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Abstract: This paper proposes a design method for a channel-type sheep dynamic weighing system
to address the current problems encountered by pastoralists at home and abroad, such as time-
consuming sheep weighing, difficulties with data collection, and management of the stress response
in sheep. The complete system includes a hardware structure, dynamic characteristics, and a Kalman-
aggregate empirical modal decomposition algorithm (Kalman-EEMD algorithm) model for dynamic
data processing. The noise suppression effects of the Kalman filter, the empirical modal decomposition
(EMD), and the ensemble empirical modal decomposition (EEMD) algorithms are discussed for
practical applications. Field tests showed that the Kalman-EEMD algorithm model has the advantages
of high accuracy, efficiency, and reliability. The maximum error between the actual weight of the
goats and the measured value in the experiments was 1.0%, with an average error as low as 0.40%
and a maximum pass time of 2 s for a single goat. This meets the needs for weighing accuracy and
goat flock weighing rates.

Keywords: herd weighing; dynamic; Kalman-EEMD algorithm

1. Introduction

With the development and progress of Chinese society, people’s requirements for
clothing, food, housing, and transport are increasing. To meet the huge demand for beef
and goat meat, the development of animal husbandry is becoming increasingly large-scale
and refined [1]. Through high-precision sensors, herdsmen can correlate disease, nutrition,
reproduction, and production with the weight, water intake, and exercise levels of their
goats and then combine this with automated equipment to form a smart livestock platform
for refined breeding and scientific management [2]. In livestock production, livestock
farmers can obtain the fat condition and growth pattern of their livestock in real-time
through weight changes so that they can improve their feeding methods in real-time and
increase the meat production rate, fleece production rate, and reproduction rate of their
livestock. To achieve this, it is necessary to measure the weight of their livestock on a
regular basis [3].

At present, most of the weighing scales in the domestic market are made by adding a
fence to the bench scale, which not only restricts the action of the goats but also requires
manual counting and recording of ear tags and weight information, which is inefficient
due to the amount of required manual labor; this can also be inaccurate. Dynamic scales
squeeze the goats into a small space so that they cannot move for the measurements, which
is more efficient but can be slow and costly to maintain [4–6]. Both of these methods
can frighten the goats, lowering their immunity and increasing the incidence of disease,
which is not conducive to healthy goat growth. For the dynamic weighing of livestock,
Y. Wang used artificial neural network techniques to associate a large number of physical
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features extracted from walking images with the live weight of pigs, with an average
relative error of around 3% [7]. X. Song et al. also proposed quantifying the error in weight
prediction using morphological traits automatically measured by a 3D vision system [8].
In 2019, Wang Kui et al. designed a dynamic goat-weighing herding system to compare
the EMD algorithm and the mean algorithm, which yielded an average error of 1.1% for
the EMD algorithm and 2.7% for the mean algorithm within the same elapsed time of 8.4 s.
However, the different lengths of wool (fleece) from seasonal sheep cover the sheep’s body
to varying degrees, altering the size of the sheep’s body surface area and rendering weight
measurement using image processing methods unsuitable. The method of Wang Kui et al.
is too time-consuming and has a high degree of error in weighing a single goat.

Based on the current development of dynamic weighing, and the problems encoun-
tered by domestic and foreign herders, such as time-consuming sheep weighing and
inaccurate weight data that are difficult to collect, this paper proposes a channel-type sheep
dynamic weighing system. The STM32 chip is used as the console to collect and calculate
the weight data, which are displayed in real-time on a touch screen. The dual storage
mechanism of offline exporting by an SD card module and uploading to server storage by
a WiFi module ensures data security. A mobile phone front-end and a computer front-end
are used to display the results in real-time. The practical test results showed that the system
is stable and reliable, with high accuracy and speed in dynamic weighing and that it can
accurately record the growth and weight changes of livestock in real-time.

2. Principles of Operation and System Structure of the Channel-Type Flock Dynamic
Weighing System
2.1. Working Principles of the Channel-Type Sheep Dynamic Weighing System

The basic workflow of the channel-type goat-weighing system begins when the goat
steps into the weighing platform through the channel section. Pressure is applied to the
pressure transducer, and the strain gauges in the pressure transducer are deformed, and
their resistance value changes accordingly. This is then connected to a bridge, where the
change in resistance can be indirectly measured by measuring the change in bridge voltage
to obtain the magnitude of the external force applied. The bridge output is connected to an
analog-to-digital conversion circuit. When working, the bridge will obtain the electrical
signal into the analog-to-digital conversion chip, and the analog-to-digital conversion chip
will amplify and filter the electrical signal and then convert it into a digital signal to the
master control. The master control on the digital signal processing obtains the weight,
while the RFID reader reads the goat’s ear tag number and transmits it to the master control.
The master control then divides the flock by the data obtained and displays and stores the
information obtained on the ear tag, the weight, and the division of the flock. The workflow
diagram of the channel-type goat dynamic weighing system is shown in Figure 1.

2.2. Channel-Type Flock Dynamic Weighing System Construction

The system architecture is shown in Figure 2, with an overall choice of three weighing
body splicing structures, with a single weighing body size set at (60 × 45) cm according
to the body length and width of the goat. The main functional structure consists of the
channel section, the weighing section, and the dividing section.

The structure of the sensor is shown in Figure 3. The front end of the channel section
is set up as a flared shape with castors, and the rear end of the proximity weighing section
is set up as a linear structure channel with adjustable width. The weighing section uses
an AVIC L6G pressure sensor for pressure signal collection, a 24-bit high-precision analog-
to-digital conversion unit ADS1232 for data conversion, an Omron photoelectric sensor to
obtain the real-time position of the sheep, and a RFID reader for ear tag reading. Actuators
and electric actuators make up the smart gate drive module, the human–machine interface
is realized by a touch screen, and the fence and the smart gate are controlled by the drive
module to make up the fencing section.
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3. Algorithm Design for the Weighing Section

As the goat enters the weighing section, the front door closes, and the rear door opens.
The goat passes through the three weighing bodies in the weighing section in turn, and the
data changes after passing through the three weighing bodies are collected and collated, as
shown in Figure 4.
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Figure 4. Weigh system architecture.

When the goat steps on the weighing body, in the process of moving forward, there is
a certain impact on the body, which makes the pressure on the weighing body unstable, and
the data obtained change accordingly. To ensure that the algorithm used in the weighing
part fits the hardware architecture of this system and improves the measurement accuracy,
and analysis of the data obtained from the sensors was performed through a simulation
system to find a suitable algorithm. The model used for the tests was a single weighing
body with a four pressure sensors structure, as shown in Figure 5.
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Under ideal conditions, the change in data produced by the goat stepping into the
weighing body to leaving it gently is shown in Figure 6, which divides the whole action
into three stages: on the scale, in the scale, and off the scale.
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Figure 6. Change diagram of the AD value under moderate activity.

In Figure 6, S_1, S_2, S_3, and S_4, the AD values obtained by the four sensors of the
weighing body are shown, and S_sum is the sum of the AD values obtained by the four
sensors. To summarize:

(1) Severe spike disturbances occurred in the data when the goats were weighed on
and off the scales.

(2) The data fluctuated when goats made movements on the weighing body.
(3) Each goat will cause slight fluctuations when traveling smoothly on the weigh-

ing body.
(4) As the goat travels on the weighing body, the S_1, S_2, S_3, and S_4 data changed

significantly, and the sum S_sum could ideally be considered constant.
As in Figure 6, if valid data are retained, the noise jitter, data spikes on the rising and

falling edges, and data fluctuations generated by the action need to be removed from the
part marked by the dashed line.

A relatively small single-in, single-out sliding window dataset was created in the
sub-controller C8T6 program to remove the data spikes generated when the goat was
weighed. The structure of the data group used to solve this data spike problem is shown in
Figure 7, and the effect of removing the weighing spike is shown in Figure 8.

Various data processing algorithms were simulated by a simulation system, and we
found that the Kalman filter and EEMD algorithms were the best for spike jitter [9].
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Figure 8. Data processing.

Using the first-order Kalman filter algorithm for data processing, the Kalman filter
process was divided into two main steps, namely, the prediction phase and the correction
phase. Prediction phase: An initial optimal estimate of the system state variables for the
current round was made, and then the system covariance matrix was calculated for the
current round of predictions. Correction phase: We calculated the Kalman gain, then
corrected the a priori estimate using the residuals of the observed and predicted values,
and finally updated the covariance matrix to provide the system with a basis for the next
round of calculations, as shown in Figure 9.
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Kalman filter time update equation:

Xk = AXk−1 + Buk−1 (1)

From the optimal estimate of the system state variable at moment k − 1, the system
prediction at moment k was calculated. Xk is the current state optimal estimate predicted
using the k − 1 moments, A is the coefficient matrix under the previous state Xk−1, B is
the control matrix, and u is the control quantity. When dealing with one-dimensional data,
A = 1, B = 0, and uk−1 = 0; that is, Xk = Xk−1.

Pk = APk−1 AT + Q (2)

The system covariance at moment k was predicted from the system covariance at
moment k − 1, where Pk is the system noise covariance matrix at moment k, Pk−1 is the
system noise covariance matrix at previous moment k − 1, and Q is the covariance of the
system process noise.

Kalman filter state update equation:

Kk = Pk HT
(

HPk HT + R
)−1

(3)

We calculated the Kalman gain Kk at moment k. H is the observation matrix of the
object, and R is the covariance matrix of the observation noise, which needs to be derived
experimentally during the commissioning process. When dealing with one-dimensional
data, H = 1.

Xk = Xk + Kk(Zk − HXk) (4)
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The optimal value of the state variable at moment k was calculated from the predicted
value of the state variable and the observed value of the system, Zk object.

Pk = (I − Kk H)Pk (5)

We updated the covariance matrix of the system process noise for use in the next
iteration, where I is the unit matrix. Since the first Kalman filter operation was performed
without Xk, the first value of the dataset obtained after the operation could not be used;
to solve this problem, the second number of the array was assigned to the first one after
the operation.

Based on the testing with Q set to 0.01 and R set to 0.05, the experimental results are
shown in Figure 10, where the black dashed line represents the raw data, and the red line is
the filtered data. As shown in the figure, the use of the first-order Kalman filter effectively
removed the jitter in the horizontal section, although there was still minor jitter in the
processing of the spiky data section, although the filtering effect was significant.
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Figure 10. The rendering of the Kalman filter.

The empirical mode decomposition (EMD) method is an adaptive time-frequency
localization analysis method proposed by Huang et al. [10–12]. Its basic functions are
generated automatically, and it can decompose the raw signal into multiple intrinsic mode
function IMF components and a residual, with each IMF representing the variation of the
raw signal at different frequencies, while the residual reflects the slowly changing amount
of data in the signal. The EMD algorithm steps are shown in Figure 11.

Assuming the raw signal x(t), we found all local maxima and minima in x(t) and used
the cubic spline interpolation to fit the local maxima to the upper envelope emax(t) and the
local minima to the lower envelope emin(t).

The mean value envelope m(t) was obtained by calculating the average of the upper
and lower envelopes at each time point:

m(t) =
1
2
[emax(t) + emin(t)] (6)

The raw signal was subtracted from the mean envelope to obtain h(t):

h(t) = x(t)− m(t) (7)
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Figure 11. The rendering of EMD.

At the end of this step, we determined if h(t) satisfied the condition of being an intrinsic
modal function IMF [13–15]. If h(t) satisfied the condition, h(t) was considered an intrinsic
modal function C(t) of the raw signal. The conditions for an IMF of a modal function
were met:

(1) The total number of extremes in the whole set of integers was the same as the
number of crossing zeros or differed by 1.

(2) The mean envelope of the upper and lower envelopes was zero for any given time
period, and the entire waveform was locally symmetrical.

If h(t) did not satisfy the condition, we used the current h(t) as the new raw signal.
This was repeated until the condition of the intrinsic modal function IMF was satisfied.

r(t) = x(t)− h(t) (8)

R(t) is the residual component corresponding to the current intrinsic mode function
IMF. r(t) was treated as the new raw signal, and the above steps are repeated until the
EMD decomposition process ended when the intrinsic mode function IMF could no longer
be decomposed.

The sum of all intrinsic modal functions IMF and the remaining residual components
was the raw signal x(t):

x(t) =
n

∑
k=1

Ck(t) + rn(t) (9)

CK(t) is the intrinsic modal function component, and rn(t) is the residual component,
which generally represents the average trend and is a constant or monotonic series. The
raw signal EMD algorithm was decomposed as in Figure 12.
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Figure 12. The decomposition diagram of EMD.

As in Figure 12, there was multiple modal mixing of the IMF components of the
raw signal, i.e., one IMF contained feature components at different time scales, and the
conditions under which the EMD iterative process should be stopped lack criteria [16,17]. To
solve the modal mixing phenomenon, Huang introduced a uniformly distributed frequency
of 0-mean white noise into the raw signal to be analyzed so that signals of different time
scales were automatically separated to their corresponding reference scales, which is the
ensemble empirical mode decomposition (EEMD) algorithm, and the steps of the EEMD
algorithm are shown in Figure 13 [18,19].
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We first set the overall average number of times M. A standard normally distributed
white noise ni(t) was added to the raw data to form a new signal.

xi(t) = x(t) + ni(t) (10)
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Xi(t) is the signal after the additional noise of the i-th trial, and ni(t) is the white
noise sequence added in the i-th trial [20]. The EMD decomposition of the signal after the
addition of white noise was then performed to obtain

c1,j(t) c2,j(t) · · · cM,j(t), j = 1, 2, · · · J (11)

Ci,j(t) is the j-th IMF obtained by decomposing after the i-th addition of white noise
and r i,j(t) is the residual function (i = 1, 2, 3, . . . , M). We repeated the above steps M times
to repeatedly decompose the set of IMFs obtained by adding white noise signals with
different amplitudes.

xi(t) =
J

∑
j=1

ci,j(t) + ri,j(t) (12)

Finally, the above corresponding IMFs were pooled and averaged to obtain the final
IMF after EEMD decomposition, i.e.,

cj(t) =
1
M

M

∑
i=1

ci,j(t) (13)

Cj(t) is the j-th IMF of the EEMD decomposition (i = 1, 2, 3, . . . , M; j = 1, 2, 3, . . . , J).
The EEMD decomposition of the raw signal is shown in Figure 14.
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Figure 14. The decomposition diagram of EEMD.

As shown in Figure 14, compared with the EMD algorithm, after adding white noise,
the first-order IMF component to the eighth-order IMF component all contained only
one frequency component, and there was no modal mixing phenomenon, so the EEMD
algorithm was selected as the algorithm for sub-control. After several experiments, the
EEMD algorithm had the best effect on the raw data when the standard deviation of the
white noise was 0.5, and the number of noises was 100, as shown in Figure 15, where
the black dashed line is the raw data and the red line is the data after processing by the
EEMD algorithm.
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Figure 15. The rendering of the EEMD filter.

As shown in Figure 16, the elimination of jitter in the horizontal part of the EEMD
algorithm was largely not different from the effect of the first-order Kalman filter, and
the processing of spiky data by the EEMD algorithm was much smoother, with almost
no fluctuations [21,22]. The black dashed line in Figure 16 is the raw data, the blue line is
the data after Kalman filtering, and the red line is the data after processing by the EEMD
algorithm. This figure shows that for the processing of spiky data, the EEMD algorithm
had the best processing effect, and the EEMD algorithm was finally selected as the initial
filtering algorithm.
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Figure 16. Filter effect contrast diagram.

The raw data were processed by the EEMD algorithm, as shown in Figure 15. The red
line is the processed data, and it started to fluctuate at the horizontal coordinate 600. In
order to enhance the filtering effect, the Kalman filter was selected as the main control for
the secondary filtering of the data. The processing effect is shown in Figure 17, where the red
solid line shows the data processed by the Kalman-EEMD algorithm, and the black dashed
line shows the change in the raw data. In comparison with Figures 10 and 15, the Kalman-
EEMD algorithm model had a better filtering effect than the filtering algorithm alone.
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Figure 17. The rendering of the Kalman-EEMD filter.

A polynomial fit was used to fit the raw data, and the fitting results are shown in
Figure 18, with the red line representing the raw data and the black line the fitted data.
The third-order fit and fifth-order fit in the figure are poor, and the fit graph appears to
overshoot after exceeding the ninth-order. Through experimentation, the ninth-order fit
was found to be the best. The results were compared with the Kalman-EEMD filtering
effect, and the results are shown in Figure 19.
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Figure 18. Polynomial fit contrast diagram.
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Figure 19. Comparison of the ninth-order fitting and Kalman-EEMD filtering effect.

In Figure 19, the black line is the data processed by the Kalman-EEMD filtering
algorithm, and the red line is the data after the ninth-order fit. The fitting function is

f (x) = p1 × x9 + p2 × x8 + p3 × x7 + p4 × x6 + p5 × x5 + p6 × x4 + p7 × x3 + p8 × x2 + p9 × x + p10 (14)

where p1 = −1.54 × 10−20, p2 = 4.935 × 10−17, p3 = −6.615 × 10−14, p4 = 4.81 × 10−11,
p5 = −2.057 × 10−8, p6 = 5.246 × 10−6, p7 = −0.0007712, p8 = 0.05986, p9 = −2.08, and
p10 = 5367. In comparison, the Kalman-EEMD filtering algorithm in the horizontal region
achieved the desired filtering effect; the Kalman-EEMD filtering algorithm was better than
the ninth-order best fit because the ninth-order fit showed an overshoot at the horizontal
coordinate 700.

After the experiments, the sub-controller used the EEMD algorithm for the initial
processing of the valid dataset intercepted by the sliding window, and the main control
used the Kalman filter for the secondary processing. A stepwise processing method was
used for data processing, and a Kalman-EEMD algorithm model was constructed, which
guaranteed the operation rate and accuracy, and achieved the optimal choice of dynamic
weighing algorithm.

4. Field Experiments and Data Analysis of the System

In Figure 20a,b, in order to test the field effect of the whole system, an experiment was
conducted on 13 December 2021 at the Sanbei goat farm in Erdos, Inner Mongolia. A flock
of 30 Albas white cashmere goats was selected for testing in the experiment. The actual
weight of the goats and the corresponding ear tag number were recorded before the test,
and then the flock was made to pass through the whole system three times.
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The experimental site is shown in Figure 21a,b. During the experiments, the sorting
thresholds were adjusted on-site using the touch screen human–machine interface, with
those weighing more than 45 kg entering area A, those weighing between 35 and 45 kg
entering area B, and those weighing less than 35 kg entering area C. The system achieved
intelligent sorting according to the set thresholds.
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Figure 21. Site test.

(1) First experimental result:
(2) Second experimental result:
(3) Third experimental result:
There were 30 sets of data in the experiment, as shown in Figure 22. In the first

experiment, 16 sets of data had an error of 0, and only 1 set of data had an error of 1%, with
an average error of about 0.32%. In the second experiment, as shown in Figure 23, seven
sets of data had an error of 0, and two sets of data had an error of 1%, with an average error
of 0.48%. In the third experiment, as shown in Figure 24, eight sets of data had an error of
0, and two sets of data had an error of 1%, with an average error of 0.40%. The total error
was 0.40%.
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As can be seen from the above graphs, the field trial achieved the expected results.
With improved weighing accuracy, the weighing rate of the sheep is guaranteed to be
intelligent and scalable, which will provide a reliable data basis for the development of
precise and ecologically sound animal husbandry. The minimum error between the actual
weight and the measured value in the experiment was 0, the maximum error was 1.0%,
and the average error was as low as 0.4%, demonstrating high accuracy. A total of 30 sheep
passed through the whole system in about 54 s. The shortest time for a single sheep to pass
through was 1.5 s, the longest time was 2 s, and the average time was 1.8 s.

5. Conclusions

Large-scale animal husbandry is the mainstream direction of the current modern
development of animal husbandry. In order to realize refined breeding and scientific
management, a channel-type sheep dynamic weighing system was designed. Using
STM32F103VET6 as the main control and STM32F103C8T6 as the sub-control, it acquired
weight data, read RFID ear tags, controlled electric pushers to open and close the door, and
the touch screen displayed and stored the current goat ear tag number, weight data, flock
information, and total flock weight. Using the Kalman-EEMD algorithm model for data
processing in field trials, the designed system ensured weighing accuracy and improved the
efficiency of goat weighing, achieving an intelligent flock-splitting effect with no constraints
on goat action and no stress reaction. It improved the weighing rate and weighing accuracy,
and it can be promoted and applied in the development of large-scale livestock farming.
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