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Abstract: In this work, a multi-task convolutional neural network with multi-input (MIMT-CNN) is
proposed for electromagnetic interference (EMI) signals recognition and electromagnetic environment
risk evaluation of the data link of unmanned aerial vehicle (UAV). The visualized performance
parameters, short-time Fourier transform (STFT) spectrograms, and constellation diagrams are
obtained by experiment on the electromagnetic susceptibility of UAV’s datalink. In particular, the
constellation diagram is further enhanced by calculating the density distribution of sampling points
to obtain the normalized density constellation. Taking the above different categories of images as
the input of the expected model, the multi-element and high correlation EMI features are extracted
and fused in the MIMT-CNN. Besides, the structure of series-parallel connection is adopted in the
trained model and the Bayesian optimization is also used to select hyperparameters. In this case,
the perception model with higher reliability can be obtained. On this basis, the performance and
complexity of the obtained model with different input channels are compared. The results show
that with the input of constellation diagram, especially the normalized density constellation, can
significantly improve the accuracy of the model. Besides the normalized density constellation,
the model with visualized performance parameters and STFT spectrogram as inputs has a much
better performance.

Keywords: electromagnetic interference (EMI); unmanned aerial vehicle (UAV); data link; risk
management; convolutional neural network (CNN)

1. Introduction

Unmanned aerial vehicles (UAVs) have been widely applied with great potential due
to their automation, low cost and multi-function. It has experienced rapid growth in fields
of military, civil and commercial sectors [1]. Due to some illegal users and malicious inter-
ference, the electromagnetic environment (EME) for UAVs is increasingly complex. As an
airborne electronic system, the data link is easy to be interfered by external electromagnetic
interference (EMI), resulting in an abnormal communication, an interruption or even a
damage [2]. Therefore, it is necessary for a UAV to realize EMI signal and access EME
threat independently.

Many studies about classification and regression on EMI modeling are based on
electronic components, circuits and equipment. The popular methods mainly include
equivalent circuit and topological network, statistical probability and machine learning.
Deep learning is a branch of machine learning, which can autonomously learn more
complex features from data through multiple nonlinear transformations with billions of
weight parameters [3], thereby reducing the dependence on professional knowledge and
feature extraction rules. The merits and defects of the classification and regression models
are shown in Table 1.
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Table 1. Summary of related works.

Type of Method Merit Defect Reference

equivalent circuit and topological network clear EMI mechanism
interpretable model

need extensive professional
knowledge on the equipment

equivalent circuit [4]

topological network [5]

statistical probability based on strict
mathematical theory.

need a lot of simplification,
resulting in insufficient

accuracy in practice

kriging-controlled stratification [6]

fault tree [7]

machine learning

based on data and has
strong applicability

some model requires domain
experts to extract features

Gaussian process regression [8]

probabilistic graphical models [9]

deep learning
autonomously learn from

complex datastrong
generalization ability

computationally expensive
and has weak interpretability

convolutional neural network [10]

generative adversarial network [11]

residual networks [12]

artificial neural network [13]

Many deep learning models can learn a single task, such as spectrum recognition,
threat assessment, modulation recognition, radio frequency fingerprint recognition, etc.,
and can achieve good performance. However, the previous methods used in EMI signals
classification and threat assessment often ignored the connection between the two tasks, so
it needs to model each task separately, resulting in a significant increase in the calculation
and storage costs. To the best of our knowledge, this is the first work to apply multi-
task learning to EMI identification and threat assessment of UAV data link. As a typical
application of deep learning in computer vision, convolutional neural network (CNN) is
a data-driven deep neural network structure. Because of its excellent feature extraction
ability, CNN is applied extensively in electromagnetic signal classification and threat
assessment [14–16].

In this paper, we design a multi-task convolutional neural network with multi-input
(MIMT-CNN) for electromagnetic environment perception of the data link of a UAV. Firstly,
the visualized performance parameters (VPP), the short-time Fourier transform (STFT)
spectrograms, and the normalized density constellation (NDC) are used as the inputs of the
multi-input CNN for feature extraction. Among them, the NDC is acquired through the
feature enhancement of the constellation diagram. Then based on multi-task learning [17],
the EMI signal classification and threat assessment are put into a shared parallel structure
for learning simultaneously. In addition, in order to improve the performance of the
obtained model further, Bayesian optimization is used to optimize the structure of the
parallel part of the network as well as the training hyperparameter.

The main contributions of this paper are as follows:

1. The data is constructed based on the EMI injection test rather than simulation to solve
the real-world problem.

2. A graphical preprocessing and enhancement method for EMI signals is proposed to
fuse the heterogeneous information of EMI signal and data link performance.

3. Based on the series-parallel structure and the balance loss function, the proposed
MIMT-CNN can achieve a balance between interference identification and threat
assessment performance.

This paper is organized as follows: In Section 2, we introduce the acquisition process of
the input data, as well as the prediction process based on the MIMT-CNN. Section 3 presents
the visualization process of the initial input data. Then, the structure of MIMT-CNN, as
well as its evaluation method, is proposed in Section 4. Section 5 conducts hyperparameters
optimization and network training. In Section 6, different network structures are tested to
verify the generalization ability of the network, as well as find the best input structure of
the network. Finally, the conclusions are drawn in Section 7.



Electronics 2023, 12, 1631 3 of 19

2. EMS Measurement and Prediction

The injection experiment on the UAV’s data link is carried out to test its electromagnetic
sensitivity (EMS) under different EMI parameters, such as signal types, intensities, and
frequencies. The operating signal of the data link is transmitted from the ground control
station with a communication mode of binary phase shift keying (BPSK). The types of
EMI signals investigated in this paper are continuous wave (CW) and white Gaussian
noise (WGN), which are common in the actual interference scenarios, as well as the BPSK
interference, whose parameters are close to the communication parameters of the data link.
Due to the radio frequency (RF) front-end filter followed by the receiving antenna, the data
link is the most sensitive to the EMI, with its frequency deviation within ±5 MHz from the
center frequency f0 of the operating signal. Therefore, the data link’s state parameters and
I/Q data are collected under the above three types of interference signals with a frequency
range from f 0 − 5 MHz to f 0 + 5 MHz and a bandwidth range within 10 MHz.

2.1. Original Data Acquisition

The state parameters and their corresponding I/Q data of the UAV’s data link inter-
fered with by the above three types of interference are collected. As shown in Figure 1, the
state parameters, including pAGC, pSNR, pBER indicate the automatic gain control (AGC)
voltage, signal-to-noise ratio (SNR) and bit error rate (BER), respectively, which are col-
lected from the monitoring software of the data link. Meanwhile, the I/Q data of the
received signal of the data link are collected by an electromagnetic spectrum monitoring
receiver connected to the receiving antenna.
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Figure 1. Schematic of original data collection.

The electromagnetic spectrum monitoring receiver is a zero intermediate frequency
receiver used to demodulate the received electromagnetic signal to obtain the I/Q data.
After receiving the electromagnetic signal r(t), which contains operating signal s(t) and
jamming signal j(t), the band selection of band-pass filter (BPF) and the amplification of
low noise amplifier (LNA) are applied. The RF signal is down-converted to the baseband
signal through the demodulator by mixing with the local oscillator (LO). Then the baseband
signal is filtered by the low-pass filter (LPF) and amplified by the amplifier (AMP).

In order to get the I/Q signal rI(n) and rQ(n), the analog to digital converter (ADC)
converts continuous analog signal into discrete digital signal. The received signal r(n) can
be expressed by
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r(n) = a(n) · ejφ(n) = rI(n) + j · rQ(n) (1)

where rI(n) and rQ(n) represent the in-phase and quadrature components of r(n), n is the
length of the signal. a(n) and φ(n) stand for the amplitude and phase of r(n), respectively.

2.2. EMI Effects

After the EMS experiment, it was found that there is a complex nonlinear relationship
between the jamming-to-signal ratio (JSR) and the center frequency or the bandwidth of the
EMI with different types. As shown in Figure 2, the JSR of three typical frequencies of each
EMI type are analyzed when the data link can’t keep communication which is called losing
lock. Figure 2a shows the variation of JSR with EMI frequency offset. Figure 2b shows the
JSR of the data link operating signal varies with different interference bandwidths at three
typical frequencies.
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Figure 2. Variation of JSR when the UAV’s data link loses lock in presence of EMI signal with typical
parameters: (a) JSR varies with frequency offset of EMI when the bandwidths of WGN and BPSK are
1 MHz and 8 MHz and (b) JSR varies with the EMI bandwidth when the center frequencies of WGN
and BPSK are f0, f0 − 4 MHz, f0 + 2 MHz.

By comparing the effects of the three types of interference on the data link, it can be
concluded that under the same frequency offset, the data link is more sensitive to CW or
BPSK interference. Besides, the sensitive frequencies of CW interference are concentrated
near the center frequency of the operating signal, while BPSK and WGN interference are
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still effective when the frequency offset is high due to the distribution of energy within a
certain bandwidth.

According to the practice of UAV’s data link in the application scenarios [18,19], a
unified method is adopted to evaluate the risk to the data link in the presence of different
types of EMI signal. It is determined that the data link is threatened by EMI when the
power difference between the losing lock threshold and the actual EMI signal is less than
6 dB [10]. On the basis, the EMI risk is divided into four levels: stable, minor disturbance,
risky, and losing lock, of which the corresponding power difference is 6 dB, 3 dB, 1 dB, and
0 dB, respectively.

2.3. Proposed Method

The data obtained through the EMS test has different formats and variation rules.
When the UAV’s data link is subjected to different types and intensities of EMI, its state
parameters will be disturbed. Besides, the amplitude and phase characteristics of different
EMI signals are significantly different, which can be analyzed by obtaining the I/Q signal.

By visualizing the obtained heterogeneous data as the model input, the interpretability
of the data is enhanced, which is in line with the visual sensory understanding of humans.
Besides, a single image contains more effective information and has a strong noise immunity,
which can improve the accuracy of the model. Therefore, the MIMT-CNN method is
proposed in this paper. The output of the MIMT-CNN acts simultaneously as EMI signal
identification and electromagnetic threat assessment. As shown in Figure 3, the proposed
method includes the following steps:

(1) The original data are obtained through the EMS injection experiment, including the
state parameters of the data link and the I/Q data of the received signal by the data
link in the presence of interference.

(2) The state parameters of the data link are converted to visualized performance pa-
rameters (VPP). Meanwhile, the I/Q data are transformed to STFT spectrograms and
normalized density constellation (NDC), which denotes the time-frequency and phase
information of the EMI signal, respectively.

(3) The MIMT-CNN is constructed and trained on the training set. By using the Bayesian
optimization, the hyperparameters of the network are optimized on the validation set.

(4) The trained network is tested on the test set. According to the actual results of EMI
signal classification and threat level prediction, the accuracy and generalization ability
of the model are evaluated.
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3. Data Preprocessing

Before modeling based on deep learning, the received original signal needs to be
preprocessed and represented in an appropriate format [20]. The state parameters of the
data link are normalized and converted into histograms to represent the state information
under different EMI conditions. The STFT spectrogram is obtained through time-frequency
analysis of I/Q data to extract the time-frequency information of the EMI signal. In addition,
after standardizing the I/Q data, the constellation diagram is drawn to obtain the phase
information of the EMI signal.

3.1. Visualized Performance Parameters

The state parameters of the data link can be obtained from the monitoring software,
as shown in Figure 1. When the EMI is not applied, the initial state parameter of a UAV’s
data link is assumed as p0

m ∈
{

p0
AGC, p0

SNR, p0
BER
}

. After the UAV’s data link is interfered,
the state parameter is changed to pm ∈ {pAGC, pSNR, pBER}, and the maximum of the
state parameter is pmax

m ∈
{

pmax
AGC, pmax

SNR, pmax
BER
}

. In this case, the state parameters can be
normalized as

pnorm
m =

min
{∣∣pm − p0

m
∣∣, ∣∣pmax

m − p0
m
∣∣}

max
{∣∣pm − p0

m
∣∣, ∣∣pmax

m − p0
m
∣∣} (2)

where pnorm
m is the processed parameter which is affected by the initial state of the data link.

Therefore, the initial input is mapped linearly to [0, 1], so as to transform the performance
parameter into a dimensionless expression, and the normalized data is visualized in a
histogram. Figure 4 shows the combination of the visualized performance parameters
(VPPs) when the data link loses lock under different types of EMI.
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Figure 4. Visualized performance parameters under different types of EMI when the data link loses
lock (Taking the center frequency of CW, WGN, and BPSK interference signals at f0 − 4 MHz and the
bandwidth of WGN and BPSK interference signals within 8 MHz as an example).

It can be seen from Figure 4 that the VPPs corresponding to different data link state
parameters and EMI types differ in a certain disturbance state. Among them, compared
with SNR, the difference between BER and AGC at three different EMI types is more
obvious. Therefore, VPPs can show the influence of different EMI types on the data
link receiver.
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3.2. STFT Spectrogram

When an analysis window of length M slips on the received signal r(n), the short-
time Fourier transform (STFT) of the signal is obtained by calculating the discrete Fourier
transform (DFT) of the sampled signal after windowing. Let L be a non-zero overlap length
to compensate the signal attenuation at the edge of the window. Suppose Rk( f ) is a DFT of
the sampled signal centered on time k(M− L) at frequency f

Rk( f ) =
∞

∑
n=−∞

r(n)g[n− k(M− L)]e−j2π f n (3)

where n is a time sampling point and g(n) is a window function of length M. Nr is the
length of sampling signal r(n) and 1 ≤ k ≤ kmax =

⌊
Nr−L
M−L

⌋
.

The square of the DFT modulus |Rk( f )|2 of each windowed segment is combined to
obtain the matrix |RSTFT( f )|2, which contains the amplitude of each time and frequency
point. |RSTFT( f )|2 is visualized to get STFT spectrogram

|RSTFT( f )|2 =
[
|R1( f )|2 |R2( f )|2 · · · |Rkmax( f )|2

]
(4)

|RSTFT( f )|2 contains the amplitude of each time and frequency point. The logarithm
R of energy density is obtained by

R = 20× lg|RSTFT( f )| (5)

Taking time as the horizontal axis and frequency as the vertical axis, the STFT spec-
trogram is obtained by using color to represent the logarithmic energy density R, so that
the energy changes corresponding to the time-frequency components will show different
texture features.

The selected I/Q signal under typical EMI and the corresponding STFT spectrogram
are shown in Figure 5. It can be obtained that the I/Q signal can fully show the time
domain characteristics of the signal, while the STFT spectrogram can simultaneously show
the time-frequency characteristics. In particular, the feature differences between WGN and
BPSK in the STFT spectrogram are not obvious, which will make it difficult for the model
to extract specific features. Therefore, it is necessary to increase the model input, which can
show the phase difference of EMI signals.
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Figure 5. I/Q signal and STFT spectrogram when the data link loses lock with the EMI signal of:
(a) WGN with the center frequency of f0 − 4 MHz and the bandwidth of 8 MHz, (b) BPSK with the
center frequency of f0 − 4 MHz and the bandwidth of 8 MHz and (c) CW with the center frequency
of f0 − 4 MHz.
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3.3. Normalized Density Constellation

The constellation diagram is a widely used two-dimensional image, which maps the
signal sample into scattering points to express the amplitude and phase information of the
sampling points. In order to reflect the correlation characteristics of the I/Q signal and
extract the phase feature, the I/Q signal is plotted in the coordinate system with the in-phase
component as the horizontal axis and the quadrature component as the vertical‘axis.

The amplitude of the received signal of the data link is different under different EMI
signals, so it is necessary to select an appropriate region to observe the points on the
constellation diagram [21]. If the selected area is too large, the signal samples will be
compressed in a small area and the distribution of sampling points cannot be effectively
observed. If the selection area is too small, some signal samples may be excluded from
the image.

Therefore, in order to obtain the normalized constellation diagram (NDC) with a
uniform size, the amplitude of the sampling point is normalized to [−1,1], as shown in
Table 2. Due to the superposition of the operating signal of the data link, interference signal
and noise, the sampling points overlapped on the constellation diagram, so it is difficult to
distinguish their distribution characteristics. However, the distribution density of sampling
points in different regions is also different, so the points density can be used to strengthen
the characteristics of constellation images [22].

Table 2. The constellation diagram and NDC under different EMI signals when the data link
loses lock.

EMI Signal
Types Continuous Wave White Gaussian Noise BPSK

Constellation
diagram
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Set the interference threat label to the data link as ku , which is introduced in Section 

3, so the label matrix of the network is  
1

,
K

k k k
u

=
. Therefore, the network  , ,p s c

k k kW W W  

is mapped to  ,k kv u . 

4.1. Network Structure 

The input of the network is divided into multiple channels, as shown in Figure 6. The 

VPP, STFT spectrogram and NDC of the data link at the same interference state are input 

into different channels, and then go through the feature extraction layer, the feature fusion 

processing layer and finally the multi-task output layer. 
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Center
frequency f0 − 4 MHz f0 + 2 MHz f0 − 4 MHz f0 + 2 MHz f0 − 4 MHz f0 + 2 MHz

Bandwidth - 1 MHz 8 MHz 1 MHz 8 MHz

The normalized density ρ(i, j) is obtained by calculating the ratio of the number of
sampling points d(i, j) to the circular window area with its radius of r centered at (i, j)

ρ(i, j) =
1

πr2 ∑√
i2+j2≤r

d(i, j) (6)

The constellation diagram is colored according to the density, as shown in Table 2. The
color code represents the density ρ (i, j) of the constellation sampling points normalized to
[0, 1]. Therefore, each point in the preprocessed constellation is equally informative and no
longer independent. This preprocessing method accumulates the time dimension of the
points in the constellation diagram, which makes the data feature dimension higher and
condenses more prior knowledge of the modulation signal. In consequence, the NDC can
realize the feature enhancement of the constellation diagram.

It should be noted that the communication of the data link is not ideal. Due to the
influence of interference, noise, RF circuit design error, and physical limitations of electron



Electronics 2023, 12, 1631 9 of 19

devices on the data link, there is a deviation between the obtained constellation diagram
and the standard constellation diagram of the modulated signal.

4. MIMT-CNN Modeling

CNN is a kind of deep neural network which can perceive the deep-seated abstract
features of images like the human brain [23]. Supposing K is the number of samples in each
category, the VPP matrix of data link is Wp

k , the STFT spectrogram matrix is Ws
k and the

NDC matrix is Wc
k , then the input image matrix is

{
Wp

k , Ws
k , Wc

k

}K

k=1
.

The output objective of the model is the EMI type and the threaten level of the data
link. The label of EMI type is set as νk. Since the categories of EMI are independent, in order
to make the values of the categories more reasonable, the discrete categories are encoded
by one-hot encoding [24].  v(WGN)

v(BPSK)
v(CW)

 =

1, 0, 0
0, 1, 0
0, 0, 1

 (7)

Set the interference threat label to the data link as uk, which is introduced in Section 3,
so the label matrix of the network is {νk, uk}K

k=1. Therefore, the network
{

Wp
k , Ws

k , Wc
k

}
is

mapped to {vk, uk}.

4.1. Network Structure

The input of the network is divided into multiple channels, as shown in Figure 6. The
VPP, STFT spectrogram and NDC of the data link at the same interference state are input
into different channels, and then go through the feature extraction layer, the feature fusion
processing layer and finally the multi-task output layer.
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Figure 6. Network structure of MIMT-CNN.

4.1.1. Feature Extraction Layer

The three input channels input red-green-blue images with the size of 100 × 100 × 3,
respectively. These images are divided by 255, so that each pixel value is normalized to
[0, 1]. Then, the signal in each channel enters the image feature extraction layer to extract
features. Since the amount of input data is very large, it is not suitable to load all the data
at once for gradient calculation and weight updating. Therefore, the input data are divided
into small batches, which makes the network obtain a greater generalization ability.

Each channel contains two original feature extraction modules, which both consist of
two convolution layers with the size of 3 × 3, two ReLU layers, and a maximum pooling
layer with the size of 2 × 2. Through the layer-by-layer convolution, the important features
are continuously strengthened, while the unimportant features are gradually weakened.
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Besides, the nonlinear activation function ReLU is used for the multi-input and multi-task
output, with the advantages of simple form, short calculation time, as well as the prevention
of gradient disappearance and overfitting [25].

The Maximum pooling [26] layer is periodically placed between the convolutional
layers of the feature extraction layer, which extracts the maximum feature in the local
receptive field of the feature map, thereby reducing the computational complexity, prevent-
ing network over-fitting, and improving the generalization ability of the model. Due to
the existence of the pooling layer, the feature dimension of each channel is reduced from
100 × 100 × 3 to 22 × 22 × 3 after the feature extraction layer.

4.1.2. Feature Fusion Processing Lazyer

For the input image with wide feature distribution, a large convolution layer can
realize feature extraction much better, while for the input image with concentrated feature
distribution, a small convolution layer performs better than a large one. Therefore, after
the feature extraction layer, the feature fusion processing layer is designed to follow the
structure of Inception [27]. Besides, in order to select better layer parameters and improve
the adaptability of the network to the feature scales, the size and number of convolutional
layers are obtained through Bayesian optimization.

As the network widens and deepens, the number of convolution kernels increases.
Meanwhile, too many convolutional layers will increase the calculation amount of the
model, resulting in a slow convergence rate and a possible over-fitting. To increase the
convergence speed of the model and improve its robustness, the batch normalization [28]
layer is added to the network. By means of normalization, the input of each layer of the
network is reconstructed to a standard normal distribution, so that the input falls in a
certain area where the activation function is sensitive. In addition, the fully connected
layer is used at the end of the feature fusion processing layer to integrate the extracted
two-dimensional feature maps into column vectors, which can be easily added in the
add layer.

4.1.3. Multi-Task Output Layer

The output layer of the network has two branches: classification for the EMI signal
identification and regression for the threat level prediction. The branch of regression output
is carried out by a fully connected layer with the size of 1, whose output is the EMI threat
level u to the data link. The branch of classification is composed of a fully connected layer
with the size of 4 and a softmax layer, whose output is the EMI type v.

The softmax layer converts the output values of the classifications into a probability
distribution in the range of [0, 1] with a sum of 1 and uses the maximum probability as the
basis for category judgment. The classification result v can be calculated by

v = argmax
C

(
ewi

∑C
c=1 ewc

)
(8)

where wi is the output value of the i-th node in the previous layer of the softmax layer, and
C is the number of output nodes, i.e., the number of EMI signal categories.

4.2. Multi-Task Loss Function

The loss function is used to evaluate the difference between the actual value and the
predicted value. The smaller the loss function is, the better the performance of the model is.
Since the MIMT-CNN has two outputs, the loss function of the network also consists of
two parts, namely, classification loss Lv and regression loss Lu.

4.2.1. EMI Classification Loss

The classification loss Lv uses focal loss function [29]. Compared with the commonly
used cross-entropy loss function, the focal loss will not change for the samples with
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inaccurate classification, while for the samples with accurate classification, the loss will
become smaller. This is equivalent to increasing the weight of the inaccurate samples in the
loss function, which forces the network to focus on the samples which are difficult to be
classified. Lv is calculated by

Lv = −α(1− pv)
γ log(pv) (9)

where γ is the focusing parameter, which increases the sensitivity of the network to the
misclassified data. α is the balancing parameter, which can be set to reduce the weight of
negative samples. γ = 2, α = 0.25 are set in this work. pv is the probability of the predicted
category. (1− pv)

γ is the modulating factor, which is used to reduce the weight of easily
classified samples.

Due to the change of the modulating factor, the samples that are difficult to train play
a leading role, thus allowing the model to focus more on the samples that are difficult to be
classified during training as well as improving the accuracy of the model’s classification.

4.2.2. Threat Prediction Loss

The regression loss Lu uses half mean squared error loss function. ûk is the network
response, uk is the target of the prediction, Kbs is the total number of network responses in
a small batch, and K is the total number of observations for uk. Lu is given by

Lu =
1

2K

Kbs

∑
i=1

(ûk − uk)
2 (10)

4.2.3. Balanced Loss

The loss functions Lv and Lu will not decrease at the same rate during the training
progress. In order to unify the loss to the same magnitude order and avoid the gradient
excessively approaching Lu with a large gradient, different weights o1 and o2 are used
for Lv and Lu, respectively. The final loss function Lall is the sum of classification loss
and regression loss, thereby enhancing the generalization ability of the model. Lall can be
calculated by

Lall = o1Lv + o2Lu (11)

In order to balance the influence of classification loss and the regression loss on training
convergence speed, o1 = 1 and o2 = 0.1 are determined after optimization.

4.3. Evaluation Indicators

Although the MIMT-CNN is capable of performing both classification and regression
tasks, the classification and regression tasks need to be evaluated separately. The classifica-
tion performance is usually evaluated by accuracy. Assuming that vT and vF represent the
number of correct and incorrect classifications, respectively, the classification accuracy Acc
is given by

Acc =
vT

vT + vF
(12)

Mean absolute percentage error (MAPE) and root mean square error (RMSE) are se-
lected to evaluate the prediction performance. MAPE is one of the most common indicators
to evaluate prediction accuracy, but it is vulnerable to outliers. RMSE can measure the
fitting degree of the predicted value relative to the actual curve and is more sensitive to the
error between the predicted and the true values than MAPE.

MAPE =
1

Ktest

Ktest

∑
i=1

|ui − ûi|
ui

× 100% (13)
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RMSE =

√√√√ 1
Ktest

Ktest

∑
i=1

(ui − ûi)
2 (14)

where ui is the target result, ûi is the prediction result, Ktest is the number of samples in the
test set.

5. Hyperparameter Optimization and Model Training

In this section, Bayesian optimization is used to obtain the optimal combination of
hyperparameters, which takes the optimization objective as a black-box function and
performs hyperparameter optimization on the validation set. Then the optimized model
is trained on the training set. Since the input image category and the number of channels
for the MIMT-CNN network can be changed according to actual needs, multiple input
combinations are selected for model training.

5.1. Bayesian Optimization

Bayesian optimization is one of the common hyperparameter optimization algo-
rithms [30]. The Bayesian optimization constructs the probabilistic surrogate model of
the objective function based on the historical evaluation results, so as to make full use
of the previous evaluation information to select the next set of hyperparameters, which
greatly reduces the number of evaluations. Therefore, the Bayesian optimization takes up
less computing resource and has higher efficiency than manual tuning, grid search and
metaheuristics algorithms [31].

The hyperparameters that need to be optimized in MIMT-CNN are divided into two
categories. One is the size of the convolutional layer and the fully connected layer in the
feature fusion processing layer, which can be used to determine the optimal attention
range of the network. The other is the training parameters, including the batch size, the
initial learning rate, and the training iteration. By determining the appropriate network
parameters, a model with high training efficiency and accuracy can be obtained.

For the output structure of the MIMT-CNN, the optimal classification accuracy and
regression performance cannot be obtained simultaneously in general, besides it is also
unreasonable to only meet the classification or regression performance alone. Therefore, in
order to strike a balance between the classification accuracy and the regression performance,
the black box function f (λn) in this paper is defined as the ratio of the predicted RMSE to
the classification accuracy

f (λn) =
RMSE(λn, DTrain, DValidation)

Acc(λn, DTrain, DValidation)
(15)

where the combination of hyperparameters involved in the optimization is {λn}N
n=1 and

the optimization space is RN . According to the number of hyperparameters in this paper,
N is determined to be 10. DTrain is the input of the training set and DValidation is the input
of the validation set.

Bayesian optimization estimates the posterior distribution of the objective function
through the selected parameter points. The distribution results are used to search for
the next hyperparameter combination so as to further sample and update the posterior
distribution [32]. After a specified number of iterations, the hyperparameter combination
λ∗ of the optimized black-box function is obtained by

λ∗ = arg min
λn∈Rn

f (λn) (16)

By the Bayesian optimization method, the hyperparameters of the model are deter-
mined in Table 3, according to which the model will be trained and tested based.
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Table 3. Training parameters setting.

Parameters Description Values

Kbs Batch size 5
lr Initial learning rate 6.1884 × 10−6

ep Number of epochs 20
c1 Size of convolutional layer 1 9
c2 Size of convolutional layer 2 1
c3 Size of convolutional layer 3 4
n1 Number of convolutional layer 1 4

n2 Number of convolutional layer 2 19
n3 Number of convolutional layer 3 18
f c Size of fully connected layer 29

5.2. Training Setting

On the basis of the experimental data in Section 3, 1320 groups of VPP, STFT spectro-
gram, and NDC of UAV’s data link interfered by EMI are obtained, which are, respectively,
input into the channels of the network. The samples of three EMI categories are divided
randomly into a training set, validation set, and test set according to the ratio of 6:2:2. The
training set optimizes weights by updating model parameters. The validation set is used to
optimize the hyperparameters of the network to prevent overfitting and underfitting, so as
to obtain a better model. Finally, the network evaluates the final model on the test set.

The MIMT-CNN is built and trained based on the neural network toolbox of MAT-
LAB2020b. The computer platform is a Win 10 system with the GPU of NVIDIA GTX1060.
In order to stabilize the training process and prevent the gradient from disappearing or
exploding, the Adam optimizer with an adaptive learning rate is used for training. The
initial learning rate of 6.1884 × 10−6 is obtained by Bayesian optimization, which then
decreases to 50% of the previous value after one epoch. The Adam optimizer uses gradient
estimation to directly calculate the adaptive learning rate of different parameters, which
has the advantages of high computational efficiency and small memory requirement [33].

5.3. Training Result

According to the balanced loss function presented in Section 5, the effectiveness of the
model can be observed from the trend of the loss on the training set. For the VPP, STFT
spectrogram, scatter constellation, and NDC in Section 3, the model is trained by changing
the number of input channels of the network. The training process is shown in Figure 7.
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It can be obtained from Figure 7 that the network with all structures converges well.
With the increase in iterations, the loss in the initial stage decreases rapidly. In the case of
applying the Adam optimizer, the model without the VPP will converge the slowest in
the double-input model. This shows that the performance parameters of the data link are
closely related to the learning process of the network for mapping.

In general, the closer the loss of the model is to 0, the higher the accuracy of the
model on the training set is. In the three-input model, the network with the constellation
diagram has the fastest convergence rate, with a convergency value of approximately 0.27.
The convergence rate of the network with NDC is not the fastest, but the value of the
convergency is the lowest at approximately 0.2, which indicates a higher accuracy in the
training process.

6. Model Test Result

The test results are divided into the accuracy evaluation of EMI signal classification
and threat level prediction. According to the evaluation indicators in Section 5, the output
performance of the MIMT-CNN with different input channels is compared. For the model
structure with relatively good performance, the confusion matrix is used to analyze the
classification accuracy of each EMI signal category. Besides, the boxplot is drawn to evaluate
the model prediction accuracy under different EMI threat levels.

6.1. Influence of the Structure on Network Performance

Since the test set does not participate in model training, the performance evaluation
on the test set can reflect the generalization ability of the network. For the different network
structures in Section 6, the classification performance, prediction performance, and inferring
time are evaluated, as shown in Table 4.

Table 4. Classification and regression results on the test set.

Number of Input Channel
Input Channel Classification Prediction

Inferring Time (ms)
Input1 Input2 Input3 Accuracy RMSE MAPE

Double-input

- STFT constellation 68.18% 0.91 16.26% 9.60
- STFT NDC 74.62% 0.94 24.09% 10.03

VPP STFT - 73.11% 0.73 17.05% 8.64
VPP - constellation 90.15% 0.72 16.03% 10.67
VPP - NDC 93.94% 0.62 22.60% 9.89

Three-input VPP STFT constellation 91.67% 0.65 6.50% 10.11
VPP STFT NDC 95.45% 0.49 10.83% 14.81

It can be seen from Table 4 that for the double-input network, when the VPP and
constellation diagram or NDC are input, the classification and regression performance
of the network are better, in which the classification accuracy is higher than 90%, the
regression RMSE is lower than 0.8, and the MAPE is also lower than the other situations.
The classification accuracy and regression performance of the three-input network are
higher than those of the double-input network, but due to the complexity of the network
increases, the training time is 1–2 ms longer than that without constellation.

With the same network structure, the network input with as input performs better
than that input with constellation diagram. Among them, the model classification accuracy
of the three-input network with NDC is the highest (95.45%), and the lowest of RMSE and
MAPE are 0.49% and 10.83%, respectively. However, compared to the constellation diagram,
the input of NDC will enlarge the calculation amount of the model due to the enhanced
identification of the color areas associated with the density of the points, thus expanding
the inference time by approximately 4.7 ms compared to the constellation diagram.

6.2. EMI Classification Performance

In order to further analyze the recognition ability of the network for different EMI sig-
nal categories, four cases with better output performance are selected to plot the confusion
matrix, as shown in Figure 8. Each row is the real attribution category, and each column is
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the modulation result predicted for that category. The cells on the diagonal correspond to
the correct classification result, while the cells which are not on the diagonal correspond to
the wrong classification result. Therefore, for the confusion matrix, the greater the value of
the elements on the diagonal, the better the classification effect of the model is.
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Among them, the precision rate at the bottom of each confusion graph (in green)
shows the proportion of correctly classified samples of the EMI types obtained by the
network classification. The column on the right, usually called the recall rate (in green),
shows the proportion of different categories of EMI that are correctly classified for the
actual classification target. The cell at the bottom right of the matrix shows the overall
accuracy Acc.

Among the classification results of the four networks, the classification accuracy is
higher than 90%. The three-input network with NDC as an input has the best classification
performance, while the double-input network with constellation diagram and VPP as
inputs has a slightly poor performance. For different EMI types, compared with CW and
BPSK interference, the recall rate classified as WGN interference is the highest, which is
more than 50 %, indicating that the model is more accurate in identifying WGN interference.
Besides, the probability of falsely predicting WGN as CW is low, which only occurs in a
double-input network with the input of VPP and constellation diagram.

6.3. Prediction Performance

For the above network with four structures, the prediction accuracy of four threat levels
is analyzed. The prediction error is set to be different between the actual predicted value ûi
and the target value ui. Figure 9 shows the boxplot of prediction error under different EMI
threat levels, which is used to compare the distribution interval and dispersion degree of
the prediction error. The interval of 25~75% shows 50% of the error distribution, indicating
the concentration of the error distribution. Similarly, the range of 5~95% shows 90% of the
error distribution, indicating the main distribution range of prediction error.
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Figure 9. Prediction error under different EMI threat levels.

From the perspective of different EMI threat levels, the error distribution of the lose
lock level is the most concentrated and the prediction accuracy is the highest. 50% of the
error is distributed in [−0.2 dB, 0.3 dB] and 90% in [−1.6 dB, 0.6 dB] with less deviation
compared to the other three cases. The distribution of errors in the risky level is more
dispersed with relatively large deviation values, more than 3 dB. The double-input network
with the inputs of VPP and constellation diagram has larger outliers, and the 90% error
distribution of the three-channel network with the inputs of VPP, constellation diagram,
and STFT is relatively wide. In contrast, the error distribution of the network using NDC is
more concentrated, of which the mean and median are closer to 0, and 5~95% of the error
is concentrated in [−1 dB, 1 dB]. Among them, the three-input network with NDC has the
best prediction performance.

6.4. Prediction Performance

In order to compare the performance of the proposed MIMT-CNN and the existing
state-of-the-art model under multi-task networks, we replace the part of feature fusion
processing in Figure 6 with four classical CNN structures (AlexNet, GoogLetNet, VGG,
ResNet), and use the same data set to train the model. The performance of MIMT-CNN
and classical CNN structures on the training set is shown in Figure 10. Although the
threat prediction RMSE of MIMT-CNN is slightly worse than that of AlexNet, MIMT-CNN
has the highest classification accuracy of EMI among the classical models. On the whole,
MIMT-CNN achieves the best balance between classification and prediction performance.
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Some typical areas of interference identification and threat prediction models are
listed in Table 5. It can be concluded that CNN is a commonly used model in the field of
interference identification and classification evaluation and has good results under single-
task application. In the case of multi-task, the accuracy and RMSE of MIMT-CNN reaches a
good level.

Table 5. Comparison of model performance.

Reference Accuracy RMSE Algorithm Application Scenario

Interference identification and threat assessment (this work)-Multi-task

Proposed Model 95.45% 0.49 CNN

Interference identification- Single-task

[34] 86.97% - CNN Cognitive radio equipment
[35] 89% - U-Net Radar receiver
[36] 92.7% - FCN Engine digital controllers
[37] 96.53% - ResNet High voltage power plants

Threat assessment- Single-task

[38] - 0.975 DNN Financial loss
[39] - 0.518 CNN-LSTM Water quality risk
[10] - 0.3882 CNN Data link under EMI
[40] - 0.231 DNN Flood risk

7. Conclusions

Given the vulnerability and insufficient awareness of the UAV data link to the EMI
threat, this paper proposes a multi-task CNN with multi-input (MIMT-CNN) to realize
the EMI signal identification and risk assessment of the UAV data link. Based on the
multi-task learning and multi-information fusion, the network extracts EMI features by
inputting visualized performance parameters, STFT spectrogram and normalized density
constellation, and then fuses these features by using the parallel structures optimized by
the Bayesian algorithm. By extending the traditional serial structure, the network can
extract more complex EMI signal features and make full use of the correlation information
among the input features through multi-task outputs. Compared with learning each task
separately, it can reduce the time cost, calculation cost, and storage cost of the network.

By changing the categories of the input images of the MIMT-CNN for training and test-
ing, it is found that the visualized performance parameters are the basis of model validity,
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while the STFT spectrogram or constellation diagram can improve model accuracy. Among
them, the network with the best classification and regression performance can be obtained
by inputting the visualized performance parameters, STFT spectrogram, and normalized
density constellation, but the time cost will increase with the network complexity.

The cognition of EMI types and threat levels contributes to the self-awareness of the
data link. Furthermore, it can be combined with interference suppression technology to
achieve a fast and accurate confrontation strategy on the UAV platform, so that the UAV
will obtain the ability of self-healing.
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