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Abstract: With the increasing trend towards informatization and intelligence in modern warfare, high-
intensity and continuous reconnaissance activities are becoming increasingly common in battlefield
environments via airborne, vehicle, UAV, satellite and other platforms. Visible and infrared images
are preferred due to their high resolution, strong contrast, rich texture details and color features,
and strong information expression ability. However, the quality of imaging is easily affected by
environmental factors, making it crucial to quickly and accurately filter useful information from
massive image data. To this end, super-resolution image preprocessing can improve the detection
performance of UAV, and reduce false detection and missed detection of targets. Additionally,
super-resolution reconstruction results in high-quality images that can be used to expand UAV
datasets and enhance the UAV characteristics, thereby enabling the enhancement of small targets. In
response to the challenge of “low-slow small” UAV targets at long distances, we propose a multi-scale
fusion super-resolution reconstruction (MFSRCNN) algorithm based on the fast super-resolution
reconstruction (FSRCNN) algorithm and multi-scale fusion. Our experiments confirm the feasibility
of the algorithm in reconstructing detailed information of the UAV target. On average, the MFSRCNN
reconstruction time is 0.028 s, with the average confidence before and after reconstruction being
80.73% and 86.59%, respectively, resulting in an average increase of 6.72%.

Keywords: object detection; deep learning; visible light target; infrared target

1. Introduction

With the improvement of information and intelligence of war, the war mode becomes
increasingly complex. The accurate perception of battlefield situation information is an
essential prerequisite for guiding military operations. Among them, the use of vehicle-
mounted, airborne, unmanned aerial vehicle, satellite and other platforms is an important
technical means to obtain battlefield situation information [1], which can provide a large
number of accurate, reliable and intuitive battlefield image information for decision mak-
ers [1]. On the one hand, the improvement of war informatization provides decision makers
with more means to obtain information, but also produces massive data. Traditional man-
ual processing methods have been difficult to meet the needs of modern warfare [2], so
how to quickly find useful information from massive data has become an urgent problem
to be solved in the battlefield information perception system [2]. On the other hand, in
order to adapt to the intelligent development direction of future war, it is necessary to give
intelligent weapons the ability to make autonomous decisions, and how to independently
obtain the information of hostile targets is one of the key technologies for the development
of intelligent weapons.

As an important part of a battlefield information perception system, image data is
intuitive and reliable. Visible and infrared images are the main sources of image data, which
are simple to obtain and widely used. In general, visible images have a high resolution,
strong contrast, rich texture details and color features, strong information expression ability,
and are easy to understand. However, the imaging quality of visible images is easily
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affected by the environment, and the imaging effect is extremely poor in environmental
conditions such as backlight, rain, smoke and so on. The infrared image is the embodiment
of the infrared radiation intensity of the object, and it still has stable and reliable imaging
quality in the case of the above visible image imaging failure. It is more suitable for
the complex battlefield environment, and has the ability to work stably in all weather
conditions. A visible image and an infrared image exhibit a good complementary effect,
and it is of great military significance to obtain hostile target information through these
two kinds of image data.

In April 2017, the United States developed the MLIDS integrated defense system [3].
As shown in Figure 1, by installing photoelectric infrared sensors and electronic jamming
systems, radar detection and kinetic energy weapons on two mine-proof and anti-ambush
vehicles (M-ATV), the UAV can be identified and tracked, respectively, and kinetic energy
weapons can be used to strike targets [3]. The UAVX anti-UAV system [4] developed by
the Black Monitor Company in the United States, as shown in Figure 2, is composed of an
infrared camera with n 8× zoom, a visible light camera with a 6× optical zoom, and a radar
with a 500 m detection range [4]. The neural network is deployed on a mobile computer
with A15CPU and 192 cores of CUDA GPU to process and classify radar data. Effective
UAV target detection and recognition can be achieved within 500 m, and zoom infrared
and visible light cameras are used for target tracking. The same American surveillance and
control anti-UAV system also includes the use of the optical and infrared detection NOAS
system; the TCUT system integrating radar, optical and infrared detection [5] and so on [5].
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In recent years, with the help of the progress of hardware technology and the proposal
of related theories, such as the convolutional neural network, object detection technology
based on deep learning has developed rapidly and has been successfully applied to fields
such as face detection, autonomous driving, pedestrian recognition, medical image analysis,
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security video detection and so on. However, in the military field, due to the requirements
of security and confidentiality, the object detection technology based on deep learning
has been developed rapidly. The deep learning detection technology for military targets
is still under development. Military scientific research institutions in various countries,
represented by DARPA, foresee the huge application value of deep learning technology
in the military field, and attach great importance to the transformation application and
innovative development of deep learning technology in the military field [6]. Among
them, battlefield target detection technology based on deep learning is one of the research
focuses [6].

Therefore, the deep learning detection technology of visible and infrared targets
in military application scenarios can not only assist decision makers to quickly screen
information, but it can also be one of the key technologies in the process of intelligent
weapons and equipment, which has extremely important military application value. In
modern war, soldiers and armored vehicles are the two main types of combat units. Based
on these two types of targets, this paper carries out research on target detection technology
based on deep learning, which realizes the accurate identification and detection of visible
light targets under appropriate lighting conditions, as well as the accurate identification and
detection of infrared targets under weak light conditions, such as dark and dim conditions.

2. Related Work

Object detection is one of the four research topics in the field of computer vision. Its
significance is to locate and classify the object of interest in the image, so as to provide
accurate and reliable object information for subsequent applications. In recent years, thanks
to the rapid development of deep learning technology, object detection methods based
on deep learning technology have surpassed traditional methods and become the main
research direction of the development of object detection technology.

Before 2012, object detection technology was in the traditional development stage, and
object detection algorithms mainly relied on statistical analysis and manually designed
features. However, the manually designed features had limitations, feature design became
more and more complex, and the development of object detection technology entered a
bottleneck period. Krizhevsky et al. [7] proposed the AlexNet neural network, which was
the first to use convolutional neural network to complete the target classification task,
and won the ImageNet [8] challenge in the same year with an overwhelming advantage.
The successful application of convolutional neural networks has widely attracted the
attention of the academic community [7,8]. In 2014, Girshick et al. [9] proposed the R-
CNN algorithm, which successfully applied the convolutional neural network to the object
detection task, marking that the object detection algorithm officially embarked on the
development route based on deep learning technology, and the object detection technology
developed rapidly [9].

In 2016, Redmon et al. [10] proposed the first one-stage object detection algorithm
YOLO. YOLO takes the whole image as the network input, extracts the global feature
map of the image, and directly regress the position and category of the object based on
the global feature map 10. Because YOLO has only one neural network, the training and
detection process is easier, which greatly improves the detection speed. The object detection
algorithm has the real real-time detection ability, but the detection accuracy is lower than
the two-stage object detection algorithm, and the detection effect of small objects is not
good. The YOLOv2 [11] algorithm focuses on solving the problems of low recall rate and
large positioning error of the YOLO algorithm 11. Five anchor boxes of different sizes are
designed to greatly improve the recall rate of the algorithm. The YOLOv3 [12] algorithm
proposes a new backbone network Darknet-53, and uses a convolution kernel with twice
the step size to replace the pooling layer to realize the structure of a fully convolutional
neural network 12. Due to the excellent performance of the YOLOv3 algorithm, the
subsequent improvements are based on YOLOv3, and the improvement direction is mainly
in the network structure, loss function, feature fusion mode, etc. For example, ASFF [13]
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improves the feature fusion method of YOLOv3, and proposes an adaptive spatial feature
fusion method, which improves the scale invariance of features and effectively improves
the detection accuracy without affecting the detection speed [13]. In 2020, the YOLO series
of algorithms ushered in a new version of YOLOv4 [14], which widely draws on a variety
of object detection improvement techniques proposed in recent years, further enhancing
the detection accuracy [14].

Deep learning object detection technology has developed rapidly, but the mainstream
research is still limited to the visible light field. The imaging quality of visible images is
easily affected by environmental changes, and the imaging effect is extremely poor in weak
light environments, such as night, haze, rain and so on. The infrared image is the reflection
of the temperature difference of the object, and the imaging effect is still reliable in the
above environment and has the ability to work all day. Thanks to the progress of infrared
imaging technology, the application of infrared imaging is increasingly common. Target
detection technology in infrared scenarios has become one of the key research directions of
scholars at home and abroad in recent years. However, due to the shortcomings of infrared
images, such as low resolution, low contrast, more noise and fewer features, new challenges
are posed to target detection technology in infrared scenes.

Ghose et al. [15] proposed an infrared pedestrian target detection technology using
the saliency feature map. The saliency feature map of the infrared image is extracted by
the saliency algorithm, and then fused with the original infrared image for the training
and testing of the Faster R-CNN network. The fusion method effectively improves the
detection accuracy of infrared pedestrian targets [15]. Laixiang et al. [16] proposed an
improved infrared target detection method based on the ZFNet network. For the feature
analysis of infrared targets, a spatial transformation network and dropout [17] layer were
introduced on the basis of ZFNet, which effectively improved the recognition accuracy
of the model. Srivastava et al. [17] and Hou et al. [18] proposed a detection network
RISTDnet for infrared small targets, which uses a convolutional neural network and hand-
designed feature methods to extract feature maps of infrared images, and detects small
infrared targets based on target and background possibility feature maps, which has
good detection accuracy for small targets with a low signal-to-noise ratio in complex
backgrounds [18]. Wang et al. [19] designed a feature extraction backbone network MNET
dedicated to infrared small targets. In order to retain the structural features of infrared
small targets as much as possible, the network only has three down sampling operations,
and uses a dense connection structure to integrate the position information of shallow
features and the semantic information of deep features to achieve a better target localization
and classification effect. The channel attention mechanism is introduced to improve the
importance of useful features, which effectively improves the detection effect of infrared
small targets [19]. For the detection of aerial infrared targets, Jiangrong et al. [20] proposed
an infrared target detection method based on single shot multibox detector (SSD), which
uses pooling and transposed convolution operation to complete the bidirectional fusion
of features, achieving better feature extraction ability. By adding feature enhancement
branches and more prediction frames in the shallow layer of the network, the detection
accuracy of infrared small targets is effectively improved [20].

In general, target detection technology in infrared scenes has achieved certain results
in recent years, but most of the methods directly transfer to the target detection algorithm
designed for visible light scenes, and the lack of algorithm design for infrared image
characteristics. The existing open-source datasets are mainly concentrated in the visible
light field, and there are few open-source datasets for infrared targets. Due to the uneven
quality of infrared devices, the infrared images between different datasets are quite different,
which affects the development of target detection technology in infrared scenes.
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3. Multi-Scale Fusion Super-Resolution Reconstruction Algorithm for UAV Detection

In UAV detection, it is necessary to ensure that the early warning time is advanced to
provide sufficient time conditions for subsequent operations. The detection system needs to
detect and identify the target when the target is at a long distance. However, the proportion
of long-distance non-cooperative UAV in the detection field of view is very small, the
imaging pixels are limited, the target characteristics are seriously degraded, and it is easy
to be interfered by complex background. It is difficult to distinguish low and slow small
targets from airborne objects such as kites and hot air balloons, which affects the effect of
target recognition and produces certain misjudgment and missed detection. In order to
enhance the characteristics of UAV targets, this chapter uses the image super-resolution
reconstruction method to reconstruct the low-resolution image with UAV targets to obtain
a high-resolution image of the same scene. The prior knowledge of the UAV contour and
the single frame of the UAV image in the video can be used to recover the high-resolution
detailed features of the target. Based on the small target detection of UAV, a new network
architecture is proposed on the basis of FSRCNN algorithm, and the network structure of
multi-scale fusion super-resolution algorithm is constructed.

3.1. Principle Framework

Multi-scale fusion super-resolution reconstruction convolutional neural networks (MFS-
RCNN) is based on the consideration that the long-range UAV target is not obvious. In the
case of a small number of pixels and unclear contours, based on the network structure of the
FSRCNN algorithm, combined with the idea of HrNet, the algorithm is obtained by a parallel
connection of four subnets with different resolutions and multiple multi-scale fusion.

As shown in Figure 3, the network structure is mainly composed of four branches
with different resolutions. Feature maps of corresponding resolution images are obtained
through feature extraction and nonlinear transformation, respectively. Feature fusion
between adjacent resolution feature maps integrates subnetwork image information, and
then the target UAV image is obtained through image reconstruction. In this network
structure, p is 168, q is 36, and m is 12.

3.1.1. Feature Extraction

The reconstruction from LR image to HR image needs to be achieved by upsampling.
MFSRCNN upsampling is similar to FSRCNN with the deconvolution operation. Deconvo-
lution is a type of zero-padding operation on the input image followed by convolution.

The operation of the parameters needs to be learned. The calculation formula of
deconvolution is shown in Equation (1).

O = s•(i − 1) + k − 2p (1)

where s stands for step size, k for kernel size and p for padding.
All the upsampling uses deconvolution, which can increase the receptive field, im-

prove the image quality, and transform the reconstruction process into an end-to-end
autonomous learning process.

MFSRCNN uses Conv and Deconv to upsample and downsample the image, respec-
tively, to obtain feature maps of four resolution sizes, which are used as the input of four
parallel network branches. Parallel networks are named subnetwork 1, subnetwork 2, sub-
network 3 and subnetwork 4 from top to bottom. Convolution performs feature extraction
at four scales while changing the image size. The deconvolution in the upsampling process
is composed of multiple serial deconvolution (step size is 2) when the upsampling is greater
than 2. See Figure 4 for the detailed process.
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Taking subnetwork 1 as an example, 168 convolution kernels are used for feature
extraction, and Figure 5 shows the results of upsampling and feature extraction with the
first 10 convolution kernels. The deconvolved image is enlarged to 400 × 400, different
convolution kernels extract different features, and some convolution kernels are sensitive
to the UAV contour, such as convolution kernels 1 and 7. Some convolution kernels are
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more sensitive to UAV internal features such as 4 and 5. The 168 convolution kernels jointly
extract UAV features from contour, color, detail and other aspects.
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3.1.2. Nonlinear Transformations

On the basis of the FSRCNN nonlinear transformation operation, four subnetworks
are parallelized by 1 × 1 convolution kernel to reduce the dimension from 168 to 36,
which can greatly reduce the amount of computation. Then, two 3 × 3 convolutional
layers are used for feature mapping in parallel. Figure 6 shows the structure diagram of
nonlinear transformation.
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3.1.3. Multi-Scale Fusion

Multi-scale fusion fuses feature maps of different scales to enhance image details,
which is conducive to improving the accuracy of super-resolution reconstruction [21].
Images with different resolutions are directly input into different subnetworks, and then
feature fusion is performed. The detailed fusion steps are shown in Figure 7. The feature
maps are upsampled and downsampled, respectively, and fused with the corresponding
size feature maps.
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As shown in Figure 8, the feature maps of different subnetworks are, respectively, up-
sampled and downsampled to adjust the size of the feature maps of adjacent subnetworks.
Each subnetwork is fused with feature information from adjacent parallel subnetworks.
Through multiple multi-scale feature fusion of the feature map, the subnetwork information
is constantly exchanged and fused, which is conducive to the extraction of target detail
features in super-resolution reconstruction.
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3.1.4. Image Reconstruction

The feature fusion results are extracted separately, and the dimension is expanded
by a 1 × 1 convolution kernel to solve the problem of the poor reconstruction effect of
low-dimensional feature maps. All four parallel subnetworks are upsampled to the target
size for feature fusion and feature extraction to obtain the final super-resolution image, as
shown in Figure 9.
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The fused feature map contains three-channel feature maps from four network branches,
and the feature map 10 is obtained after the fused result is sliced.

The fusion result shows that the feature map image in subnetwork 1 has a clearer
contour, richer details, and contains more detail and contour information. Figure 10 shows
the feature map of feature fusion result. The smaller the original input of the network
is, the less the contour and detail features are in the output, and the more abundant the
low-frequency information is. The fused image can be effectively compatible with high
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frequency information and low frequency information. Figure 11 is a grayscale image of
the feature extraction of 12 convolutional kernels. Some kernels extract information such as
contour information, e.g., convolution kernel 9, and some kernels extract low-frequency
information inside the UAV (excluding texture features), such as convolution kernel 1, 2, etc.
The 12 convolution kernels are extracted together to form the feature extraction part.
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Figure 11. Feature extraction result feature map.

The Relu function is used to activate the convolution layer (except deconvolution) to
accelerate the training process. At the same time, the large convolution kernels in FSRCNN
are replaced with multiple 3 × 3 small convolution kernels to ensure the reconstruction
quality. In the network, zero-padding is used to recover the image information to avoid
truncation error. Xavier was used to initialize the weight w in the convolutional layer, and
normal distribution was used to initialize the deconvolution layer; all parameters b were
initialized to 0.

3.2. Simulation Training and Results
3.2.1. Model Training

The data samples used in this paper are all acquired experimentally. The sample
original image size is 1920 × 1080.

Camera data: Sensor: 1/2.8 inch CMOS;
Focal length: 8.1–310 mm (F1.8–F5.6).
The number of samples collected in the experiment is limited, and data augmentation

is used to expand the training sample set. Through affine transformation, gamma transfor-
mation and some trimming work, the dataset of the original samples of UAV is expanded,
and finally about 1650 sample data containing UAV are obtained.

After data augmentation, UAV data samples are still limited. Firstly, the MFSRCNN
network is used to train the COCO dataset to obtain the pre-trained model, which improves
the feature extraction ability of the model and can effectively avoid overfitting [22]. Then,
fine-tune is used to train the UAV data to achieve super-resolution reconstruction of
UAV images.

The MSE loss function is used for training and the Adam optimization algorithm is used.
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The input data of the UAV is 100 × 100, output super-resolution size is 400 × 400, and
the training set and test set are 4:1. Because of the limited GPU memory, the batch size is set
to 8, and the learning rate is set to 0.0001; the learning rate undergoes a certain attenuation
during the training process. The loss curves obtained after pre-training and training with
UAV data are shown in Figure 12.
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Among them, the first 13,000 steps are to pre-train the COCO dataset and enhance its
feature extraction ability. After the curve is almost smooth, the transfer learning of UAV
data is started. The learning rate is set to 0.0001 to continue training, and the loss starts
to level off at about 30,000. As shown in Figure 13, training can effectively enhance the
reconstruction details and improve the reconstruction effect to a certain extent.
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3.2.2. Experimental Results

After training, the UAV super-resolution reconstruction results are obtained, and
compared with the bicubic interpolation and FSRCNN reconstruction results. Bicubic
interpolation, FSRCNN and MFSRCNN all have certain reconstruction effects on UAV
blurred images. Among them, the UAV target reconstructed by bicubic interpolation is
relatively fuzzy, losing the contour features and detail features of the UAV, and it is just a
simple enlargement of the image, and there will be a certain degree of black edge (which can
be removed by algorithm improvement). It is not conducive to the later UAV identification.
FSRCNN has a good reconstruction effect and clearly shows the contour features of the UAV,
but the background noise in the reconstruction results is large. Through comparison, it is
found that, on the one hand, MFSRCNN can significantly improve the reconstruction effect
of UAV images and it can effectively suppress background noise and improve the signal-to-
noise ratio of the image. On the other hand, by using multiple multi-scale fusion and COCO
dataset pre-training, the features of the UAV can be better extracted in super-resolution
reconstruction, the detailed features can be always retained in repeated multi-scale fusion,
and the detailed information of the UAV can be effectively reconstructed.



Electronics 2023, 12, 1732 11 of 13

4. Analysis of Experimental Results
4.1. Comparative Analysis of Models

The MFSRCNN algorithm and other classical super-resolution reconstruction algo-
rithms were tested on the UAV test set images, and the PSNR and SSIM under different
algorithms were statistically calculated, and Table 1 was obtained. Because the Loss function
of ESRGAN adopts Perceptual Loss, although the reconstructed visual effect is good, it is
not suitable for PSNR measurement, so Table 1 is not included in the ESRGAN comparison.

Table 1. Comparison of PSNR and SSIM and parameters reconstructed by different algorithms for
the UAV test set.

Method Params PSNR SSIM

Bicubic 15 K 17.2557 0.6607
FSRCNN 63 K 22.4835 0.7503

VDSR 665 K 26.0151 0.7698
LapSRN 813 K 26.2043 0.7726
DRRN 297 K 27.6547 0.7789

SRResNet 1 518 K 31.9431 0.7974
MFSRCNN 406 K 31.8800 0.7961

The overall framework and architecture of MFSRCNN are very simple, but it is
more effective than many previous models, especially for the problem of UAV super-
resolution reconstruction of small targets. MFSRCNN achieves a good balance between
model size and reconstruction performance. Although MFSRCNN has more parameters
than FSRCNN, DRRN and other lightweight network models, its effect on the UAV test
set is substantially different to other network models. Although SRResNet has a good
reconstruction effect, its network is too complex, and its network parameters are 3–4 times
that of the MFSRCNN model, which requires more network training and UAV super-
resolution reconstruction time. According to Table 1, the performance and parameter
comparison results of MFSRCNN and other algorithms are obtained, as shown in Figure 14.
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The experimental results show that the average reconstruction time of MFSRCNN is
0.028 s under GPU (NVIDIA GeForce GTX 1080 Ti). In the case of a small input image, it
meets the requirements of real-time detection of UAV.

4.2. Analysis of Super-Resolution Reconstruction Effect

In order to measure the super-resolution reconstruction effect of UAV images, part of
the images in the UAV dataset before and after reconstruction are input into the YOLOv3
network for UAV identification in turn, and the partial results are shown in Table 2.
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Table 2. Detection results by YOLO network before and after UAV super-resolution reconstruction.

Serial
Number Before After Ascension Serial

Number Before After Ascension Serial
Number Before After Ascension

1 0.82 0.86 4.88% 11 0.7 0.73 4.29% 21 0.85 0.91 7.06%
2 0.95 0.97 2.11% 12 0.62 0.67 8.06% 22 0.72 0.68 −5.56%
3 0.76 0.79 3.95% 13 0.73 0.78 6.85% 23 0.5 0.52 4.00%
4 0.86 0.9 4.65% 14 0.63 0.69 9.52% 24 0.56 0.65 16.07%
5 0.63 0.65 3.17% 15 0.68 0.77 13.24% 25 0.96 0.97 1.04%
6 0 0 0.00% 16 0.93 0.95 2.15% 26 0.96 0.98 2.08%
7 0.71 0.77 8.45% 17 0.67 0.98 46.27% 27 0.75 0.91 21.33%
8 0.91 0.92 1.09% 18 0.8 0.84 5.00% 28 0.97 0.99 2.06%
9 0.93 0.94 1.08% 19 0.83 0.83 0.00% 29 0 0.41 ∞
10 0.45 0.48 6.67% 20 0.61 0.73 19.67% 30 0.88 0.97 10.23%

It can be seen that super-resolution reconstruction has improved the detection accuracy
of UAV to a certain extent. The average confidence before reconstruction is 80.73%, and the
average confidence after reconstruction is 86.59%, with an average increase of 6.72%. For
the case where the low-resolution UAV image is obvious and the score is large before recon-
struction, the detection improvement effect is not obvious, and the confidence is increased
by about 2%. For the case where the LR UAV image is not obvious and the score is relatively
small before reconstruction, the reconstruction can effectively improve the probability of
UAV classification prediction and the accuracy of boundary box localization. In the case
of some UAV image contour features where are not obvious and feature degradation is
serious, the LR image can not detect the UAV, and the SR image can detect the UAV, which
improves the detection accuracy of the UAV. In a few cases, there will be no improvement
or even degradation of UAV detection, and the super-resolution model needs to be further
improved. It can confirm the effectiveness of the MFSRCNN algorithm and has practical
application value.

5. Conclusions

Given the challenges of detecting long-distance UAV targets with a small proportion
of pixels and unobvious contour features, we propose a novel MFSRCNN algorithm that
combines the FSRCNN algorithm with the HrNet network. The MFSRCNN algorithm
leverages multi-scale fusion to preserve the high resolution and reduce the loss of UAV in-
formation during reconstruction, resulting in improved target detection and reduced noise
artifacts. Our experimental results demonstrate that the algorithm effectively reconstructs
detailed information of the UAV target, with an average time of 0.028 s and an average
confidence increase of 6.72%. With fewer network parameters, the MFSRCNN algorithm
achieves an optimal balance between performance and model size, meeting the real-time
demands of UAV detection. Our verification of the detection algorithm shows that the
reconstruction significantly improves the confidence of the UAV target and provides a solid
foundation for small target detection.
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