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Abstract: The image registration and fusion process of image stitching algorithms entails significant
computational costs, and the use of robust stitching algorithms with good performance is limited in
real-time applications on PCs (personal computers) and embedded systems. Fast image registration
and fusion algorithms suffer from problems such as ghosting and dashed lines, resulting in suboptimal
display effects on the stitching. Consequently, this study proposes a multi-channel image stitching
approach based on fast image registration and fusion algorithms, which enhances the stitching
effect on the basis of fast algorithms, thereby augmenting its potential for deployment in real-time
applications. First, in the image registration stage, the gridded Binary Robust Invariant Scalable
Keypoints (BRISK) method was used to improve the matching efficiency of feature points, and the
Grid-based Motion Statistics (GMS) algorithm with a bidirectional rough matching method was used
to improve the matching accuracy of feature points. Then, the optimal seam algorithm was used in the
image fusion stage to obtain the seam line and construct the fusion area. The seam and transition areas
were fused using the fade-in and fade-out weighting algorithm to obtain smooth and high-quality
stitched images. The experimental results demonstrate the performance of our proposed method
through an improvement in image registration and fusion metrics. We compared our approach with
both the original algorithm and other existing methods and achieved significant improvements in
eliminating stitching artifacts such as ghosting and discontinuities while maintaining the efficiency
of fast algorithms.

Keywords: image stitching; image registration; image fusion; BRISK; GMS; optimal seamline

1. Introduction

Video stitching combines the images of multiple partial views with overlapped sec-
tions to create a complete scene. It effectively solves the single-camera view’s limitations [1]
and has broad applications in many fields, such as virtual reality [2], drone aerial photogra-
phy [3], medical imaging [4], remote sensing images [5], and intelligent robot navigation [6].
The initial concept for our project was driven by the demand for rapid indoor and outdoor
scene stitching and displays as the need for multi-camera video stitching applications
continues to grow. In areas with diverse scenes, such as scenic areas [7], buildings [8],
mining work environments [9], and indoor and outdoor monitoring [10], the display and
monitoring effects of multi-camera video stitching were unparalleled compared to single
cameras. Additionally, we considered the potential future application of this technology to
embedded devices.

In the field of algorithms, in addition to the traditional image registration and fusion
algorithms used in image stitching, an increasing number of improved methods have also
been applied to various stages of the image stitching process. For example, Hoang et al. [7]
proposed a deep-learning-based image stitching method that was used to generate high-
resolution panoramic images that support virtual tourism interactions. Chen et al.’s [11]
proposed method introduced a new energy function to reduce structural deformation near
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the seams and improve the invisibility of the seams, which was particularly effective when
applied to images with continuous depth variations and complex textures.

In terms of application platforms, there are currently many image stitching applica-
tions based on field-programmable gate array (FPGA) or graphics processing unit (GPU)
platforms. Jose et al. [12] proposed a video stitching method based on FPGA architecture,
which was designed in Verilog for video frame capture, SIFT feature detection, video frame
stitching, and an output display driver. Du et al. [13] improved feature detection based
on GPU characteristics to achieve real-time video stitching. Regarding image and video
stitching applications in embedded devices [14], we roughly estimated that the ability of
embedded platforms with 5 W to 10 W can achieve approximately three to five channels of
video stitching for 480 P resolution images.

To balance the stitching effect and real-time performance of multi-channel video
stitching applications, we strengthened the stitching effect of fast image stitching algorithms
or optimized complex algorithms and improved their efficiency. Ultimately, from the
perspective of algorithm complexity and the difficulty of platform porting, our research
approach for multi-channel image stitching methods was to use fast image registration and
fusion algorithms to enhance the stitching effect.

Our research and contributions on image stitching algorithms mainly focused on two
stages: image registration and image fusing.

1. In the registration stage, the accuracy of registration was improved based on the
Brisk + GMS fast image registration algorithm. In this stage, the gridded BRISK method
was used to improve the efficiency of feature point matching, and the bidirectional
matching GMS algorithm was used to improve the accuracy of feature point matching.

2. In the fusing stage, the stitching effect was improved based on the seamline and
weighted average fusion algorithm. In this stage, the image was fused, including
the determination of the stitching area and image blending, to obtain a panoramic
image. Firstly, the best seam line method was used to obtain the stitching seam, and
then different blending regions were constructed. The weighted average algorithm
was used to blend the stitching, transition, and extension regions, resulting in a
high-quality and smooth stitching image.

The rest of this paper is organized as follows: A review and brief analysis of the related
work on image stitching is presented in Section 2. The algorithmic basis for the proposed
method is also presented in this section. In Section 3, a proposed and improved image
stitching method is discussed. Section 4 compares and analyses the experimental results of
the proposed method with other methods. The paper is concluded in Section 5.

2. Related Work

Image registration aims to find the geometric relationship between video images and
perform the alignment process. The image registration process works as follows:

1. The first step is identifying and describing the two images’ feature points.
2. Next, the feature point sets are matched, and the transformation parameters are

calculated based on the successful matching pairs.
3. Finally, the parameters are applied to achieve image alignment.

Video image fusion aims to stitch the registered video images with overlapping areas
in the video image frames to synthesize a panoramic video image without apparent seams
and natural transitions.

This section provides an analysis of the various common algorithms used for image
feature extraction, feature matching, and image fusion in the two stages of image registra-
tion and image fusion. We also propose the basis and rationale for choosing fast algorithms
for image registration and image fusion.
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2.1. Image Registration

Image registration algorithms can be divided into the transform domain, grayscale
information, and image features. Feature extraction is extremely important for object
recognition [15] and image stitching [16]. Feature-based image registration algorithms
are experimentally verified to have the advantage of fast computational speed, stability,
and accuracy.

In the stage of extracting image feature points, Binary Robust Independent Elemen-
tary Features (BRIEF) [17], BRISK [18], Oriented FAST and Rotated BRIEF (ORB) [19],
Scale-Invariant Feature Transform (SIFT) [20], Speeded Up Robust Feature (SURF) [21],
Principal Components Analysis SIFT (PCA-SIFT) [22], Learned Invariant Feature Transform
(LIFT) [23], and Coherence-based Decision boundaries (CODE) [24] are more robust algo-
rithms. Among them, PCA-SIFT, LIFT, and CODE are even more robust algorithms with
higher computational complexity, which is not suitable for real-time applications. SURF,
BRISK, and ORB algorithms are faster but less robust, and they are generally more practical
in systems with limited hardware resources and high real-time requirements. BRISK is
stronger than SURF in image feature extraction under illumination changes and is more
robust than ORB [25,26]. Taking into account the actual application in our research, the
BRISK feature extraction algorithm was adopted, and its limitations were solved.

After feature point extraction, two feature point sets were obtained for the images
in order to be stitched, and image matching found a correspondence between the feature
points of the two images. In the rough matching stage of image feature points, the nearest
neighbor method is commonly used, with BF (Brute-Force) and FLANN (Fast Library for
Approximate Nearest Neighbors) being the most well known. Both of them are O(Nˆ2)
matching algorithms, but FLANN’s parameters are more difficult to select. In our actual
application, the effect of matching using the BF algorithm is better. Therefore, the BF
algorithm was used for coarse matching in this paper.

After the rough matching process, mismatches arise, and the fine matching method
must be used to eliminate the matching relationship of the incorrect feature points. The Ran-
dom Sample Consensus (RANSAC) [27] and Progressive Sample Consensus (PROSAC) [28]
algorithms are commonly used and have uncertainty in estimating parameters because they
are based on random sampling. In addition, there are optimization-based Graph Matching
algorithms and motion-estimation-based matching methods. Among them, the GMS al-
gorithm based on motion estimation has the best time efficiency. Li et al. [3] proved the
superiority of GMS in matching performance with smaller overlapping and less-textured
problems. In this paper, the GMS algorithm with good time efficiency was used for the fine
matching method, and the RANSAC-based outlier rejection scheme was used to calculate
the registration accuracy. The GMS algorithm only completed the matching stage of feature
points, using Hamming distance to measure the similarity between feature points, with
high robustness and real-time matching performance, which could quickly distinguish
correct and incorrect feature point matching pairs.

2.2. Image Fusion

In the image fusion stage, weighted average fusion, multi-resolution fusion [29],
Poisson fusion [30], and optimal seam line fusion [31] are more common fusion methods;
each algorithm has its pros and cons and is applicable in different scenarios. The optimal
seam line algorithm can be combined with weighted average fusion or multi-resolution
fusion methods to improve the image fusion effect. Among them, the algorithms that are
fast in fusion and achieve a balance in fusion effect are the weighted average fusion based
on the optimal seam line and the multi-resolution fusion based on the seam line proven for
real-time performance [32].

The optimal seam algorithm finds an ideal seamline segment or seam according to
the search strategy, and then a fusion strategy is used along the optimal seam to stitch
the image. The common search algorithms are the Dijkstra algorithm, graph cuts, and
dynamic programming. The graph cut method has a better fusion effect, while there are
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several optimal seamline positions, and the seamline to be found is rough. Therefore, it is
recommended to use this algorithm in combination with other fusion algorithms to achieve
the most accurate results.

The weighted average fusion method includes direct averaging and the fade-in and
fade-out weighting average method. These two methods are considered classic and rel-
atively simple fusion techniques. In the fade-in and fade-out weighting average fusion
method, the overlapping parts of the two images are added and averaged to produce the
fused image. However, this method may result in ghosting at the stitching seamline, and if
the exposure of the images is different, it may also lead to color unevenness or inconsistency
in the final image.

In multi-resolution fusion, images are fused using the structure of the Gaussian
pyramid and Laplacian pyramid, which can solve the problem of stitching the seamline
and cause a difference in exposure. The multi-resolution method may lead to ghosting and
missing details in the image.

This paper adopts an improved fade-in and fade-out weighted fusion algorithm based
on the optimal seam algorithm.

3. Proposed Image Stitching Method

In this section, we propose a method that can enhance the stitching effect of existing
fast image algorithms in this paper. We improved the effect and accuracy of image stitching
at each stage of the fast image algorithms used in this paper, including BRISK feature point
extraction, BF + GMS feature matching, and optimal seam line + weighted average fusion
algorithms, while taking into account the efficiency of the algorithm.

3.1. Improved Gridded BRISK Algorithm

The BRISK algorithm uses adaptive and generic corner detection based on a novel
scale-space FAST-based (AGAST) detector for feature point detection. A concatenated
binary bit string is obtained when constructing a feature descriptor by comparing grey
pixel values to describe the feature points. It adopts the neighborhood uniform sampling
mode and constructs discrete Bresenham’s line circles to be concentric with the key points.
The constructed concentric circles are then evenly sampled to create circles of various
radii around the feature point’s center. The BRISK algorithm has high efficiency, simple
operation, good rotation invariance, scale invariance, certain diffraction invariance, and
high-quality performance for registering large, blurred images.

However, the shortcoming of the BRISK algorithm is that the extracted feature points
are still not uniformly distributed to describe the feature information of the image com-
pletely. As shown in Figure 1a, the feature points extracted by the BRISK algorithm are
denser in places where the local features are prominent, and the corresponding features are
not detected in the places where the surrounding features are not noticeable, such as the
ceiling, thus losing part of the image information.

Given the uneven distribution of feature points in the BRISK algorithm, the image is
divided into small parts and it detects the image feature points in each grid separately to
achieve a more uniform distribution of feature points. After comparison experiments, it
was found that the image’s 4 × 4 grid division was easy to operate for the image with a
resolution of about 480 × 640 pixels and could take into account the time and feature point
extraction effects.

In the experiment, we also found that setting an appropriate limit on the number of
feature points detected in each grid in the program did not reduce the effect of feature point
extraction. We used 500 feature points per grid to effectively evaluate the performance of
feature extraction. According to the improved BRISK algorithm obtained from the above
settings, we can solve the uneven distribution of feature points problem in the BRISK
algorithm and achieve better time efficiency.
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Figure 1. Comparison of feature extraction results: (a) non-gridded BRISK feature extraction;
(b) gridded BRISK feature extraction.

The feature extraction result by the non-gridded BRISK algorithm is shown in Figure 1a,
and the feature extraction result by the gridded BRISK algorithm is shown in Figure 1b.

We did not quantify a specific relationship between the number of grids and the
effect of feature point extraction, nor did we analyze the reason for this from a theoretical
perspective. However, this paper proposed an idea for future research: for image feature
extractors with unevenly distributed detected feature points, a grid-based image segmen-
tation method could be used to extract image features separately based on image details.
An evaluation index for whether the distribution of feature points was uniform could be
formulated to calculate the number of grids adaptively in different scenarios and in order
to achieve the best grid effect.

The feature detection algorithm extracts features from the entire screen’s image, while
for the stitching of multi-channel video images only the feature points in the overlapping
area of the camera vision are important. The overlapped portions of the image or the
outer expansion regions close to the overlapped portions were detected, which drastically
minimized the calculation time required for feature detection and the quantity of correctly
and incorrectly detected feature points. This paper’s camera image acquisition and feature
extraction regions are schematically depicted in Figure 2.
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The extraction algorithm is only used in the feature extraction area. In different
scenarios, the size of the overlapping area between the camera views must be considered to
calculate the feature extraction area of the video image. The overlapping area of the same
scene is approximately 30–60% [8]. Therefore, we set the overlapping area of the images to
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be no less than one-third of the source image and followed this rule to capture images for
stitching during the experiment.

3.2. Bidirectional Matching Strategy Based on GMS Algorithm

In the feature matching stage, correspondences were identified between sets of feature
points extracted from two images, and matching point pairs were optimized to eliminate
false matches. The proposed matching strategy uses the BF matching method to perform
rough matching and then uses the GMS algorithm to perform fine matching.

The BF algorithm uses a random sampling strategy for rough matching, and there are
many mismatches that need to be removed by GMS fine matching. However, when multiple
feature points in the area match the same feature point, the GMS algorithm generally does
not eliminate the mismatched pairs.

A bidirectional BF matching method is proposed in this work. The feature extraction
algorithm was used to find a matching point B in image b for the corresponding feature
point A in image a to match images a and b. Similarly, image a was searched to match image
b’s feature point B to point A’. Points A and A’ were compared; if the two points were
identical, feature points A and B were correctly matched to feature point pairs; otherwise,
the two points were considered mismatched.

In summary, in the image registration stage, given the disadvantage of uneven feature
distribution in the feature extraction of the BRISK algorithm, the grid division method
was used to improve it. Furthermore, the extraction area was limited to the overlapping
part of the image, thereby reducing the number of feature points and improving the speed
of feature extraction. In the matching stage, the combination of bidirectional BF rough
matching and GMS precise matching was used to improve the matching accuracy.

3.3. Weighted Image Fusion Algorithm Based on Optimal Seam Line

The fade-in and fade-out weighted average fusion method’s algorithm works on the
basis that each pixel point in the overlapped area of the left and right images was assigned a
weight coefficient based on its coordinate position, and this weight was used to calculate the
pixel information of the fused image. The principle of the algorithm is shown in Figure 3.
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As shown in Figure 3, assuming that the left image pixel of the two images to be
fused is L(x, y), the right image pixel is R(x, y), and the stitched image pixel is I(x, y), the
expression of the fade-in and fade-out weighted average fusion method can be written
as follows:

I(x, y) =


L(x, y) (x, y) ∈ L

W1(x, y)L(x, y) + W2(x, y)R(x, y) (x, y) ∈ (L ∩ R)
R(x, y) (x, y) ∈ R

(1)
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where W1 and W2 are the weighting coefficients of the pixel points (x, y) in the overlapping
area on the two images and W1 + W2 = 1. Their corresponding weight functions are W1(x, y)
and W2(x, y), respectively, as shown in Formula (2):{

W1(x, y) = XR−x
XR−XL

W2(x, y) = x−XL
XR−XL

(2)

XL and XR in the equation are expressed as the left and right borders of the overlapping
area of the image; therefore, the width of the overlapping area is W = XR − XL.

When ghosting was removed using the optimal seam method, the stitching’s seams
became very obvious, which created a new problem, as the entire image’s overlapping
regions were fused using the fade-in and fade-out weighted average fusion method. The
more pronounced seam pixels were handled as other pixels in the overlapped area, blend
transitions were less natural, and the seam line was more noticeable than in other pixels.
As a result, each seam area needs to be dealt with specifically.

In this paper, after calculating the width of the overlapping area, the width of We
increased on both sides to create a new fusion area. Usually, 100- to 200-pixel values are
taken, and these specific values can be taken based on the experimental results of the
stitching scene. The schematic diagram of the constructed fusion area is shown in Figure 4
below. The width of the overlapping area is W, and the coordinates of the left and right
boundaries are XL and XR, while the width of the fusion area becomes W + 2We. The
original transition area is the overlapping area, excluding the seam area. The original and
extended areas were combined into a new transition area, and the two new areas were
transitioned and fused to the entire image.
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Figure 4. The schematic diagram of the fusion area’s construction.

After the optimal seamline was obtained, the area to be seamed was first fused
individually. Thus, the pixels that needed to be calculated came from the image on the
left, right, and seam area fused. The weight coefficient calculation formula of the weighted
average fusion method was improved in accordance with the various pixel coordinate
positions in the different areas, which were fused to perform the fusion in a targeted
manner, eliminate the seam problem, and prevent ghosting. The improved weighted
average fusion method was calculated by the weight coefficient formula of Formula (2).
Different regions generated multiple boundaries and then performed a weight correction
according to different boundaries to obtain the final fused image.

The diagram of the improved fade-in and fade-out weighted image fusion algorithm
based on the optimal seam is shown in Figure 5.



Electronics 2023, 12, 1700 8 of 19

Electronics 2023, 12, x FOR PEER REVIEW 8 of 20 
 

 

 

Figure 4. The schematic diagram of the fusion area’s construction. 

After the optimal seamline was obtained, the area to be seamed was first fused indi-

vidually. Thus, the pixels that needed to be calculated came from the image on the left, 

right, and seam area fused. The weight coefficient calculation formula of the weighted 

average fusion method was improved in accordance with the various pixel coordinate 

positions in the different areas, which were fused to perform the fusion in a targeted man-

ner, eliminate the seam problem, and prevent ghosting. The improved weighted average 

fusion method was calculated by the weight coefficient formula of Formula (2). Different 

regions generated multiple boundaries and then performed a weight correction according 

to different boundaries to obtain the final fused image. 

The diagram of the improved fade-in and fade-out weighted image fusion algorithm 

based on the optimal seam is shown in Figure 5. 

 

Figure 5. Diagram of the improved fade-in and fade-out weighted image fusion algorithm. 

The weight calculation formula of the fade-in and fade-out weighted average fusion 

algorithm in the seam area is shown in (3): 

⎩
⎨

⎧��(�, �) =
��� − �

��� − ���

��(�, �) =
� − ���

��� − ���

 (3)

Figure 5. Diagram of the improved fade-in and fade-out weighted image fusion algorithm.

The weight calculation formula of the fade-in and fade-out weighted average fusion
algorithm in the seam area is shown in (3):{

W3(x, y) = Xsr−x
Xsr−Xsl

W4(x, y) = x−Xsl
Xsr−Xsl

(3)

Among them, W3 + W4 = 1, 0 < W3, W4 < 1. x is the abscissa of the current pixel point
and Xsl and Xsr are the abscissas of the left and right borders of the seam area.

The weight calculation formulas of the fade-in and fade-out weighted average fusion
algorithm in the transition area are shown in (4) and (5):{

W1(x, y) = Xsl−x
Xsl−Xl

W2(x, y) = x−Xl
Xsl−Xl

(4)

{
W5(x, y) = Xr−x

Xr−Xsr

W6(x, y) = x−Xsr
Xr−Xsr

(5)

Among them, W1 + W2 = 1, W5 + W6 = 1, 0 < W1, W2, W5, W6 < 1. x is the abscissa of
the current pixel point and Xl and Xr are the abscissas of the left and right borders of the
transition area.

Finally, according to Formula (1), a corresponding modification was made, and the
seam area was first fused to obtain the fusion image C(x, y), and then the transition area
was fused. The stitched image pixel calculated by the algorithm is shown in Formula (6):

I(x, y) =


L(x, y) x < Xl

W1(x, y)L(x, y) + W2(x, y)C(x, y) Xl ≤ x < Xsl
W3(x, y)L(x, y) + W4(x, y)R(x, y) Xsl ≤ x < Xsr
W5(x, y)C(x, y) + W6(x, y)R(x, y) Xsr ≤ x < Xr

R(x, y) x ≥ Xr

(6)

The pixel values in the seam area were adjusted to blend into the surrounding image
more naturally and smoothly using this fusion method, taking advantage of the information
features of the different regions. This section combines the best seam method and the fade-
in and fade-out weighting average method for fusion. The fused image of the seam area
was obtained and computed with the newly constructed transition areas to solve the
seam problem.

To sum up, the overall stitching process of the image is shown in Figure 6 to summarize
the previous algorithms for image registration and fusion.
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4. Experimental Results

In this section, we meticulously evaluate the multiple algorithmic improvements we
proposed, such as the enhanced BRISK algorithm, image registration algorithm, and image
fusion algorithm. Moreover, this section highlights the observed phenomena during the
experiments and provides an in-depth analysis of the experimental results. We used other
fast algorithms as control groups and presented the performance of each stage of image
stitching using clear pictures and charts.

The experimental environment of this paper was as follows:
Operating system: Windows10 64-bit; software integrated development environ-

ment: Visual Studio2015, OpenCV2.4.13; hardware operating platform: Intel(R) Core(TM)
i5-3230M CPU @2.60 GHz; memory: 8.0 GB RAM.

We captured image data using the rear cameras of several smartphones. The registered
images were not simply cropped, rotated, subjected to changes in lighting, or scaled based
on the original images. Instead, the original and registered images were captured separately,
and only the image size was adjusted. For this study, multiple sets of images were selected,
and all image sets were simulated to create a video stitching scene with restricted feature
regions. The feature extraction regions were limited to the overlapping area at 1/2 of the
image. The selected images in this study closely resemble real-world stitching scenes, and
the comparison of image processing effects between algorithms was clearly evident.

4.1. Image Registration Result Analysis

This section verifies the speed and robustness of the improved BRISK + GMS algo-
rithms proposed in this paper for image registration. First, an improvement in feature
extraction after BRISK gridding was compared, and then the algorithm in this paper
was compared with the BRISK + improved GMS algorithm, BRISK + RANSAC algo-
rithm, and ORB + RANSAC algorithm in terms of feature point extraction performance.
ORB and RANSAC were selected as the control group because the two algorithms have
low computational complexity and are more in line with the requirements of improving
real-time performance.

4.1.1. Improved Gridded BRISK Algorithm with Area Restriction

Figure 7 shows the comparison results of the number of detection feature points and
the detection time for the left and right views before and after gridding the extraction area.
The detection results of left and right views before and after gridding are summarized in
Table 1. The improved algorithm reduced the number of feature points in the left view
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by 57.52% and the detection time by 35.24%. The algorithm also reduced the number of
feature points in the right view by 50.51% and the detection time by 49.83%.
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Figure 7. Comparison of the BRISK algorithm before and after gridding: (a) non-gridded left view;
(b) gridded left view; (c) non-gridded right view; (d) gridded right view.

Table 1. The detection results of left and right views before and after gridding.

Left View Right View

Non-Gridded BRISK Gridded BRISK Non-Gridded BRISK Gridded BRISK

Number of feature points 1156 491 982 486
Detection time (ms) 9.7607 6.3206 9.0707 4.5506

4.1.2. Image Registration Result Comparison

Image registration includes detection feature points and image feature matching. In
this paper, three image transformations of scaling, exposure, and rotation were selected to
match the image set, as shown in Figure 8.
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Figure 8. Images to be registered: (a) images of the scaling group; (b) images of the exposure group;
(c) images of the rotation group.

In the proposed method of this article, the number of feature points extracted from
each image was set at 1500, and the number of feature points per grid was limited to 500
to improve image registration efficiency and provide enough feature points for the GMS
algorithm to match.

Figures 9–11 show the results of image feature matching using the proposed algorithm
of this article, the BRISK + improved GMS algorithm, the BRISK + RANSAC algorithm,
and the ORB + RANSAC algorithm, respectively.

As seen in Figure 9, the proposed algorithm provided a more uniform distribution of
feature points in the experiment, and there was no apparent accumulation phenomenon or
mismatch of points.

Figure 10a compares the feature point detection performance for each algorithm, and
Figure 10b compares the feature point pairs matching performance for each algorithm. The
proposed algorithm typically detects fewer feature points than other algorithms, but more
matching pairs and correct matching pairs were obtained, as shown in Figure 10.
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By extraction area restriction, the number of point pairs that needed to be matched was
significantly reduced, and the speed was also improved. This article employed the classic
method for calculating precision based on the RANSAC outlier rejection to determine the
number of correctly matched points. The precision calculation formula is shown in (7):

Percision =
CorrectMatches

Matches
× 100% (7)

The variable “Matches” represents a pair of matched points that have been filtered by
the nearest neighbor to next neighbor distance ratio. Additionally, the “CorrectMatches”
refers to the matching pairs that remain after filtering through a RANSAC-based outlier
rejection scheme. The feature detection time and matching precision are shown in Figure 11.

Figure 11a demonstrates how this algorithm’s matching accuracy improved when
compared to other algorithms subjected to scaling, exposure, and rotation transformations
and how the average accuracy was essentially guaranteed to be above 85%. Figure 11b
compares the total serial execution time taken by each algorithm to extract the feature
points and match two images. Compared with the RANSAC algorithm, the proposed
algorithm improved the matching accuracy in terms of scale, illumination, and affine
invariance feature matching, resulting in better registration performance. This is because
the RANSAC algorithm has no upper limit on the number of iterations when calculating
parameters from a data set containing a large number of outliers, and it is highly dependent
on environmental changes, resulting in a decrease in the registration rate. The GMS-based
algorithm proposed in this paper has many matching point pairs around the matching
feature points due to its motion smoothness, which resulted in higher matching accuracy.
The proposed method outperformed the existing algorithm in terms of matching accuracy
and the speed of feature detection when the results from the previous tests are considered.

4.2. Analysis of Image Fusion

The image stitching experiment used images taken from a single point and multiple
angles to splice, simulating the multi-channel images obtained by the camera in the real-
time image mosaic scene. Additionally, we reduced the image size to 640 × 480, which
made it convenient for us to manage and evaluate. The optimal seam + fade weighted
fusion method, the optimal seam + multi-resolution fusion method, and the method
proposed in this article were each employed for fusing the images. These three methods
were better real-time methods obtained by comparative experiments. The original pictures
and stitching results are shown in Figures 12–14.

The stitching results in Figures 12–14’s orange boxes highlight non-smooth issues,
such as distortion and incoherence. As shown in Figures 12b, 13b and 14b, the optimal
seam + fade-in and fade-out weighted method can solve the ghosting problem, though
there are obvious seams. The result of the optimal seam + multi-resolution method is
shown in Figures 12c, 13c and 14c. The multi-resolution method is very smooth for the
background transition but loses the details of the image. The cloud details in the back-
ground in Figures 12 and 13 disappear. In addition, it has a ghosting problem. As shown in
Figures 12d, 13d and 14d, the proposed method eliminates ghosting and seams, and these
panorama images have no incoherence of exposure difference.

Our findings reveal that the optimized fade-in and fade-out weighted algorithm, in
conjunction with the optimal seam algorithm, which we utilized to construct the fusion
area, results in a substantial improvement in time efficiency when compared to the original
stitching algorithm, despite the additional time required. Specifically, the increase in
time for stitching three images was approximately 6 ms. Additionally, our approach
surpassed the multi-resolution + seam line algorithm in both stitching quality and efficiency.
Additionally, we conducted an evaluation of the time efficiency of three sets of images, as
depicted in Figure 15.
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by the proposed method.

In addition to analyzing the visual fusion results, the three fusion algorithms’ image
quality was objectively assessed using the quantitative indicators presented in [33,34] and
using the following indicators:

1. Image information entropy. The image information entropy represents the amount of
image information. A higher value indicates more image information.

2. Mean grey value. The average grayscale value of the image represents the brightness
of the image. A higher value indicates more uniform brightness.

3. Difference of edge map (DoEM).

The DoEM method contains three steps: detect the image edge, construct edge differ-
ence spectrum, and then produce statistics for the difference spectrum information and
calculate the score. The specific calculation formula is shown in (8):
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DoEM = e−
σ2
c4

µee−
µe
c1 + µae−

µa
c2

µe + µa

+

(
1− e−

σ2
c4

)
e−

σ2
c3 (8)

where µe is the mean value of the transition area image edge difference spectrum; µa and
σ2 are, respectively, the overall mean and overall variance of the transition area image edge
difference spectrum; C1, C2, C3, and C4 are four constants: C1 and C2 are selected according
to the correlation degree of mean variation; C3, and C4 values are selected according to the
3 σ criteria. A greater value indicates a lower misalignment of the stitching image and a
smoother brightness transition.

4. Structural similarity measurement (SSIM)

The SSIM score indicates three influencing factors: brightness similarity, contrast-
ing similarities, and the structural similarity of the lossless stitched image. The specific
calculation formula is shown in (9):

SSIM(x, y) =

(
2µxµy + C1

)(
2σxy + C2

)(
µx2 + µy2 + C1

)(
σx + σy + C2

) (9)

where µx and µy are the average intensity values of the two images, σxy represents the
correlation coefficient between two images, and σx and σy are the standard deviation. The
SSIM value was closer to one, and there was less image distortion.

The specific calculated values are shown in Table 2. The data in Table 2 show that, in
most cases, the proposed algorithm had higher information entropy, mean grey value, SSIM
score, and DoEM score compared to the other algorithms. In the indoor images case, the
obvious seam lines of optimal seam + fade-in and the fade-out weighting average fusion
algorithm caused the information entropy value to be slightly higher than the proposed
algorithm in this article. From this objective evaluation, it could be concluded that the
proposed algorithm has certain advantages in image fusion.

Table 2. Quality evaluation of fused images.

Image Group Fusion Algorithm Information Entropy Mean Grey Value SSIM DoEM

Building

Optimal seam + fade-in and the fade-out
weighting average fusion algorithm 7.163 134.649 0.8756 0.8714

Optimal seam + multi-resolution fusion algorithm 7.014 135.756 0.9082 0.8849
Proposed algorithm 7.169 137.336 0.9305 0.9573

Artificial lake

Optimal seam + fade-in and the fade-out
weighting average fusion algorithm 7.224 94.835 0.8971 0.9234

Optimal seam + multi-resolution fusion algorithm 7.149 96.626 0.9129 0.8496
Proposed algorithm 7.244 97.231 0.9591 0.9672

Indoor

Optimal seam + fade-in and the fade-out
weighting average fusion algorithm 7.173 112.582 0.9223 0.8319

Optimal seam + multi-resolution fusion algorithm 7.153 111.284 0.9657 0.9074
Proposed algorithm 7.16 113.461 0.9805 0.9438
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5. Conclusions

In summary, this article first studied the current developments in image stitching and
video stitching technologies both domestically and abroad. With the aim of future applica-
tions in real-time video stitching, the research approach of this article was determined to
improve the stitching effect based on fast image algorithms. The two most critical stages
in the video image stitching process, image registration and fusion, were studied, and an
improved algorithm was proposed. Moreover, this article presented a detailed evaluation
of the improved algorithm’s performance, highlighted the observed phenomena during
the experiments, and provided an in-depth analysis of the experimental results.

In the feature matching process, the GMS algorithm combined with a bidirectional
rough matching is proposed to improve the accuracy of feature point matching. An im-
proved method combining the optimal seam and the fade-in fade-out weighted average
algorithm was proposed for the image fusion stage. The optimal seam method was used
to eliminate ghosting. A key factor for image fusion is the transition areas’ construction.
Different boundary calculation weights were used for fusion to eliminate the seams for
fused seam regions and transition regions, resulting in smoother and more natural transi-
tions between images. Our approach not only achieved satisfactory stitching results but
also outperformed the original algorithm in terms of stitching quality, with a negligible
increase in computational time. Compared to another fast method, our approach not only
improved the stitching effect but also provided an advantage in real-time performance.
Through the parallel design of the program, the stitching speed on a bare CPU of eight
frames per second of three 480p cameras was initially achieved.

Our research has led to improvements in video stitching, yet it has also revealed
several challenges and opportunities for further exploration. Our future research directions
include, but are not limited to, the following points:

1. To significantly reduce the stitching time, we aimed to gradually decrease the number
of image feature points. While our experiments utilized a large number of feature
points, other studies [8] have demonstrated that successful stitching can be achieved
with fewer than 80 feature points in overlapping areas. We intend to investigate
other approaches to reduce the number of feature points and achieve more efficient
image matching.

2. Our findings suggest that the degree of overlap between the stitching frames plays a
crucial role in image matching efficiency. Interestingly, we discovered that smaller
overlapping areas could sometimes increase the time required for image matching.
As a result, the camera layout is another important factor to consider in the stitching
process. We also observed that different cameras, including phone cameras, network
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cameras, and wide-angle network cameras, exhibited varying performance levels.
Night-time shooting can pose additional noise-related challenges, further complicat-
ing image stitching. Consequently, we plan to develop a real multi-resolution dataset
that encompasses diverse stitching scenarios to facilitate future research in this field.

3. This paper’s panoramic video stitching system was implemented based on the Win-
dows platform. Future work may port the method to the GPU, ARM, or FPGA plat-
form with high parallel computing performance. In this way, embedded panoramic
video stitching can be applied in various fields, such as edge computing.
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