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Abstract: The article proposes a new approach to maximum power point tracking (MPPT) for
photovoltaic (PV) systems operating under partial shading conditions (PSCs) that improves upon
the limitations of traditional methods in identifying the global maximum power (GMP), resulting
in reduced system efficiency. The proposed approach uses a two-stage MPPT method that employs
machine learning (ML) and terminal sliding mode control (TSMC). In the first stage, a neuro fuzzy
network (NFN) is used to improve the accuracy of the reference voltage generation for MPPT, while in
the second stage, a TSMC is used to track the MPP voltage using a non-inverting DC—DC buck-boost
converter. The proposed method has been validated through numerical simulations and experiments,
demonstrating significant enhancements in MPPT performance even under challenging scenarios. A
comprehensive comparison study was conducted with two traditional MPPT algorithms, PID and
P&O, which demonstrated the superiority of the proposed method in generating higher power and
less control time. The proposed method generates the least power loss in both steady and dynamic
states and exhibits an 8.2% higher average power and 60% less control time compared to traditional
methods, indicating its superior performance. The proposed method was also found to perform well
under real-world conditions and load variations, resulting in 56.1% less variability and only 2-3 W
standard deviation at the GMPP.

Keywords: maximum power point tracking; machine learning; partial shading; terminal sliding

mode control

1. Introduction

The continuous increase in global warming and the decrease in fossil energy sources
has led to a sharp inclination towards renewable sources as a substitute source of energy.
Among these renewable sources, the solar system has been extensively used for power
generation in a variety of applications due to its multiple benefits, such as uninterrupted
power, no noise, no pollution, and easy maintenance. This increasing demand for power
generation using photovoltaic (PV) systems for both residential and industrial areas re-
quires an appropriate and efficient optimization of energy production systems. To draw
maximum PV energy, many methods have been developed in the past, such as incremental
conductance, perturb and observe, constant voltage, parasitic capacitance, and constant
current. This allows the controller to harvest the maximum available power from the PV
system under varying solar irradiance and temperature scenarios; these controllers are
usually known as maximum power point tracking (MPPT) controllers. However, most
MPPT methods suffer from a lack of strict convergence analysis and are not capable of
handling partial shading conditions (PSCs) [1,2].
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1.1. Literature Review

This research aims to find a more effective solution for PV systems that are partially
shaded by analyzing and modeling their performance. By simulating the relationship
between environmental conditions and the PV array’s output characteristics, we can gain a
deeper understanding of the special effects of PS. This knowledge is crucial for developing
an MPPT algorithm. Power generation in solar systems is influenced by the intermittence
of both temperature and irradiance. The output power can also fluctuate because of the
non-linear relationship between current and voltage in conventional PV cells. Therefore,
incorporating an MPPT algorithm can help to maximize power output under varying
meteorological conditions. However, when PV systems are partially shaded, they exhibit
distinct characteristics, and multiple peaks may appear on the P-V characteristic curve.
The impact of shading depends on the pattern and placement of the PV arrays, which can
decrease the efficiency of the tracking algorithm as the PV array tends to operate at a local
MPP [3-5].

MPPT calculations are an essential part of the operation of PV systems. These calcula-
tions are designed to optimize the output power of PV panels by determining the point
on the P-V curve where maximum power can be obtained. Under ideal conditions where
all PV cells receive the same amount of sunlight, the MPPT algorithm can quickly and
easily locate a single peak on the P-V curve and adjust the system accordingly. However,
there are scenarios where the P-V curve of the panel has multiple local peaks. One of the
prevalent reasons is PS, which happens when the cells in a panel are exposed to varying
levels of sunlight. This can occur when the panel is partially blocked by an object such as a
tree or building, or when the panel is installed in a location with uneven sunlight. In such
scenarios, the standard MPPT calculations may only identify the local maximum power
point (LMPP) in the previous working point region, as the global maximum power point
(GMPP) could be located much farther away on the P-V curve [6]. Therefore, it is crucial to
utilize sophisticated MPPT methods and techniques to trace the global peak power point
during PS scenarios and augment the general effectiveness and operation of the PV system.
This will immensely reduce the competitiveness of the PV panel, in particular during PS.
To solve PS, numerous approaches have been proposed to alleviate the effect of PSCs in
such PV panels and a lot of research has been carried out, focusing on finding the GMPP
by reducing the search area.

Hu et.al presented an idea that states the current of faulted cells or modules increases
under the PSC, causing the temperature rise of a few faulted modules or cells [7]. Therefore,
there are a lot of LMPPs. The usage of a thermal camera to identify PSCs is also proposed.
The proposed approach can detect the cell or module faults and can make use of the thermo-
graphical data gathered from panels to split the PV array into healthy and unhealthy
segments and also efficiently determine PS. However, this method consumes a lot of
computational time for global maximum power point tracking (GMPPT) [8].

Tamir Shaqarin suggested an approach that works well for tracking precision and
steady-state error to track the GMPP under any climate condition. The proposed approach is
using “particle swarm optimization (PSO) through targeted position-mutated elitism” (PSO-
TPME) with a reinitialization mechanism on a PV system under partial shading conditions.
The fast-converging and global exploration capabilities of PSO-TPME make it appealing
for online optimization. But a significant implementation complexity is associated with
PSO-TPME based MPPT [9].

A MPPT approach with minimal complexity is suggested by A. Safari which is founded
on an adjustable step size incremental conductance method and a straightforward linear
equation [10,11]. The aim of this approach is to relocate the operating point near the
GMPP. This technique is based on a variable step size incremental conductance, which
automatically adjusts the step size to track the GMPP and minimize energy loss. However,
this method has a significant drawback, as the linear function may not be effective when
the PV array has multiple LMPPs. Furthermore, this approach may struggle to adapt to
system parameters that change over time.
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Different “perturb & observe” (P&O) and incremental conductance (InC) MPP tech-
niques have been used in the PV system by the researcher for detecting the GM using P-V
& I-V curves. The techniques used in [12] are evaluated based on speed, accuracy, and
complexity. Fractional short circuit current (FSCC), P&O, fractional open circuit voltage
(FOCV), and InC techniques are conventional and the most commonly employed tech-
niques in PV energy systems. However, the major drawback of these techniques is lack of
robustness and frequent oscillations around local optima [13].

An adaptive neuro-fuzzy (NF) interference system strategy is proposed in [14,15]
which is applied to extract MMPT for the PV system under intermittent environmental
circumstances; however, this technique based on machine learning requires a huge database.
Additionally, this technique suffers from the chattering effect, steady-state error, and
oscillations in the desired output.

Other researchers have also employed population-based global optimization methods
which have been combined with deep neural networks to enhance their global exploration
capabilities and reduce their computational complexity [16-18] such as the firefly algorithm
(FA) [19], the artificial bee colony algorithm (ABC) [20], and the genetic algorithm (GA) [21]
to achieve maximum power, but these algorithms suffer from convergence speed, require
lot of tuning parameters (population size, crossover probability, and mutation rate), and are
sentinel to noise. Moreover, all these PSO, GA, FA, and ABC population-based algorithms
are not efficient when it comes to the control problem, because of their inability to handle
uncertainty and nonlinear systems efficiently and are less flexible to changing environment
conditions.

In conclusion, it is obvious that there are multiple MPPT techniques available with
distinct features, including the type of sensing material, rate of convergence, level of
intricacy, efficiency, expense, and suitability, all targeting to locate the GMPP under PSCs.
Each method is associated with its advantages and disadvantages but a general drawback
that is being observed in all traditional techniques is the challenge of chattering and slow
convergence. Focusing on this research problem, a hybrid MPPT technique is proposed that
can perform under varying climate conditions and shading patterns with slight chattering,
and can assure fast and finite convergence to GMMP.

1.2. Original Contribution

The following are in-depth descriptions of the key innovations and significant contri-
butions made through this research.

1.  This research presents a strong and sophisticated controller known as the nonlinear
terminal sliding mode controller (TSMC) that is specifically designed to track the
MPPT of PV arrays’ PSCs by utilizing a non-inverting buck-boost converter.

2. To achieve this, the proposed controller utilizes a neuro-fuzzy network (NFN) for
reference generation, which is trained using over 22,000 distinct PS scenarios.

3. The proposed controller is designed to ensure fast and finite-time convergence, pro-
viding a reliable and efficient solution for MPPT under PSCs.

4.  The robustness and chattering minimization around the GMPP are tested by introduc-
ing uncertainties in the system, demonstrating the success of the proposed controller
in challenging operating conditions.

5. To demonstrate the efficacy of the proposed controller, an experimental setup is estab-
lished, which allows for a comprehensive evaluation of the controller’s performance.

6. To evaluate its performance, a comparison of the proposed controller with other
algorithms is already available. The results are presented in Table 1, which illustrates
the superiority of the proposed controller in terms of its performance characteristics.
The comparison highlights the effectiveness of the proposed controller and its ability
to perform better than other existing algorithms.
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Table 1. Comparison of proposed work with existing techniques.
References Methodology Merits Demerits
Punitha et. al. [22] Incremental Fast response and Offline a.nd large
conductance good tracking computational time
Patel et. al. [23] Neural networks High tracking speed ~ Oscillations at MPPT
Particle swarm Reduce steady Large

computational time

Slow tracking and

El-Helw et. al. [25] Perturb and observe ~ Easy implementation oscillation
around MPTT
Neuro-fuzzy Robust, fast Offline technique,

Proposed work convergence and

and TSMC g -
minimum chattering

requires large dataset

The present study is organized in a systematic manner to comprehensively address
the proposed PV system with a MPPT controller. The following sections outline the
methodology and results of the study.

Section 2 delves into the statistical and mathematical modeling of the given PV sys-
tem, providing a thorough understanding of the system’s behavior. The shading effect, a
crucial aspect of PV systems, is described in Section 3. In Section 4, the use of a machine
learning-based neuro-fuzzy network (MLNFN) is presented for the generation and training
of reference voltage. This methodology is applied to improve the performance of the
MPPT controller. The average state-space model of the DC—DC buck-boost convertor is
explained in Section 5, while Section 6 presents the robust nonlinear TSMC. To evaluate the
proposed controller’s performance under varying environmental conditions, simulation
results are analyzed using MATLAB/Simulink in Sections 7 and 8. The hardware valida-
tion of the proposed system and a comprehensive performance analysis are presented in
Sections 9 and 10, respectively. Finally, the study concludes in Section 10, summarizing the
key findings and highlighting the contributions made to the field of PV systems and MPPT
controllers.

2. PV System Mathematical Modeling

The PV cell has a p-n junction and produces electric power due to the photons. It
consists of a current source Iph, a series resistance R;, a shunt resistance Ry, and a diode, as
shown in Figure 1.

" =,
— (D ¥r

Ly
Y

L . .

Figure 1. PV array equivalent model.

PV

To evaluate the parameters of the photovoltaic (PV) system it is necessary to have
knowledge of the PV power-voltage or current-voltage curve under standard conditions
of measurement (SCM). This information can be obtained through the testing and char-
acterization of the PV module under SCM, which typically includes a specific irradiance
level and cell temperature. This information can then be used to model the PV system
and determine the performance and efficiency of the system under different operating
conditions.
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As Rp and Rs have low values, they can be neglected in some cases. This means that
the total current is mainly determined by the photocurrent and the resistance losses are
considered to be negligible. However, this will depend on the specific PV system and the
operating conditions, and it is always important to consider the actual values of R, and Rs
to make sure they can be neglected. The current of a PV array arranged in a combination of
series and/or parallel can be described by [26,27].

N N
V+R5(N—;)I V+R5(N—P)I
I =IpyNp—IpNp |exp| ———"— | - 1| — ————="—, 1)
VraN;s Rp ( &)
Np
where
Ipy: PV array current
Ip: Diode saturation current
a: Ideal factor
Rg: Resistance in series
Rp: Resistance in parallel
Ng: Number of series cell
Np: Number of parallel cell
Vr: Thermal voltage
PV array thermal voltage is given by,
KT
vy = Ns @)
q
where
q: Electron charge
K: Boltzmann's constant
T: Temperature of p-n junction
The PV current Ipy is given by,
G
Ipv = (Ipvn + KiAT) = ®3)
N
where
Ipyn: Nominal condition PV current
G: Irradiance at the surface of panel
Gp: Nominal condition irradiance
K;: Temperature coefficient of short circuit current
AT: Difference of nominal and actual temperature
Saturation current of the diode is represented by,
_ Isen + KiAT
IO o Vocn+KiAT 1 (4)
eXP( I,'l‘/;l ) -

where

Iscn: Nominal condition short circuit current
Vocn: Nominal condition open circuit voltage

MATLAB/Simulink is used to model and simulate the above-mentioned equations
and corresponding results are presented in Figures 2, 3, 9 and 10.
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Figure 2. PV curve at different irradiances.
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Figure 3. PV curve at different temperatures.

These figures illustrate the I-V and P-V attributes of the PV system, which are used in
the current work and subject to different levels of irradiances and temperatures. Four PV
arrays are linked in a series such that each array comprises of fifteen series modules and a
total output of 24 KW power of the other two parallel strings.

The P-V curve of the system is presented in Figure 2 with a constant temperature that
is directly proportional to power. While Figure 3 shows the P-V curve of the system at
different temperatures by keeping irradiance constant, which is inversely proportional to
power.

3. Influence of Shading Effect on PV Array

It is a common practice to connect multiple solar panels in a series or parallel con-
figuration to meet power requirements. However, when certain panels are blocked from
sunlight by passing clouds, nearby trees or buildings, the shaded cells absorb some of the
power generated by unshaded cells, resulting in the generation of heat which can cause
damage to the shaded cells [28].

To prevent this, bypass diodes can be employed as depicted in Figure 4, which help to
prevent a negative voltage across the shaded cells. From Figure 4, the bypass diode begins
to conduct when the condition V; — Y' ; V; > Vp is satisfied where i # 2 and Vp is the
forward voltage drop of the diode [29,30].
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Figure 4. Bypass diode parallel with PV cells.

However, activating diodes at different voltage levels alters the characteristics of the
PV system and results in multiple peaks, as shown in Figure 5. This trait can cause the
system to operate at a local peak instead of the optimal global peak, resulting in a decrease
in PV efficiency.
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Figure 5. Global and local peaks due to the shading effect.

4. Machine Learning Based Proposed System Framework

Figure 6 illustrates the MLNF technique used in this research, which is based on the
Takagi-Sugeno (TS) fuzzy inference system. TS and Mamdani are two popular types of
fuzzy inference systems used in the field of fuzzy logic. The main difference between the
two is the way they handle fuzzy rules and fuzzy outputs. In Mamdani-type systems,
the output of each rule is a fuzzy set, which is then combined to form the final output
using fuzzy logic operations such as union or centroid defuzzification. In contrast, TS-
type systems use a linear combination of the inputs to generate a crisp output. There are
several advantages of using TS-type systems as they are computationally efficient, accurate,
provide better interpolation, and are easy to tune compared to Mamdani-type systems [31].

The proposed framework has five inputs, including four different irradiance values
(G1, G2, G3, and G4) and one temperature (T) parameter. The fuzzification layer, which is
the input layer, consists of three triangular membership functions for each parameter. The
output layer comprises a linear equation for each rule. The MLNFN generates a reference
voltage for the peak power from the PV arrays under PS and varying environmental
conditions.
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Figure 6. Proposed MLNF control scheme.

Large datasets are essential for training the MLNFN. These datasets are generated
by modeling the PV array system in MATLAB/Simulink under different (PSCs). To train
the NFN, around 22,000 scenarios of PSCs are randomly generated for MPP voltages to be

used as reference voltages for the controller.

Figure 7 illustrates the reference voltages generated using the MLNFN against three
different membership functions at shading pattern SP1, which lasts from 0 to 0.5 s, and
SP2, which lasts from 0.5 to 1 s. The voltage changes abruptly from 1645 V to 1265 V
when irradiances change from SP1 to SP2 in the case of triangular membership functions.
Table 2 provides a comparative analysis of reference voltages generated using different NF
techniques. The table helps in understanding the effectiveness of the proposed technique

over the existing ones.

1700 T r T T
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N 260 = = =
< 1500} 16 230 ]
5]
4 1640 2404 .........)
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> 1620 0.67470.68
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Figure 7. Reference voltage generation using various NF techniques.

Table 2. Comparison of reference voltage prediction for various NF techniques.

FIS Membership Shading Pattern Reference Actual Voltage Error (V)
Functions (SP) Voltage (V) Generated (V)
TRIMF SP1 1262 1262.1 0.1
TRAPMF SP1 1262 1235 27
GUASSMF SP1 1262 1258 4
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5. Non-Inverting Average State-Space Model of Buck-Boost Converter

The DC—DC buck-boost converter in non-inverting configuration moves up or down
the voltages to force the PV array to operate at the MPD, from input (PV array) to output
(load). With the help of the switching period T, the converter is periodically controlled
where: T = Ty, + Top, Top is the ON time and Ty is the OFF time. The converter’s duty ratio
is defined by u = T,,/T.

To reduce the waves in the converter, input voltage capacitor C; is used; while for
limiting the output voltage capacitor, C, is used. In this work, it is assumed that the
converter is operating in continuous conduction mode (CCM).

Figure 8 shows the approximate circuit of the non-inverting buck-boost converter with
two switching intervals. The first switching interval has both switches, S; and S; active
while the diodes D and D, are inactive. In the second switching interval, both the diodes
D1 and D, are active while the switches; S; and S, are inactive [32,33]. In the first interval,
according to Kirchhoff’s current and voltage law, we have:

Ipy = Ipy — I, 5)
Vi =V (6)

V.
Icr = —% ()

Figure 8. Non—inverting configuration of DC-DC buck-boost converter.

Whereas in the second interval S; and S, are inactive and D; and D, are forward-
biased. Using Kirchhoff’s current and voltage law, we have:

Ic1 = Ipy 8)

Vi = -V )
V

Iceo =1 — % (10)

In light of the volt second balance of the inductor and charge balance of the capacitor,
we can express:
dvg  Ipy I

i -G o (11)
dip. Vo Veo
T A ) (12)
dvg I Vo

a6 Rg 1
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Averaging the model for one switching duration and considering x, xo and x3 to be
the average value of Vq, I, and Vi, we can write, x1 =< v >, xp =< i >, x3 =<
Vep > and u =< u >.

Hence Equations (11)—(13) can be rearranged as,

. 1pZ} x2
= — — = 14
=T (14)
T I R
X2 T u T 1(1 u) (15)
. X2 X3
t3=201 -y - B (16)
3 CZ( ) RCZ

The final Equations (14)—(16) are utilized in the designing of PV system control law.

6. Design of Terminal Sliding Model Control

A controller design based on the nonlinear robust terminal sliding mode (TSM) is
proposed for tracking the MPPT of PV arrays under PSCs using a non-inverting buck-boost
converter. In this controller, the error, el, is defined as the discrepancy between the desired
output voltage of the PV array and the actual one and is given in Equation (17). The
controller uses this error to adjust the reference voltage generated by the MLNEN algorithm
and to extract the maximum power from the PV array,

e1 = X1 — X4 17)

where x7 is V}y and xy4 refers to V¢ The derivative of Equation (17) with its dynamics
reported in (15) becomes,
. ipz; X2
=— - —u- 18
L (18)
The first stage is to design a sliding surface and the next stage is the selection of a
control law for holding the system trajectory on the sliding surface making the tracking

error zero. The equation of TSMC is given by,

d n—1
s =eh+ xeg (20)

where e, = ej, 1 represents the relative system degree, ¢; is the error among the o, desired
reference voltage, a positive parameter chosen randomly or by some approach whichever
is more suitable choice and the output voltage,  is rational power equal to p/g.

By taking the derivative of sliding surface we have,

§ = re;71é2+ x e (21)
Control law is given by Equation (22),

u(t) = tleg + Ugis (22)

Ugis = —k1(s) — kopsign(s) (23)

where 1, is the equivalent control vector while us is the discontinuous control (the
correction factor) vector which is given by uy;; = ksign(s), where k is a controlled gain.
To obtain u.,, Equation (22) will be simplified, the parameters used in the equation are
given as,

e1 =X — X14 (24)
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. i x
po 2
eg=———uUu—x 25
(e, 1d (25)
1 1
62 —T 617 (26)

Taking derivative of e; yields,

1_1.
err e (27)
By substituting the parameters in Equation (22) we obtain,

. 1 o111 1 1y .
s:r[od el?} [oc? eﬁ(cil”—”c—’iz—xld)}—ﬁ-

. | 28)
By taking s = 0 we obtain, i,y as,
ipo(r —1) + x14c1(1 — 1)
Ueqg = Xo (1’ — 1) (29)
Finally, by adding Equations (23) and (29) we obtain the control law u(f),
j -1 X 1-—
w(py = U=V R =) en(s) (30)

X (r—1)

7. Proposed Control System Performance Validation

This section explains the validation of the proposed system for MPPT under various
PSCs using MATLAB/Simulink.

7.1. Simulation Setttings

MATLAB 2017Ra is used to perform the simulations where powergui and a constant
time solvent are opted for to run the simulation. The information about the PV array being
used in this research is given in Table 3. The parameter values used in converter and
controller designing are given in Table 4. Three distinct shading patterns (SPs) namely SP1,
SP2, and SP3 are subjected to varying irradiance, while SP4 exhibits uniform irradiance, as
mentioned in Table 5. For the SP4 case with regular irradiance, only a single PV curve is
produced, which in turn keeps a simpler detection for the MPP through any traditional
methods. However, in the remaining three cases of PS, it is difficult to identify the global
peak, as the PV characteristic curve now exhibits multiple local maxima points instead of
just one GMPP. These local maxima points appear due to the shading of certain portions of
the PV array, which can cause the power output of the shaded portions to decrease, creating
multiple peaks in the PV curve, making it challenging to pinpoint the GMPP accurately.

Table 3. Parameters of PV system.

Parameters Symbols Values

Maximum power Pumax 200 W

Open circuit voltage Voc 3290V

Optimum voltage Vmp 26.30 V

Short circuit current Isc 8210 A

Optimum current Iymp 7.610 A
Temperature coefficient of Isc Tsc 0.00318 A/°C
Temperature coefficient of V¢ Toc —0.123V/°C
Parallel resistance RP 601.33 Ohms

Series resistance RS 0.23 Ohms
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Table 4. Parameters of converter and controller.
Parameters Symbols Values
Capacitor at input C1 1 mF
Capacitor at output C2 48 uF
Inductor L 20 mH
Switching frequency FS 5000 Hz
Constant K1 10
Constant K2 100
Rational power R 0.501
Table 5. SP for P-V and I-V curves.
SP Gy (W/m?) G, (w/m?) G3 (w/m?) G4 (W/m?)
SP1 200 400 600 1000
SP2 400 500 800 800
SP3 600 600 1000 1000
SP4 1000 1000 1000 1000

The proposed MLNFN TSMC strategy is evaluated from three distinct characteristics
i.e., (1) robustness to environmental changes (2) PSCs, and (3) controller uncertainties.

Initially, the simulations were carried out to achieve the P-V and I-V attribute curves
of the four SPs mentioned above in Table 5. Figure 9 shows the P-V curve attributes under
SP1 to SP4 while Figure 10 shows I-V curve under SP1 to SP4.

4
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2F |[——sp2 1
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Figure 9. P-V curves at different SPs.
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Figure 10. I-V curves at different SPs.
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It can be noted from the results that irradiances are directly proportional to the cur-
rent/voltage; however, when SPs are different then various local peaks have happened.

7.2. Test Case Senarios

Two different sets of SPs with different temperatures taken for the comparative perfor-
mance analysis of the proposed technique are shown in Table 6.

Table 6. SP for test case scenarios.

SP G1 (W/m?) G, (W/m?) G; (W/m?) G4 (W/m?) T (O
SP1 200 400 600 1000 30
SP2 400 500 800 800 25

It was observed in the case of the SP1 scenario that the GMPP was situated at 1645 V
and the associated output power was 15,000 W, as shown in Figure 11. While for the case of
SP2, Figure 12 shows that MPP was at 1250 V and the associated output power was 8000 W.

These results clearly show that the proposed MLNFN TSMC efficiently tracks the GMPP in
the existence of local peaks.

4

2 10 r r '
— SP1
15F .
3
§ 1k x10* ¥ 1
1.6
Do-q 1.4
1.2
05F 1 J
0.8
12001400 1600 1800
0 L L .
0 500 1000 1500 2000
Voltage (V)

Figure 11. Voltage and power at SP1.
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Figure 12. Voltage and power at SP2.
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8. Comparative Analysis of Proposed Technique

For detailed analysis regarding the performance improvement achieved with the
proposed strategy, a comparative study with existing conventional techniques was carried
out and can be found in the subsequent sections.

8.1. Performance Analysis without Uncertainities

Initially, the proposed MPPT technique’s efficiency was evaluated under both steady-
state and dynamic conditions. The dynamic response of the technique is depicted in
Figure 13, which shows the tracking of voltage when there was a sudden change in the set
point from SP1 to SP2. The PV terminal voltage at 1645 V was regulated by the proposed
MPPT technique, and at SP1, the output power reached 15,000 W, which was the MPP.
In the proposed MPPT technique, at t = 0.5 s, the SP suddenly changed from SP1 to SP2.
This resulted in locating the new MPP at 1265 V, where the array power output changed
to 8000 W, as shown in Figure 13 successfully. Furthermore, the planned MPPT technique
instantly controlled the duty ratio of the buck-boost converter.

2000 T T T T
. Vref
Ii "\‘\ ........ Vproposed
A N7 \ = = Vpid
1500 | I!;" ‘;\‘\ —===Vp&o
\; I/’ s
1000 F 600 1
s i
=
> 1400
[
500§ y
| 0.5 0.54
o
0 0.2 0.4 0.6 0.8 1
Time (S)

Figure 13. Voltage tracking without uncertainties.

Moreover, at the same time for the same system, the simulations run for conventional
techniques (P&O and PID). As shown in Figure 13, the conventional techniques failed to
track instantly the voltage at the time of dynamic change in the shading pattern; that was at
0.5 s when SP changed from SP1 to SP2. It can be noted that in this scenario the simulations
were carried out without adding uncertainties in the system and it is clear from the results
that the proposed method obtained success in tracking the MPP with a rapid response
under different shading patterns.

8.2. Performance Analysis with Uncertainities

The Simulink model which is described already is used by adding some uncertainties
into the system to check the robustness and to make a comparison of it with other existing
techniques shown in Figure 14. Uncertainties in the shape of capacitance and inductance
were added to the parameters of the buck-boost converter. A capacitance of 58 uF was
added in parallel with C2 and an inductance of 30 mH was added in series with an inductor
which was conducted for 0.7 to 0.8 s by mean of signal builder and switches.
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Figure 14. Power analysis without uncertainties.

The voltage tracking and the changing shading pattern from SP1 to SP2 for the pro-
posed technique and other existing methods (P&O and PID) are displayed in
Figures 15 and 16. Initially, SP1 was applied where the MPP was located at 1645 V and its
subsequent output power was 15,000 W. This proposed methodology successfully operated
at this point. The P&O worked at 1630 V and the calculated value of the output was
14,500 W. The proposed technique was able to accurately locate the new MPP at 1265 V
and 8000 W despite the uncertainties caused by changes in the shading patterns from SP1
to SP2. However, it is important to note that traditional methods failed to perform well
under these conditions, often oscillating around local peaks and experiencing significant
chattering, as seen in Figure 16. The proposed technique, however, was able to precisely
identify the optimal operating voltage, resulting in a significant enhancement in system
efficiency. Both the proposed and traditional methods are illustrated in Figures 15 and 16,
respectively, showing the variations in PV terminal voltage, output power, and the duty
cycle during the transition from SP1 to SP2.
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Figure 15. Voltage tracking with uncertainties.
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Figure 16. Power analysis with uncertainties.

The results indicate clearly that the proposed technique showed minimum chattering
as compared to P&O and PID for 0.7 to 0.8 s when uncertainties were added; it could bear
abrupt changes which demonstrated control robustness.

8.3. Duty Cycle and Fault Analysis

Figure 17 demonstrates that the proposed technique was successful in the instanta-
neous control of the duty cycle. When the shading pattern changes from SP1 to SP2 at 0.5 s
then the duty cycle changes from 0.21 to 0.35. On the other hand, the error convergence was
tested when the shading patterns changed from SP1 to SP2, which is shown in Figure 18.
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Figure 17. Duty cycle at SP1 and SP2.
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Figure 18. Error in SP1 and SP2.

9. Comparative Analysis of Proposed Technique

The proposed system has been validated through a practical experimental setup. The
PV emulator used in this study is based on the single diode model, where the PV system
acts as a current source with an antiparallel diode and intrinsic resistances. Literature
shows that a PV cell is essentially a voltage source dependent on current, and its output
current and open-circuit voltage (Voc) vary with changes in irradiance and temperature.
Therefore, a DC power source with high current and low sensitivity can emulate the
electrical characteristics of a PV system. The superposition of constant current, constant
voltage, and diode activation effectively mimics the electrical behavior of a PV cell. The
load was changed using a 500 W variable resistor, which in practical terms alters the
maximum power delivery to the load and forces the algorithm to maximize the power at a
changing load following the maximum power delivery theorem. The impact of irradiance
was evaluated by suddenly changing the voltage of the DC current source. Figure 19
illustrates the physical connections among the PV system components such as the DC—DC
buck-boost converter, sensors, microcontrollers for MPPT control, data acquisition, and
load. The performance of the proposed MLNEN TSMC was compared to that of a ZN-tuned
PID controller. The emulation function was limited by the variable current generation for
the PV module. Table 7 lists the values of the components used for the practical application
of control. Figure 20 shows the layout of the experimental setup.

Atmega 320 for Data acquisition

Computer for Data acquisition

Data acquisition l"
(Py)
-

Internal resistance of TEG
(Rrgg)

Boost converter

| DC Power Supply :
(Vae) Voltage
Sensor
(Vi)

Load
(Ry)

Duty cycle (Dg)
Atmega 2560 for MPPT Technigque

Figure 19. An experimental setup with a low-cost PV emulator.
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Table 7. Specifications of hardware components.

Parameters Symbols
Load, (Rp) 5,10 (3, 300 W
DC source 1 PS305
DC source 2 MS305-D dual channel
Switching frequency, (f) 61 kHz
Inductor (L) 1 mH
Output capacitor (Cj,) 1000 puF
Input capacitor (Cout) 100 uF
Oscilloscope Tektronix TDS-3052B
Power diode PHY 105Q04
Voltage sensor B25 voltage sensor
Current sensor module ACS172
Micro-controller ATmega 2560/328

MOSFET IRF730

Modulated
Variable DC PV Emulator

DC Converter

’ Bypassdiodearay

Figure 20. Experimental setup for MPPT.

Figure 21 shows tracked power with dynamic load conditions by MLNFN TSMC and
PID controllers. PID takes up to 250 ms for final GMPP settling as shown in Figure 21B.
Oscillations which were unavoidable were noticed after 250 ms represented in magnification
window, in addition to this less maximum power was achieved with PID. It added to power
loss and decreased inefficiency. MLNFN TSMC tracks GM faster as compared to PID and
settles at GMPP in 100-120 ms as shown in Figure 21A. MLNFN TSMC showed minimum
oscillations after GMPP detection and consequently generated the least power loss in steady
and dynamic states showing an 8.2% higher average power and 60% less control time. The
performance in transition and final steady states was observed in the experiment, similar
to the anticipated behavior in the mathematical model. Negligible fluctuations and the
least settling time in experimental results reiterated better performance of MLNFN TSMC.
Figure 22A,B, shows the reference voltages computed by the MLNEN TSMC and PID
controller, respectively.
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10. Common Performance Analysis and Discussions

This study delves into the shortcomings of conventional PID control-based methods
for tracking the MPP in PV systems during PSCs. These techniques are unable to circumvent
local maxima (LM) traps and often lead to voltage fluctuations that impede the integration
of large-scale PV systems into power grids. To address these challenges, in recent years
the researchers have proposed a new technique called the intelligent modified shuffled
frog leaping algorithm (IMSFLA) which has been found to be more effective in tracking the
GMPP with an efficiency of 99%. IMSFLA also demonstrates minimal oscillations at the
GMPP resulting in increased power output to the load. The IMSLFA algorithm operates
by dividing the problem into several sub-problems, which are then optimized in parallel.
The algorithm uses a combination of local and global search strategies to explore the search
space efficiently. The local search strategy helps the algorithm to converge quickly, while
the global search strategy helps it to avoid local optima and find the global MPP. Compared
with conventional techniques, the reported IMSFLA provides improved accuracy, faster
tracking speed, and robustness to noise.

Our proposed method of MLNFN TSMC has been verified as robust in dynamic as
well as static operating conditions through hardware experiments. These experiments
show that the proposed technique performs well under real-world conditions and load
variations, resulting in 56.1% less variability and only a 2-3 W standard deviation at the
MPP and found to mimic the IMSFLA performance.

The purposed technique combines the advantages of fuzzy logic control, neural
network-based control, and terminal sliding mode control to achieve optimal performance.
In real-world partial shading conditions and load variation, the performance of the neuro-
fuzzy terminal sliding mode MPPT technique depends on several factors, such as the
complexity of the system, the quality of the sensors, and the accuracy of the modeling of the
PV system. However, the technique has been shown to be effective in improving the perfor-
mance of PV systems under partial shading conditions and load variation. The purposed
technique improves the efficiency of the PV system under partial shading conditions and
load variation, compared to other MPPT techniques. The technique was able to adjust the
duty cycle of the DC—DC converter to ensure that the PV system operated at the MPP, even
under partial shading conditions. The results also showed that the proposed technique
was able to maintain a stable output voltage and current under partial shading conditions
and load variation. The neuro-fuzzy logic was able to adjust the controller parameters in
real-time based on the input signals, which ensured the stability of the system. Furthermore,
the terminal sliding mode control was able to provide fast and accurate tracking of the
MPP, even under dynamic partial shading conditions.
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11. Conclusions

This study proposes a two-stage MPPT approach for PV systems operating under PSCs.
A NFN is employed to enhance the reference voltage generation for MPPT. The proposed
strategy guarantees finite-time convergence of MPP voltage tracking and resolves the issue
of multiple peaks caused by shading conditions, in contrast to traditional TSMC methods.
The method is tested through real-time experiments and numerical simulations and was
found to significantly improve MPPT performance, even under rapidly changing irradiance
and temperature conditions. The proposed robust TSMC approach is also more resilient, as
demonstrated by simulations under varying weather conditions and uncertainties. The
results show that the proposed method can quickly and accurately track the MPP, even in
the presence of uncertainties, when compared to P&O, PID and incremental conductance
conventional controllers.
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