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Abstract: Trustworthiness is a critical concern in edge-computing environments as edge devices often
operate in challenging conditions and are prone to failures or external attacks. Despite significant
progress, many solutions remain unexplored. An effective approach to this problem is the use of
clustering algorithms, which are powerful machine-learning tools that can discover correlations
within vast amounts of data. In the context of edge computing, clustering algorithms have become
increasingly relevant as they can be employed to improve trustworthiness by classifying edge devices
based on their behaviors or detecting attack patterns from insecure domains. In this context, we
develop a new hybrid clustering algorithm for computing devices that is suitable for edge computing
model-based infrastructures and that can categorize nodes based on their trustworthiness. This
algorithm is thoroughly assessed and compared to two computing systems equipped with high-end
GPU devices with respect to performance and energy consumption. The evaluation results highlight
the feasibility of designing intelligent sensor networks to make decisions at the data-collection points,
thereby, enhancing the trustworthiness and preventing attacks from unauthorized sources.

Keywords: clustering algorithms; edge-computing devices; high-performance computing; trustwor-
thiness improvement

1. Introduction

The emergence of the edge-computing paradigm is a response to the limitations of
centralized data management in real-time applications. Centralized data management
often results in network bandwidth saturation due to the transfer of large volumes of data,
thereby, leading to delays and reduced efficiency. Edge computing offers a solution to this
problem by moving decision points closer to the data source at the edge of sensor networks.
This approach reduces the volume of data that needs to be transmitted between sensors
and central servers and, thus, the network overhead.

The benefits of edge computing are extensively documented in the literature, such as
in [1–3]). The authors of the present study are also involved in this research area, having
developed applications for edge computing in the fields of environmental science and
smart cities (e.g., [4–7]).

Edge computing offers additional advantages in addition to the network cost savings
achieved by reducing the volume of data transmitted. The distributed infrastructure
of edge computing enables improved fault tolerance by isolating and repairing single
network failures without impacting the overall service, thus, leading to enhanced reliability
and reduced repair costs. In addition, edge computing facilitates higher democratization
and accessibility to knowledge through data distribution across various locations and
organizations as well as increased privacy and security through the reduced spread of
sensitive information on the network.
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Furthermore, edge computing enables real-time performance improvement by elim-
inating dependencies on central servers for time-sensitive applications. From the above,
the interplay between edge computing and Artificial Intelligence (AI) and machine-learning
(ML) algorithms becomes evident. Specifically, the application of such techniques to edge
computing has the potential to significantly enhance the trustworthiness of the infrastruc-
ture [8].

More precisely, the heterogeneity of devices and the presence of untrustworthy or
insecure radio networks make securing data and maintaining privacy challenging. In order
to mitigate the described risks, it is necessary to categorize devices using appropriate classi-
fication algorithms, also referred to as clustering algorithms. These algorithms are frequently
employed in edge-computing environments not only for application development and
network management but also with special attention to reliability improvement through
device monitoring and classification (e.g., [8–10]).

In this scenario, the high-performance edge computing (HPEC) model, which lever-
ages high-performance computing units deployed on low-power sensor devices, has gained
widespread acceptance. This model enables the implementation of sophisticated algorithms
through multi-core CPU or GPU computing units integrated on edge-computing boards,
thereby, allowing effective real-time ML and AI applications at the network edge. A sig-
nificant example of a device that enables such a model is the NVIDIA Jetson Nano Board,
equipped with a quad-core ARM CPU and an Nvidia GPU with 128 CUDA cores. In this
regard, it is worth noting that the utilization of advanced forms of parallelism within com-
puter architectures is a crucial strategy for enhancing performance without compromising
energy efficiency [11].

The present work then introduces a clustering algorithm based on this model leverag-
ing the high-performance computing units on the board. The aim is to evaluate whether a
low-power device achieves a good performance-to-energy trade off executing a machine-
learning algorithm with the ultimate goal of enhancing the reliability of the environment
for example through the analysis of network traffic data and the detection of attack patterns.
The manuscript is structured as follows: Section 2 describes the research field and situates
our work in relation to prior literature.

In Section 3, we present an edge computing-based infrastructure and the device’s
technical specifications employed for the experiments. Section 4 constitutes the paper’s
core, in which we propose a new hybrid version of a clustering algorithm, exploring
various models of parallelism that can be leveraged. Section 5 analyzes and discusses
the experiments conducted on four distinct datasets, aiming to assess the algorithm from
multiple perspectives. Finally, Section 6 summarizes our findings and suggests roads for
future research.

2. Related Works

Several works have dealt with the interaction between edge-computing environments
and security and trustworthiness issues (e.g., [8–10,12–14]). They focused on various
reliability and attack classification models but give less attention to performance-related
issues on low-power devices.

In any case, the performance of edge devices is considerably inferior to that of high-
end systems. Consequently, even if they are equipped with high-performance computing
units, such as multi-core CPUs or GPUs, specific approaches are required for deploying AI
algorithms in edge-computing environments.

One approach, known as Framework Design, focuses on adapting an AI model to the
edge environment without significant modifications through the decomposition of the
learning model across edge devices coordinated by a proximity server (as seen in works
such as [15,16]). Another approach, Model Adaption, involves modifications to the model
itself to enhance its effectiveness on devices with limited resources through techniques,
such as data compression and model filtering through mathematical tools (e.g., [17]).
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Finally, Process Acceleration involves rethinking traditional ML and deep-learning
algorithms to incorporate forms of parallelism, both from a hardware perspective with
specialized devices for AI algorithms and from a software perspective by optimizing
algorithms for parallel computing in edge-computing environments (e.g., [18,19]). These
approaches aim to address the limitations of edge devices and improve the execution of AI
models in edge-computing environments.

Based on the analysis of the literature reviewed, there is a clear interest in imple-
menting ML and AI methods and algorithms in edge-computing environments. However,
to the best of our knowledge, there appears to be limited attention paid to the various
forms of parallelism present in these methods in order to effectively exploit multi-core
CPUs or GPU-based accelerators, which are now widely available in many low-power
devices. For example, issues related to a reliable trade-off between performance and power
consumption appear to be poorly explored. We propose that the use of such methodologies
can enhance the ability to detect malfunctions and intrusions in the environment more
quickly, thereby, allowing for timely countermeasures to be implemented.

The current study is part of our research about the adoption of specifically designed
devices for the edge-computing environment to implement high-performance clustering
algorithms, mainly by using the Process Acceleration approach. As previously documented
in [20,21], we initially presented an adaptive K-means algorithm for multi-core CPUs.
The implementation of this algorithm on GPU-based devices was then evaluated in [22].
Finally, in [23], we presented the first experiences related to security concerns. In this paper,
we address some aspects not fully faced in our or other authors’ works. More precisely,
the relevant contributions of the paper can be summarized as follows:

• The implementation of a hybrid strategy that leverages the multi-core CPU and GPU
on the Nvidia Jetson Nano board concurrently, leading to a further reduction in
execution time.

• The adoption of a more precise method for measuring energy consumption with a
comparison to two other high-end GPU-based systems.

• A study about the possibility of using algorithms to improve the trustworthiness and
security of the edge-computing environment.

3. Computing Environment

A modern distributed infrastructure can be characterized as a layered architecture, as
depicted in Figure 1, called a computing continuum [1].

Dataserver

Proximityserver

Edge devices

Foglevel

Edge level

Cloud level

Figure 1. The computing continuum.

We have the sensor boards at the lower layer, known as the Edge Level. These boards
work closely with high-performance, low-power computing resources to execute real-
time applications with quick responsiveness services, utilizing data collected at the same
location. However, despite their usefulness, these boards are hindered by limited memory
and CPU with decreased computing power, requiring assistance from higher layers in the
architecture for applications that demand more computational power.
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At the middle layer, also called the Fog Level, we find proximity servers whose primary
goal is to support edge-computing boards while reducing communication with servers
located far on the network. These servers can be specific devices or one of the elected edge
nodes designated as a trusted node. Regardless of their form, they play a critical role in the
overall infrastructure: they are responsible for crucial tasks, such as intrusion detection,
fault tolerance, data caching, workload balancing and dependability assurance.

The highest layer of the infrastructure is called the Cloud Level, and this encompasses
centralized and powerful computing units, such as large clusters and high-performance
dataservers. However, due to their distance from edge devices, these resources have
significant latency, and thus are not well-suited for edge applications with time con-
straints. Despite this, they can provide additional computing resources and help construct
global models.

It is crucial to emphasize that the security and trustworthiness of an edge-computing
environment are of the utmost importance. The various layers of the architecture must
work together to ensure that sensitive data is protected and that the system is resistant to
tampering and other forms of compromise. Trustworthy nodes, secure communication
protocols and robust intrusion detection and response mechanisms are critical components
of a secure and reliable infrastructure.

The above shows that the lowest level of the described architecture, i.e., the edge level,
is a critical issue. The presence of multiple edge devices seeking computational support
from upper layers increases the likelihood of falling short of delivering highly responsive
applications, presenting a significant challenge from the security point of view. However,
by utilizing sensor boards equipped with advanced computing capabilities, we can sig-
nificantly reduce the number of requests to the higher levels by implementing suitable
security protocols concurrently to the edge applications, thereby, ensuring exceptional
service quality and elevating the level of data privacy and trustworthiness.

The Nvidia Jetson Nano board [24] (2019) is a compact and powerful computing solu-
tion with dimensions of 70 mm × 45 mm, making it a suitable choice for space-constrained
applications. The device features a quad-core ARM Cortex-A57 CPU with a peak per-
formance of 22.8 Gflops, a GPU with 128 CUDA cores providing a peak performance of
471 Gflops, 4 GB of LPDDR4 memory and integrated GPU support for computer vision
and deep-learning tasks.

The device also has Gigabit Ethernet, HDMI 2.0, USB 3.0 ports and an M.2 slot for
additional storage. In addition, the Jetson Nano runs on the Ubuntu Linux operating system
and supports popular machine-learning and AI frameworks. It also has a 40-pin GPIO
header for external interfacing with peripherals and a 5V power supply with a Thermal
Design Point (TDP) of 5 or 10 Watts. Section 5 outlines our experimental approach, where
we leverage TDP to evaluate the upper limit of electric power needed during the execution
of practical applications on the CPU.

4. Materials and Methods

The purpose of this section is twofold. First, it summarizes the adaptive K-means
algorithm, which was originally introduced in [20,21] for multi-core CPUs. Secondly, it
delves into the various parallel programming models that can be exploited in this algorithm
and how they can be combined into a single hybrid approach with attention given to the
architecture of the underlying computing systems.

The K-means algorithm is a well-studied machine-learning technique (e.g., [25]). It is
an iterative procedure processing a dataset S = {x1, . . . , xN} of vectors with d components.
The goal is to create a partition PK = {C1, . . . , CK} of S, which is comprised of K subsets
Ck ⊂ S, referred to as clusters, each containing Nk homogeneous elements as defined by
a specified similarity metric. The algorithm typically employs the Euclidean distance to
measure the similarity of the elements with a representative ck of the cluster Ck called
centroids. These are vectors in which each component is the average of the corresponding
components of the items in the cluster.
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At each iteration, each element xn is moved to a new cluster Cδ determined by mini-
mizing the Euclidean distance ||xn − cδ||22 from the centroid cδ. The procedure terminates
when the number of reassignments of the elements is considered negligible.

A critical constraint of the K-means algorithm is that it can be challenging to define
the value of K in specific problems from the input data. To overcome this, we developed
an algorithm in [20,21], which adjusts the value of K until it meets the user’s desired
quality criteria.

Out of the numerous indices present in the literature, we utilized the root mean square
standard deviation (RMSSD) [25] as a measure:

RPK =

[
∑K

k=1 ∑xn∈Ck
||sn − ck||22

d(N − K)

]1/2

(1)

The RMSSD measures the average homogeneity of elements within clusters Ck. This
method enables the algorithm to increase the number of clusters K until (1) no longer indi-
cates a significant reduction with increasing a new cluster. This technique for determining
the optimal number of clusters is called the “Elbow” method [26].

In our iterative procedure, as the number of clusters increases, the partition PK−1 is
able to group elements into K clusters based on their similarity. Our algorithm focuses only
on clusters with low affinity to reduce the computational cost primarily associated with
element displacement among clusters. The standard deviation

Vk =

√√√√ 1
Nk − 1

Nk

∑
n=1
||xn − ck||22 (2)

is used to measure the similarity of the elements in a single cluster. A reduction in the
value of Vk correlates with an increase in the similarity of the elements xn to the centroid
ck. Therefore, at each iteration K, our algorithm divides the cluster Cγ ∈ PK− 1, with the
highest standard deviation, into two equally sized subclusters, Cα and Cβ. The new
partition PK is then updated as follows:

K = 0 P0 = {C0} where C0 ≡ S
K ≥ 1 PK = PK−1 − {Cγ} ∪ {Cα, Cβ}

(3)

The procedure may be terminated when the similarity of the elements within the
clusters exhibits minimal or negligible change as indicated by the insignificance of variation
in the root mean square standard deviation (RMSSD). Based on this definition, we present
the following algorithm (Algorithm 1):

Algorithm 1: Adaptive Clustering Algoritm
(1) Initialize K = 0
(2) repeat:

(2.1) Increase K = K + 1
(2.2) determine the cluster Cγ such that Vγ = maxk=1, ... ,K−1 Vk
(2.3) define the new partition of clusters PK as in (3)
(2.4) repeat:

(2.4.1) for each cluster Ck ∈ P : update clusters info
(2.4.2) for each xn ∈ S: search the cluster Cδ such that

the Euclidean distance ||xn − cδ||22 is minimal
(2.4.3) for each xn ∈ S: move xn to Cδ

until (the number of reassignment is negligible)
(2.5) update the RMSSD

until (the variation of RMSSD is negligible)
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Notably, the strategy of processing only subproblems with low values of a specific
quality index is a general approach in various application domains, referred to as adaptive
procedures. Notable examples include minimizing discretization errors in numerical meth-
ods or computational fluid dynamics (e.g., [27–29]). Hence, we deemed it appropriate to
designate the above-mentioned procedure as the adaptive K-means algorithm.

The development of edge computing applications requires understanding the cur-
rent architecture of high-performance computing systems, which comprise hybrid nodes
integrating multi-core CPUs and floating-point accelerator devices, such as GPUs [30].
Multi-core CPUs allow a shared-memory multiple instruction multiple data (MIMD)
programming paradigm, suitable for managing large concurrent tasks. On the other
hand, accelerator devices provide exceptional performance on procedures characterized
by pronounced data parallelism, utilizing the single instruction multiple data (SIMD) pro-
gramming model. Thus, the Nvidia Jetson Nano board is well-suited for testing hybrid
algorithms that combine these two programming models.

A multi-core CPU has multiple independent computing units with shared access to
the main memory. To overcome the potential bottleneck caused by this shared access, each
computing unit is equipped with multiple levels of cache memory and a private set of
registers. This configuration enables the operating system (OS) to dispatch concurrent
threads to each computing unit, resulting in the execution of an algorithm following the
multiple instruction multiple data (MIMD) programming model. However, concurrent
access to shared resources can result in race conditions, leading to unpredictable outcomes.
To mitigate this issue, semaphores can be employed to define sections of code that can only
be accessed by one thread at a time.

In contrast, floating-point accelerators implement a separate parallel programming
model, originally designed to enhance image processing operations, such as texture map-
ping, rendering and pixel manipulation. However, with the advent of high-level program-
ming environments, these devices can also be used for general-purpose applications. They
are based on thousands of computing cores executing instructions under a common control
structure and implementing a vector processing form of SIMD.

This architecture makes them ideal for high-throughput computations exhibiting
strong data parallelism. In addition, it supports traditional CPUs in applications character-
ized by massive vector operations. In this case, such computing units can perform much
better than conventional CPUs. Examination of the computational kernel of Algorithm 1,
Step 2.4, reveals different models of parallelism that can be applied to the data structures
managed therein.

Task 2.4.1, responsible for updating the cluster information, affords a parallelism at
the cluster level, where concurrent tasks can update the K data structure describing the
clusters. In real problems, the number of clusters, K, is much smaller than the number
of elements, N, thereby, enabling efficient management of this parallelism via multi-core
CPUs. The operating system schedules independent threads on the CPU’s computing units
with P threads executing on P subpartitions P j

K ⊂ PK, j = 1, . . . , P, and clusters Ck are
assigned to a thread tj in a round-robin fashion. It is possible to then rewrite Step (2.4.1) as
follows.

Refinement of Step 2.4.1

(2.4.1-a) for each P j
K (j = 1, . . . , P) in parallel

(2.4.1-b) for each cluster Ck ∈ P
j
K : update clusters info

end parallel for

Step 2.4.2 shows a thinner degree of parallelism indicated by the number of elements
N. In this instance, a parallelism at the element level can be established, which can be executed
by either a multi-core CPU utilizing the SPMD programming model or a GPU-based
accelerator using the SIMD programming model. For such a reason, it is possible to
implement this step through a hybrid procedure that splits the original dataset S into two
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subsets of elements SCPU and SGPU . More precisely, with the peak performances of the
GPU (PPGPU) and the CPU (PPCPU), we then define the ratio Q by:

Q =
PPGPU
PPCPU

(4)

Then, the number of elements NCPU and NGPU assigned to each computing unit can
be set proportional to the performance ratio Q as defined by:

N =
N

1 + Q
+

NQ
1 + Q

= NCPU + NGPU (5)

We define P as the number of threads in execution on the multi-core CPU, and
Step 2.4.2 determines P subsets Sj ⊂ SCPU(j = 1, . . . , P) comprised of NCPU/P elements,
each assigned to a different thread tj according to the SPMD programming model. The re-
maining set SGPU , comprised of NGPU elements, can then be processed by the floating-point
accelerator device through the SIMD programming model executed. Thus, Step 2.4.2 is
revised to reflect the concurrent execution of Step 2.4.2-a on the CPU and Step 2.4.2-b on
the GPU.

Refinement of Step 2.4.2

(2.4.2-a) for each xn ∈ SGPU in parallel
search the cluster of belonging Cδ

end parallel for
( 2.4.2-b) for each Sj (j = 1, . . . , P) in parallel

for each xn ∈ Sj: search the cluster of belonging Cδ

end parallel for

Step 2.4.3 represents a critical region of the algorithm as it involves the reallocation
of elements xn to new clusters with a high likelihood of race conditions arising from
concurrent access to the data structures of the algorithm by multiple threads. This step
is the only section of the algorithm executed as a sequential procedure in Algorithm 1 to
address this issue.

The described algorithm can then be utilized to enhance the security and trustwor-
thiness in an edge-computing environment by classifying nodes based on their behavior.
For example, let S be the set of devices connected to the network, and then each device
xn ∈ S can be represented by a d-dimensional vector that describes its static characteristics,
such as the type of connection, the computing power, the available memory or the kind of
connected sensors as well as its dynamic features, such as the remaining battery charge,
the workload, the actual availability, the scalability and the historical behavior. A com-
plete set of metrics that can be used to evaluate the dependability of an edge-computing
environment can be found in [31].

The algorithm can, therefore, operate by grouping nodes with similar features from
the trustworthiness point of view and treating them as a single entity. Once these nodes are
identified, the algorithm can implement security protocols to protect the system, such as
limiting access to specific data or isolating the node from the rest of the system. Furthermore,
utilizing a clustering algorithm for node classification based on their trustworthiness
optimizes resource usage, reducing energy consumption and increasing the execution
speed of applications, thus, enabling the creation of a more efficient and secure edge-
computing environment that can support a wide range of applications.

5. Experiments and Discussion
5.1. Design

This section focuses on experiments aimed to evaluate the adaptive K-means algorithm
from both the performance and energy consumption points of view, when executed on



Electronics 2023, 12, 1689 8 of 13

low-power devices for edge-computing environments. As a reference device, we employed
the Nvidia Jetson Nano board as described in Section 3.

The experimentation session was divided into three parts, each with a different objec-
tive. The first set of experiments was aimed at determining the best value of TDP to use
by evaluating the total energy required to perform the tests. The second set, on the other
hand, was aimed at measuring the algorithm’s performance on the considered datasets
by assessing the gain obtained from using the parallel resources available on the board.
Finally, the third set of experiments was aimed at comparing the executions with two
other high-level GPU-based systems by evaluating the trade-off between performance and
energy consumption.

As case studies for the experiments, we chose four datasets from the Machine Learning
Repository at the University of California [32]. These datasets were chosen to represent
a variety of use cases associated with security threats and trustworthiness issues in the
context of edge computing in order to provide stronger validation for the achieved results.
Moreover, they display variations in terms of the number of clusters (K), the number of
elements (N) and the number of attributes (d).

• The Firewall dataset [33] comprises N = 65,532 elements, each representing an access
on a firewall. These elements are characterized by d = 11 numerical features and are
to be classified into K = 4 clusters.

• The Drive dataset [34] aims to detect defective components in a car. It comprises
N = 58,509 electric drive signals described by d = 49 numerical attributes. The signals
are to be classified into K = 11 different classes.

• The Phishing dataset [35] is related to the identification of phishing websites. It
contains N = 1353 elements, each representing a website described through d = 10
features. These websites are to be classified into K = 3 clusters (phishing, legitimate
or suspicious).

• The Wireless dataset [36] involves classifying N = 7840 2.4 GHz radio signals based
on their strengths in an indoor location. They are classified into K = 4 locations based
on d = 5 features.

5.2. Experiments

The first set of experiments evaluates energy efficiency with the Nvidia Jetson Nano
power set to 5 and 10 Watts. To estimate the energy consumption, the product of the
execution time (in seconds) and TDP (in Joules/sec) is considered. More specifically:

H(TDP) = T4 · TDP = [sec] · [Joule]
[sec]

(6)

where T4 represents the execution time with four threads on the multi-core CPU, and H(TDP)

in (6), therefore, serves as an estimate of the energy consumed in executing Algorithm 1
with a given TDP setting.

Despite the fact that TDP is a measure of the maximum amount of heat that a CPU can
generate under maximum workload and is often used as a reference parameter for selecting
the CPU and cooling system, it is commonly used to compare the energy efficiency of CPUs
when running the same application [37,38]. CPUs with the same TDP should exhibit similar
performance, which means that a CPU with a smaller execution time for an application,
at the same TDP, can be considered more energy-efficient. This comparison can be assessed
through the following ratio:

R1 = H(5)/H(10)

The previous expression measures how much lower the estimation of energy con-
sumption of the execution is with the 5 Watt setting compared to those with the 10 Watt
setting used as a baseline.

Figure 2 shows the total execution times in seconds T4 with the two settings, and we
also present the values of the energy consumption ratio:
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Figure 2. Execution times on the Nvidia Jetson Nano with the two settings 5 and 10 Watts and energy
consumption ratio R1.

The results revealed that the ratio R1 = H(5)/H(10) is always less than 1, indicating
that the 5 Watt setting requires a lower overall energy consumption despite the longer
execution times. As a result, all further experiments on the Nvidia Jetson Nano board were
conducted using the 5 Watt setting.

The second set of experiments evaluates the algorithm performance on the Nvidia
Jetson nano board. We first measured its execution time (TP) as it ran only on the host
CPU with P threads by assigning all N elements to the CPU with Q = 0 in Equation (5).
Furthermore, we also measured execution time (T∗P) while allocating N elements on both the
CPU and GPU as described in Equation (5) by using Q = 471/22 = 21. Finally, from these
two values, we compute the ratio:

R2 = TP/T∗P

This metric quantifies the performance improvement achieved by utilizing all available
computational resources on the board (i.e., GPU + CPU) compared to using only the CPU
for execution. Figure 3 displays the execution times on the CPU alone (T1 and T4), as well
as with the GPU (T∗1 and T∗4 ) along with the performance gains (R2).

Regarding the criticality of energy consumption in low-power devices, a third set of
experiments was performed to compare the trade-off between the energy consumption and
execution time on the Nvidia Jetson Nano with two other systems that utilize a GPU as a
floating-point accelerator:

(TK20) utilizes a host CPU with a 4-core Intel Core i7-950 clocked at 3.07 GHz. The ac-
companying floating point accelerator is an Nvidia Tesla K20c GPU introduced in
2012, boasting 2496 CUDA cores with a clock speed of 0.706 GHz, a global memory
capacity of 5 GBytes and a TDP of 225 Watts.

(RTX) is based on a host CPU with an 8-core Intel Core i9-9900K running at a frequency
of 3.6 GHz. The accelerator unit is the more recent Nvidia GeForce RTX 3070 GPU
introduced in 2020, having 5888 CUDA cores operating at 1.75 GHz, 8 GBytes of
global memory and a TDP of 220 Watts.

Figure 4 then displays the execution time T∗4 and the values of the ratio

R3 = H(GPU)/H(Jetson),
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which measures how much higher the energy consumption H(GPU) of the two high-end
GPU boards are compared to the equivalent value of the Nvidia Jetson Nano H(Jetson) used
as a baseline.
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Figure 3. Execution times (in seconds) of Algorithm 1 on the Nvidia Jetson Nano board and perfor-
mance gains R2 achieved using a GPU.
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Figure 4. Execution times (in seconds) and energy consumption ratio R3 of the two high end GPU
boards compared with the Nvidia Jetson Nano board.

5.3. Discussion

The experiment’s results, as shown in Figure 3, reveal a general and noticeable im-
provement in performance due to utilizing both the multi-core CPU and GPU concurrently.
This improvement is reflected by the performance gain R2. However, it is important to note
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that the actual performance gain of the described method strongly depends on the size
of the problem, specifically the number of clusters K, the number of elements N and the
dimension d.

From the figure, we note that this gain is not as substantial when dealing with low-
dimensional problems, such as the Phishing problem (having a dataset of N = 1353 elements)
or the Wireless problem (with N = 7840 elements). This is because these smaller problems
do not fully tap into the computational capabilities of the GPU in Step 2.4.2 of the algorithm.
Problems of larger dimensions (e.g., the Firewall and Drive problems with N = 65,532 and
N = 58,509 elements, respectively) instead allow a full utilization of the computational
power of the computing units.

Figure 4 shows the results of the energy consumption tests, indicating that the total
energy consumption of Algorithm 1 when it ran on the Nvidia Jetson Nano was significantly
lower compared to that of the other two considered devices. Despite the longer execution
time, the energy consumption of the Nvidia Jetson Nano ranged from 4 to 10 times less
as confirmed by the measured values of R3. This means a higher number of operations
performed per single Joule consumed. We did not observe any significant differences in the
R3 ratio with respect to dataset size.

The experiments yielded outcomes showing that it is possible to achieve a favorable
trade-off between low energy consumption and high performance when implementing
clustering algorithms on advanced edge-computing devices, such as the Nvidia Jetson
Nano board. While energy efficiency can be maximized, this comes at the cost of decreased
performance, which may not be ideal for specific real-time applications. However, with the
low cost of these devices, available on the consumer market for as little as 100 to 200 Euros,
it is easy to increase the number of data collection and processing points if necessary.
The use of proximity servers to secure the network edge also exemplifies the versatility and
efficiency of this approach, as this enables the aggregation of computational power only in
areas where it is needed without using more energy-intensive devices.

6. Conclusions

Edge computing has recently gained significant attention due to the increasing use of
low-power devices that offer a fusion of computing power and sensors all in one compact
board. However, despite its benefits, this environment also poses several serious challenges,
such as the likelihood of failures and security breaches caused by the heterogeneous nature
of resources and decentralized control structure.

To tackle this challenge, we focused our efforts into creating a hybrid clustering
algorithm that categorizes nodes based on their trustworthiness, thus, enhancing the
security aspect in edge computing systems. To assess the algorithm’s performance, we
performed experiments using the Nvidia Jetson Nano board—a handy device suitable as
both an edge node and a proximity server. We aimed to gauge the algorithm’s potential
in providing decision-making support for security-related issues at the network’s edge,
thereby, eliminating the need for central servers. Furthermore, we tested several datasets to
cover a wide range of scenarios by optimizing the algorithm for the board’s architecture
through a hybrid SPMD/SIMD approach.

The study results indicate that high-performance and low-power edge-computing
devices offer a better balance between performance and energy efficiency compared with
high-end computing systems. Furthermore, effectively utilizing these devices with hybrid
clustering algorithms can facilitate the broader deployment of trustworthy and smart nodes
at the network edge without the need for central servers. This advancement opens up new
possibilities for multiple scientific and societal applications.

In any case, beyond a testing session on real data that also utilizes tools for energy
consumption estimation other than TDP, further research and experiments are necessary
before the actual and systematic utilization of our method in a real-world environment.
For instance, the development of a distributed-memory version of the clustering algorithm
running on several edge devices could allow the implementation of a federated learning



Electronics 2023, 12, 1689 12 of 13

model. Furthermore, high-performance FPGA-based accelerator devices, such as Xilinx
Alveo, have recently shown promise in implementing methods for ML. We propose that the
combination of these additional research efforts could contribute to achieving an efficient,
reliable and secure edge-computing environment. These aspects will be the topics of
future works.
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