200 184 92.0
scene 2 200 193 96.5

Based on the identification and location algorithm proposed in this paper, the average
plugging rate of the CP is 96.5% in indoor (sunny/cloudy/night) conditions, and 92.0% in
outdoor sunny (morning/noon/afternoon) conditions.

4. Discussion

The LP errors are mainly caused by feature recognition positioning errors and system
errors. Next, we discuss these two types of errors.

4.1. Feature Recognition Positioning Error
4.1.1. Errors Caused by Complex Scenes and Different Characteristics of CPs

Although the size of CP has a unified standard, its material, smoothness, light angle,
light brightness, and the specificity of different manufacturers will affect the recognition of
CP characteristics. It can be divided into the following five situations, as shown in Figure 9:

a. The difference of recognition of the same CP with respect to different times, locations,
and scenes: The different time periods include morning and afternoon, noon, and
evening. Different scenes mainly include indoor and outdoor. Different orientations
mainly include the degree of the camera and the sun, and these differences will
increase the recognition difficulty.

b. The difference of the same CP under different plugging times: As the plugging times
increase, there will be bumps on the surface of the CP. The consistency of the surface
will be damaged, which degrades the recognition performance of the algorithm.

c. It is difficult to identify the color and structural characteristics of the same CP. The
round feature chamfer of the CP will cause the outline of the CP to deviate under
different angles. The round feature and background of the CP are both black in color.
The inside of the CP has a circle similar to the feature, which increases the difficulty of
identifying the feature.

d. Difference of different CPs: Chamfer degree of CP feature (d1), as well as different
surface materials of CP (d2), the degree of reflection and smoothness of the surface of
the CP (d3). The above factors will increase the difficulty of CP identification.

e. The image at the non-focus position is blurred. To calculate the LP of the CP, the
camera used is an industrial camera with an invariable focal length. Therefore, the
image will be blurred in the non-focal position.

The aforementioned five conditions are the main reasons for the CP feature recognition
difficulty. Therefore, during the recognition process, the occurrence of these conditions
should be minimized in order to reduce the interference of complex environment on
algorithm recognition. In Tables 5 and 6, the lighting environment of the images taken
at night is relatively stable; therefore, it will exhibit a good performance. However, the
positioning results are similar to those for indoor daytime, and no higher accuracy is
obtained in the stable light field. The main reason is that at the time of data acquisition,
the surfaces of some CPs are smooth, which will cause specular reflection. When only fill
light is available, the effective surfaces of the CPs and the camera lens will be parallel or
form a certain angle, and the effective feature area of the CPs is relatively large. Therefore,
when specular reflection occurs at a few feature locations during data acquisition, a large
amount of reflected light enters the camera aperture, resulting in overexposure of this part.
Due to specular reflection of some features, a large amount of reflected light is reflected
away, which will easily cause the loss of feature information. At noon in the outdoor
environment, the shadow will appear inside the CP due to the angle between the sun and



Electronics 2023, 12, 1855 17 of 20

the CP. Shadows can express additional interference features. The characteristics of the
parts under direct and non-direct sunlight have large differences in the amount of light.
This situation is the most complex, causing the largest recognition error.
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4.1.2. LP Calculation Error

The accuracy of EPNP algorithm depends on the pixel coordinate position of feature
points and the actual three-dimensional coordinate position. Furthermore, the number of
effective features, camera calibration, and hand-eye calibration accuracy affect the solution
results. The pixel feature position is directly related to the recognition accuracy of feature
points. The actual three-dimensional coordinate position deformation is related to the
expression of features on the image. The number of effective feature points is related to the
number of features recognized by the algorithm. The calibration accuracy has a relatively
small impact on the positioning accuracy.

4.2. System Error

The system error is mainly caused by the robot positioning accuracy, including three
aspects. First, the robot’s repeated positioning accuracy. Second, the vibration of the base
of the robot during the image acquisition and plugging process. Last, the positioning error
caused by the gravity interference of the robot at different positions.
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5. Conclusions

This paper proposed a set of electric vehicle CP identification and location algorithm
based on CBAM-YOLOV7-tinp-CTMA, which realized the CP identification and location
in multiple categories, multiple scenes, and a wide range. In this paper, the recognition
process was divided into two stages, and the recognition and positioning model was
established, respectively. The LP was calculated based on the similar projection relationship
and EPnP algorithm, and the insertion test was completed by using the mechanical arm.

The two stages were tested in this paper, and the average positioning errors (x, y,
z) of RPS CP were 2.61 mm, 2.79 mm, and 2.90 mm, respectively. The average LP er-
rors (x, y, z, rx, ry, and rz) of the fine positioning CP were 0.64 mm, 0.88 mm, 1.24 mm,
1.19 degrees, 1.00 degrees, and 0.57 degrees, respectively. In different scenarios, the higher
the positioning accuracy, the greater the plugging success rate. The plugging success rate
in outdoor sunny days was 92.0%, and in other cases, it was equal to 96.5%. Compared
with the existing advanced methods, the algorithm proposed in this paper had a high
universality and could identify various types of CPs and complete positioning. It provided
a theoretical basis for the positioning of various CPs and could have a high engineering
application value.

In the future, more data on CP types and environmental complexity will be added.
The improved algorithm will be optimized to improve its adaptability and recognition
accuracy, increase the success rate of plugging, and reduce the impact of the plugging
process on robots and vehicles. If there are problems with visual positioning, we can
use vibration signals to compensate for visual positioning errors in the future, thereby
avoiding accidents.
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29. Roszyk, K.; Nowicki, M.R.; Skrzypczyński, P. Adopting the YOLOv4 Architecture for Low-Latency Multispectral Pedestrian
Detection in Autonomous Driving. Sensors 2022, 22, 1082. [CrossRef]

https://doi.org/10.1016/j.physa.2019.123370
https://doi.org/10.1016/j.jenvman.2022.116483
https://doi.org/10.1016/j.energy.2022.126156
https://doi.org/10.1016/j.aap.2020.105692
https://doi.org/10.19421/j.cnki.1006-6357.2017.01.003
https://doi.org/10.1109/ROBIO54168.2021.9739254
https://doi.org/10.3390/electronics9060956
https://doi.org/10.1080/15325008.2022.2049647
https://doi.org/10.31803/tg-20210428191147
https://doi.org/10.1109/ICIEA48937.2020.9248188
https://doi.org/10.1109/ACCESS.2020.2966528
https://doi.org/10.1007/978-3-030-89134-3_62
https://doi.org/10.1007/978-3-658-13255-2_70
https://doi.org/10.1109/ICCUBEA.2018.8697488
https://doi.org/10.27061/d.cnki.ghgdu.2020.003402
https://doi.org/10.1049/iet-ipr.2019.1138
https://doi.org/10.3390/app12105247
https://doi.org/10.13873/J.1000-9787(2021)07-0081-04
https://doi.org/10.3390/s22093599
https://doi.org/10.1109/TII.2019.2926283
https://doi.org/10.1109/TITS.2022.3193909
https://doi.org/10.3390/electronics8050481
https://doi.org/10.1016/j.eswa.2021.114602
https://doi.org/10.3390/s22031082


Electronics 2023, 12, 1855 20 of 20

30. Chen, Z.; Li, X.; Wang, L.; Shi, Y.; Sun, Z.; Sun, W. An Object Detection and Localization Method Based on Improved YOLOv5 for
the Teleoperated Robot. Appl. Sci. 2022, 12, 11441. [CrossRef]

31. Chen, H.; Guan, J. Teacher–Student Behavior Recognition in Classroom Teaching Based on Improved YOLO-v4 and Internet of
Things Technology. Electronics 2022, 11, 3998. [CrossRef]

32. Liu, S.; Wang, Y.; Yu, Q.; Liu, H.; Peng, Z. CEAM-YOLOv7: Improved YOLOv7 Based on Channel Expansion and Attention
Mechanism for Driver Distraction Behavior Detection. IEEE Access 2022, 10, 129116–129124. [CrossRef]

33. Yan, B.; Fan, P.; Wang, M.; Shi, S.; Lei, X.; Yang, F. Real-time Apple Picking Pattern Recognition for Picking Robot Based on
Improved YOLOv5m. Trans. Chin. Soc. Agric. Mach. 2022, 53, 28–38. [CrossRef]

34. Xie, G.; Zheng, X.; Lin, Z.; Lin, L.; Wen, G. Bird’s Nest Detection of High Voltage Tower Based on Improved YOLOv4 Algorithm.
Electron. Meas. Technol. 2022, 45, 145–152. [CrossRef]

35. Zhang, Z. A Flexible New Technique for Camera Calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330–1334.
[CrossRef]

36. Hanqi Zhang Hand/Eye Calibration for Electronic Assembly Robots. IEEE Trans. Robot. Autom. 1998, 14, 612–616. [CrossRef]
37. He, Z.; Jiang, Z.; Zhao, X.; Zhang, S.; Wu, C. Sparse Template-Based 6-D Pose Estimation of Metal Parts Using a Monocular

Camera. IEEE Trans. Ind. Electron. 2020, 67, 390–401. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/app122211441
https://doi.org/10.3390/electronics11233998
https://doi.org/10.1109/ACCESS.2022.3228331
https://doi.org/10.6041/j.issn.1000-1298.2022.09.003
https://doi.org/10.19651/j.cnki.emt.2209514
https://doi.org/10.1109/34.888718
https://doi.org/10.1109/70.704231
https://doi.org/10.1109/TIE.2019.2897539

	Introduction 
	Materials and Methods 
	Construction of Experimental Test Platform 
	Image Data Acquisition 
	Feature Recognition Method 
	Feature Selection 
	Identification Algorithm Model 
	Data Enhancement Method 
	Attention Mechanism 
	CTMA 
	Loss Function 
	Model Evaluation 

	Calculation of CP LP 
	Location Solution in RPS 
	PPS LP Solution 


	Results 
	Judgment Basis of CP LP Error 
	LP Accuracy Test in RPS 
	LP Accuracy Test in PPS 
	Comparison of Results 
	Plug Test Verification 

	Discussion 
	Feature Recognition Positioning Error 
	Errors Caused by Complex Scenes and Different Characteristics of CPs 
	LP Calculation Error 

	System Error 

	Conclusions 
	References

