
Citation: Marić, J.; Pripužić, K.;

Antonić, M.; Škvorc, D. Dynamic

Load Balancing in Stream Processing

Pipelines Containing Stream-Static

Joins. Electronics 2023, 12, 1613.

https://doi.org/10.3390/

electronics12071613

Academic Editors: Marios Avgeris,

Dimitrios Dechouniotis,

Konstantinos Tsitseklis and

Vitoropoulou Margarita

Received: 28 February 2023

Revised: 17 March 2023

Accepted: 28 March 2023

Published: 29 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Dynamic Load Balancing in Stream Processing Pipelines
Containing Stream-Static Joins
Josip Marić, Krešimir Pripužić * , Martina Antonić and Dejan Škvorc

Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, 10000 Zagreb, Croatia;
josip.maric2@fer.hr (J.M.); martina.antonic@fer.hr (M.A.); dejan.skvorc@fer.hr (D.Š.)
* Correspondence: kresimir.pripuzic@fer.hr

Abstract: Data stream processing systems are used to continuously run mission-critical applications
for real-time monitoring and alerting. These systems require high throughput and low latency to
process incoming data streams in real time. However, changes in the distribution of incoming data
streams over time can cause partition skew, which is defined as an unequal distribution of data
partitions among workers, resulting in sub-optimal processing due to an unbalanced load. This paper
presents the first solution designed specifically to address partition skew in the context of joining
streaming and static data. Our solution uses state-of-the-art principles to monitor processing load,
detect load imbalance, and dynamically redistribute partitions, to achieve optimal load balance. To
accomplish this, our solution leverages the collocation of streaming and static data, while considering
the processing load of the join and the subsequent stream processing operations. Finally, we present
the results of an experimental evaluation, in which we compared the throughput and latency of
four stream processing pipelines containing such a join. The results show that our solution achieved
significantly higher throughput and lower latency than the competing approaches.

Keywords: data stream processing; adaptive load balancing; dynamic load balancing; partition skew

1. Introduction

A data stream is a real-time, continuous, ordered (implicitly by arrival time or explic-
itly by timestamp) sequence of items, for which it is impossible to control the order in which
items arrive, nor feasible to locally store a stream in its entirety [1]. Data streams come from
various sources, including Internet of Things (IoT) devices, social media platforms, online
gaming, media publishing, system logs, financial markets, mobile devices, sensors, security
systems, smart energy systems, utility systems, etc. Data streams are either homogeneous,
where all the items share similar structures and characteristics, or heterogeneous, with vary-
ing items. Stateless data stream processing handles each item independently, while stateful
data stream processing shares the state between items. Data stream processing (DSP) is
now essential for decision-making processes in data-driven organizations. Despite being
an active research topic for over 20 years, recent successful initiatives by the research and
open-source communities have led to its peak.

The most popular open-source streaming platforms are Apache Flink [2], Apache
Spark [3], Apache Storm [4], and Apache Kafka Streams [5]. These platforms provide
tools and libraries for developers to build streaming applications that can process data
streams in real time; they are designed to handle large amounts of streaming data, often
distributed across multiple worker nodes, and they provide features for fault tolerance,
scalability, and data processing. While these platforms provide robust capabilities for
building complex data stream processing systems (DSPSs), they lack dynamic adaptation
mechanisms for handling skewed and fluctuating data streams: this can lead to partition
skew, which negatively affects the overall processing performance of DSPSs, by increasing
latency and decreasing throughput.

Electronics 2023, 12, 1613. https://doi.org/10.3390/electronics12071613 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12071613
https://doi.org/10.3390/electronics12071613
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-7364-3021
https://orcid.org/0000-0001-6352-5777
https://orcid.org/0000-0003-2803-773X
https://doi.org/10.3390/electronics12071613
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12071613?type=check_update&version=1


Electronics 2023, 12, 1613 2 of 19

In this paper, we address the problem of load imbalance, due to the partition skew,
in stream-static joins. This problem arises when streaming data has to be joined in real
time to static data that is too large to be replicated on the distributed workers, but instead
has to be partitioned among them. Moreover, the incoming streaming data also has to be
partitioned among the workers, in order to perform the join in real time; therefore, a worker
must have a part of the static data and the corresponding part of the streaming data, to
perform a join between them, which is in fact just a subtask of the whole stream-static join
operation. If a worker is missing the required part of the (static or streaming) data, then
that worker would first need to fetch the necessary data from other workers, before being
able to perform the join.

To achieve optimal performance for the entire stream-static join process, we present
a solution that dynamically balances the processing load, and reduces the network load
among the workers. The objective is to partition both streaming and static data in such a
way that they match each other when needed in stream-static joins, and to dynamically
assign them to worker nodes in a way that evenly distributes the load across the system.
The solution can operate in different modes, depending on various factors:

• the location of the join—whether it is performed on workers with static or streaming data;
• the imbalance detection method—whether by counting streaming items or summing

the processing load;
• whether the solution dynamically adapts to detected imbalances or not.

Overall, the solution is designed to be flexible and adaptable to different scenarios, in
order to achieve the best possible performance for the stream-static join process.

Our approach is applicable to any streaming platform, making it a generic solution;
however, for this paper, we experimentally evaluated its implementation on the Apache
Spark platform. Specifically, we conducted experiments using four different stream pro-
cessing pipelines that were described in our previous paper [6]; by doing so, we were
able to provide more precise and concrete results for the performance of our solution in a
real-world setting using a widely used streaming platform like Apache Spark.

The main contributions of the paper can be summarized as follows:

1. We propose a novel solution that dynamically balances the processing load, and
reduces the network load in the stream-static join. Our solution operates in different
modes, depending on the location where the join is performed, and the method used
to detect imbalance.

2. To evaluate the effectiveness of our approach, we performed an experimental evalua-
tion to measure throughput and latency, comparing our solution against competing
approaches. By analyzing the results, we identify the best-performing modes of our
approach, and we provide insights into the benefits of our solution.

The rest of the paper is structured as follows: Section 2 gives a brief overview of
related work addressing load balancing in data stream processing systems; in Section 3,
we present the architecture of our solution, and we explain how it monitors and detects
the load imbalance and initiates the rebalance; we experimentally evaluate the throughput
and latency of our approach and competing approaches in Section 4; finally, we discuss the
results, and give directions for future work, in Section 5.

2. Related Work

The problem, that load balancing in data stream processing systems (DSPSs) can lead
to data skew, has been extensively studied in the literature. Most papers address this issue
in the context of MapReduce, a programming model used for distributed processing of
large-scale datasets. Irandoost et al. [7] conducted a systematic review, to investigate current
techniques for handling data skewness. The authors presented a new classification scheme
for methods that address data skewness in MapReduce, and evaluated the advantages and
disadvantages of algorithms within each category. Additionally, they identified key areas
for further research aimed at improving data skewness handling techniques.



Electronics 2023, 12, 1613 3 of 19

One of the early works in this area is presented in [8], where the authors introduced a
static load-balancing algorithm that evenly distributed work among reducers in a MapRe-
duce job, resulting in a significant reduction in elapsed time. The algorithm used a progres-
sive objective-based cluster sampler to estimate the load associated with each reduce-key.
If a key had a large load, it was split into sub-keys that could be assigned to different
reducers. For keys with medium loads, the algorithm assigned them to reducers in a
way that minimized the maximum reducer load. Keys with small loads were hashed, as
they had minimal effect on the balance. The process was repeated until the balancing
objective and confidence level specified by the user were met. Chen et al. [9] introduced
LIBRA, a lightweight strategy designed to tackle the issue of data skew among reducers
in MapReduce applications. LIBRA employs an innovative sampling technique that can
accurately approximate the distribution of intermediate data by only sampling a small
proportion of it during normal map processing; based on the assumption that it made a
good representation of data, they distributed the partitions so that the workers would be
optimally balanced in the reduce phase, i.e., they allowed the reduce tasks to begin copying
as soon as the chosen sample map tasks had been completed. They also suggested cluster
splitting, which is basically splitting larger partitions into smaller ones. We also redistribute
the partitions; however, in our approach this is done periodically, and upon stream-static
joins, which requires handling the collocation of both stream and static data. In [10], the
authors expanded upon the capabilities of Chisel, a system that manages partitioning imbal-
ances in reduce tasks by dynamically identifying skewed partitions, as maps generate their
outputs. Chisel achieves this by dynamically introducing partial reducers and one global
reducer that receives data from partial reducers. Chisel++, however, suggests removing a
global reducer, by introducing a range partitioning technique, instead of the global reducer.
The downside of both Chisel and Chisel++ is the necessity for data to go through multiple
reducers, and splitting the reducer for one key: the former requires more network load
being sent, and splitting the reducer can also be inefficient for complex reducers. This
design pattern would be very costly, as it would require dynamic repartitioning of static
data, which tends to be large.

Gao et al. [11] suggested a distributed algorithm that approximates the load balance
problem in MapReduce, specifically for data quality detection. Their approach is applicable
to independent tasks that are processed on MapReduce. In the first MapReduce round,
the input data are sorted in descending order, based on the independent workload. In the
second MapReduce round, each task in the input data is assigned to the reducer with
the least workload in turn. Overall, this provides a general solution to load balancing in
MapReduce. In [12], the authors introduced a novel method for addressing skew, referred to
as multi-dimensional range partitioning (MDRP). This technique overcomes the limitations
of conventional algorithms in two key ways: firstly, it considers the expected number
of output records for each machine, which enhances its ability to handle join product
skew; secondly, a small subset of input records is sampled prior to the join execution, to
facilitate an efficient execution plan while taking data skew into account. The proposed
algorithm can handle complex join operations like theta-joins and multi-way joins without
any modifications to the original MapReduce environment.

Liroz-Gistau et al. [13] introduced a Hadoop-based system, FP-Hadoop, that enhances
the parallelism of the reduce side in MapReduce by effectively addressing reduce data
skew. FP-Hadoop incorporates a new phase, known as intermediate reduce (IR), where in-
termediate value blocks are processed in parallel by intermediate reduce workers. With this
approach, the bulk of the reducing work can be performed in parallel, even when all
intermediate values are associated with the same key, allowing for the full utilization of the
available workers’ computational power. This solution comes with the price of having an
intermediate reducer(s), similar to Flux [14]. Zhao et al. [15] proposed a technique called
kNN-DP for kNN-join using MapReduce, which aims to divide data objects into multi-
ple partitions of equal size, which can be processed in parallel by mappers and reducers.
The key component of kNN-DP is a data partitioning module, which strategically partitions



Electronics 2023, 12, 1613 4 of 19

data to optimize kNN-join performance by mitigating data skewness on Hadoop clusters:
to achieve this, they first designed a sampling method to analyze the data distribution of a
small sample dataset that represents large datasets; they then dynamically adjusted the par-
tition boundaries, by analyzing the time complexity of each partition in the sample dataset;
finally, they enhanced the accuracy of the parallel kNN-join, by adding a small amount of
redundant data to each node’s local data. They had a similar monitoring and redistribution
mechanism to ours; however, being for a different use case, they only handled the join
part of a MapReduce job, not dealing with streaming data, which we were interested in, in
this paper. Contrary to our solution, their case did not require optimizing data collocation.
Additionally, we also optimize the impact of the join on the subsequent stream processing
operations. In [16], the authors suggested a novel technique called fine-grained partitioning
for skew data (FGSD), which is capable of enhancing the load balancing of reduce tasks
in the presence of skewed data. FGSD takes into account the characteristics of both input
and output data, by employing a stream sampling algorithm. The technique introduces a
new method for distributing input data, which facilitates efficient management of skew
resulting from redistribution and join product. FGSD does not necessitate any alterations
to the MapReduce environment, and can be utilized for complex join operations.

Although streaming platforms use a modified version of MapReduce to process
data streams in real time, these papers proposed low-level enhancements that required
significant changes to these platforms (i.e., their DSP operators), for practical use. However,
we are interested in a different approach, which leverages the existing capabilities of a
platform, to enhance partition skew handling. To be more precise, we handle partition skew
by creating more partitions than there are available workers, and redistributing them among
the workers, to balance the processing load, without repartitioning the data, which is a
well-known technique for handling partition skew [17]. On the other hand, several research
papers have proposed solutions based on the repartitioning of the data. Shah et al. [14]
presented a state migration protocol that enabled the repartitioning mechanism of Flux,
which was designed to handle Continuous Queries. Flux was introduced in 2003, when
DSPSs were still being developed, and Continuous Queries can be considered an ancestor
of modern DSPSs. The process of moving a partition from one instance to another involves
three steps: first, pausing and buffering the input to the partition; second, transferring the
partition; and finally, restarting the paused input stream. By pausing and buffering the
input of the transferring partition, consistency is ensured while the remaining partitions
remain active. Flux is basically an adaptive partitioning operator, placed between producing
and consuming operators, which allows dynamic repartitioning policies to be executed,
so that the consuming operator manages an optimally partitioned stream. Flux’s state
migration mechanism is a base for many techniques and research papers executing state
migration. Analogous to migrating the states, our solution proposes redistributing the
static data between workers in a similar way; however, join being a stateless operation, it
does not require a pause in processing, as Flux’s mechanism suggests. Zhang et al. [18]
utilized the concept of power of two choices, from a previous study by Nasir et al. [19]. They
proposed a method called Back Propagation Grouping (BPG), which involves key splitting,
backpropagation, and calibration signal concepts, to achieve load balancing. By splitting
the key into multiple operator instances, they were able to distribute a load of events with
frequent keys. They monitored the real load centrally, and used this information to calibrate
the load partitioning. They implemented a processing entity, called tinker, that collected
load statistics from all workers at regular intervals, and sent a calibration signal to sources,
allowing them to correct the load estimation bias accumulated in one cycle. In other words,
they suggested a static load-balancing method for stateful processing, where one key was
split between two workers, whereas we dynamically distribute the partitions, and do not
require splitting partitions, which can be challenging. In [20], the authors proposed a key
reassigning and splitting partition algorithm, to handle the partition skew. The proposed
algorithm takes into account the partition balance of the intermediate data, as well as after
the shuffle operator. Cardellini et al. [21] introduced stateful migration and autoscaling



Electronics 2023, 12, 1613 5 of 19

for Apache Storm. The approach involved extracting the state from the old instance, and
replaying it to the new instance. The task needed to be paused, to ensure consistent
migration. To successfully introduce this approach, they added multiple components.
Distributed Data Store (DDS) enabled the decoupling of the transferring state from the
related operator instance. Two classes were also implemented into Storm code, allowing
for storing and retrieving the partition of the operator state in a user-transparent way.

Tang et al. [22] suggested a solution for handling the unequal distribution of data in
bucket containers during the shuffle process of the Spark computing framework. Their
proposed method, called Skew Intermediate Data (SCID), utilizes a sampling algorithm
based on reservoir sampling, to identify the distribution of keys in intermediate data blocks.
The main focus is on splitting and combining the output data from map tasks, to ensure
that the data is allocated to the correct buckets, based on the estimated frequencies of the
keys. The splitting is done when a data cluster exceeds the remaining space in the current
bucket, and the remaining cluster is processed in the next iteration: this ensures that each
bucket has an equal amount of data. The most similar approach to ours was [23], which
introduced a novel SP-Partitioner to handle the partition skew much more efficiently than
the built-in hash and range partitioning methods in Apache Spark. The SP-Partitioner,
placed between the map and reduce stages, calculates the distribution of keys in the sample
data, and uses this information to generate a new partitioning strategy that handles the
partition skew much more efficiently. On the other hand, our approach can be used in
combination with built-in partitioning methods, and does not require the use of a modified
partitioning method.

Finally, it is very important to mention that achieving a balanced load is one of
the oldest [24] and most significant issues [25] in the field of distributed systems: it has
persisted throughout different types of distributed systems, including emerging ones [26].
For instance, federated file systems, which allow multiple computers to share files as if they
are part of a single system, also require load balancing. Recently, a generic job and resource-
aware data storage and placement algorithm (JRAP) was proposed by A. Khan et al. [27],
to address load balancing in federated file systems. JRAP aims to compute the optimal
edge server for job requests, while considering factors such as job type, available capacity,
storage, computation, and network bandwidth. Similarly to our approach, this algorithm
is executed by a centralized process, namely the JRAP manager, which is responsible for
controlling and balancing the data flow in the federation.

3. Dynamic Load Balancing

In this section, we present our solution for dynamic load balancing in stream process-
ing pipelines that contain stream-static joins.

Figure 1 shows the logical architecture of our solution. Each circle represents a worker
who participates in the data stream processing. Squares that are transferred between
workers represent streaming data. Flat cylinders represent partitioned static data that
have to be joined to the streaming data. Each color (of squares and cylinders) represents a
single partition of data. We see that streaming data is coming from workers on the left side,
and has to be joined to static data by workers on the right side; therefore, a data stream
operation that precedes the stream-static join is performed by the workers on the left side.
The Dynamic Distributor, a process responsible for collecting load metrics from workers,
and executing the rebalancing of the load when necessary, is shown at the bottom. The
rectangles that are attached to the workers, and connected to the Dynamic Distributor with
dotted lines, are simple components responsible for providing the load metrics, and for
optionally executing the redistribution of partitions. The metrics that are collected provide
information to the Dynamic Distributor, regarding the distribution of the load among the
workers. For example, if the processing load of a single worker is noticeably higher than
the average processing load, the Dynamic Distributor will initiate the redistribution of
the partitions.



Electronics 2023, 12, 1613 6 of 19

Monitoring
Component

Dynamic
Distributor

Figure 1. Logical architecture of dynamic load balancing method.

The core component of our solution is the Dynamic Distributor, because it dynamically
collects load metrics from workers, to detect the load imbalance, and then initiates the
rebalance by redistributing partitions of static data, depending on the selected mode.
A streaming platform usually provides features that allow for the publishing and collecting
of worker load metrics. After each rebalancing, a streaming platform is responsible for
the routing of streaming data to new workers, to whom the corresponding partitions of
static data have been redistributed. The Dynamic Distributor considers both the processing
load of each partition from collected metrics, and the collocation of streaming and static
data, when determining a new optimal distribution of static partitions. In more detail,
the Dynamic Distributor needs the location of each partition (i.e., the worker responsible
for processing the data belonging to the partition) and an indicator of the processing load
for each partition, to recognize any imbalances in processing load among workers, and to
initiate partition redistribution when needed.

In Algorithm 1, we present the pseudocode of the Dynamic Distributor. As we can
see, the algorithm runs periodically in an infinite loop between lines 1 and 11, with a
period defined in line 10. Running the algorithm periodically is necessary, because the
collected load metrics may not change frequently, and to be constantly checking for updates
when there is no change would result in unreasonable resource utilization. Inside the loop,
the algorithm consists of the following three parts:

1. monitoring load metrics in lines 2 and 3;
2. load imbalance detection in lines 4 to 7;
3. partition redistribution in line 8.

Each part of the algorithm is explained in detail in Sections 3.1–3.3, respectively.
Hereafter, we briefly present the algorithm.

The algorithm obtains the locations (i.e., the workers) and indicators of the processing
load for each partition in lines 2 and 3. As we will see in Section 3.1, our algorithm is flexible
in supporting different load metrics. In line 4, the algorithm calculates the processing load
per location, from previously received data. In line 5, for each location, the algorithm
calculates the load distance per location, which we define as the difference in the processing
load of a location compared to the average load of all locations. Finally, the algorithm
calculates the maximum load distance among load distances per location, which is used as
a condition in line 7 to initiate the redistribution of partitions in line 8. Our algorithm is
designed to react when the processing load of a single worker is much higher (i.e., above
the threshold) than the average load, and this is achieved by using the maximum load
distance as a condition. As we see in line 7, the maximum load distance is not the sole



Electronics 2023, 12, 1613 7 of 19

condition for initiating the partition redistribution. Our algorithm uses three additional
conditions that need to be satisfied, to initiate the partition redistribution. We present and
discuss these additional conditions in Section 3.2.

Algorithm 1 Algorithm of Dynamic Distributor

1: while true do
2: locations← extractLocationPerPartition()
3: loads← extractLoadPerPartition()
4: loadsPerLocation← calculate(locations, loads)
5: loadDistancesPerLocation← calculate(loadsPerLocation)
6: maxLoadDistance← calculate(loadDistancesPerLocation)
7: if maxLoadDistance > threshold & additional conditions are satisfied then
8: initiate partition redistribution
9: end if

10: sleep(period)
11: end while

3.1. Monitoring Load Metrics

As previously explained, our solution needs to monitor locations (i.e., workers) and
processing loads for each partition; therefore, each worker who performs a stream-static
join must provide these metrics to the Dynamic Distributor. While the monitoring of
locations is quite easy to implement, this is not the case for the monitoring of processing
load, as we discuss next.

The most simple processing load metric is to count the number of streaming items
processed by each worker per (stream-static) join operation. Using this metric, our Dynamic
Distributor is able to balance the number of streaming items processed by the workers.
If the processing of each streaming item takes a similar amount of time, which means that
the incoming stream is homogeneous, this would consequentially balance the processing load
on the workers—an approach that was followed by the SP-Partitioner from [23]: however,
this is not the case for a heterogeneous stream, where the processing of some streaming items
takes much more time than for others. To balance the processing load on the workers in
this case, we cannot use the simple metrics of counting items: instead, we need to sum the
actual processing times of the streaming items. However, measuring only the processing
time for the (stream-static) join operation is not enough, as each such operation is followed
by additional operations in the stream processing pipeline, which we also must take into
account when measuring the actual processing load. Therefore, by using the latter metric,
Dynamic Distributor is able to balance the processing load on the workers for the whole
stream processing pipeline, and not just for the join operation: this is true for both the
homogeneous and the heterogeneous streams.

3.2. Load Imbalance Detection

The throughput and latency of a stream processing pipeline can be heavily degraded
due to an imbalance in the processing load among the workers: in such cases, some workers
are overloaded while others are mostly waiting idle. As operations in the processing
pipeline are causally related, the idle workers cannot start working on their next tasks
until the overloaded workers finish their previously assigned tasks. Additionally, the idle
workers cannot help the overloaded workers without redistributing partitions, as they do
not have the necessary data to perform these tasks, while it can be quite costly (in terms of
network load and processing time) to transfer the missing data ad hoc from the overloaded
workers to the idle workers.

Therefore, the processing load imbalance of a single worker will result in increased
latency and reduced throughput of the whole stream processing pipeline: for this reason,



Electronics 2023, 12, 1613 8 of 19

we used the maximum load distance coefficient (MLDC) as a load imbalance metric, because it
is directly affected by the imbalance of any single worker [28]:

MLDC = max(LDC0, LDC1 . . . , LDCn) (1)

As we see from the above equation, the MLDC metric is defined as the maximum of
the individual load distance coefficients (LDCs) of the workers. The load distance coefficient
LDCi of a worker i is defined as follows:

LDCi = (Li − L)/L, (2)

where Li represents the load of a worker i, which can be any load metric, while L represents
the average load of n workers:

L =
n

∑
i=1

Li/n. (3)

In our solution, we define the load imbalance as the value of MLDC being above a
predefined threshold; however, in practice, it is too costly to initiate the redistribution of
static data (i.e., rebalancing the processing load) each time the MLDC value is above the
threshold, and thus we define additional conditions that have to be satisfied, as shown in
Algorithm 1. The complete set of additional conditions that our solution uses in practice is
as follows:

1. at least M items have been processed from the data stream;
2. the redistribution has not been initiated during the last N periods of duration D;
3. MLDCcurrent −MLDCnew > miMLDC.

The first additional condition protects against initiating the redistribution too early,
when LDCs are probably not calculated precisely. The second additional condition prevents
the redistribution being initiated more than once every N · D seconds. The third additional
condition ensures that the redistribution is initiated only when there is a minimal improve-
ment miMLDC in the newly calculated MLDC value, MLDCnew, when compared to the
current one, MLDCcurrent.

Our solution is flexible in supporting different stream processing use cases by changing
the values of threshold, M, N, D, and miMLDC, which are basically the parameters of our
Algorithm 1. As our solution is not self-adaptive, the values of these parameters need to be
manually fine-tuned for each use case, to identify the optimal values. For example, in our
experimental evaluation in Section 4, we identified the optimal values of these parameters,
shown in Table 1, for the given stream processing pipelines.

Table 1. Default Parameter Values for the Dynamic Distributor.

Label Parameter Value

threshold lower threshold of MLDC 0.5

M number of processed items from the data stream 1000

N number of periods to wait 3

D period duration 10 s

miMLDC minimal improvement of MLDC 0.3

3.3. Partition Redistribution

As we have already explained, our solution rebalances the processing load, by dy-
namically redistributing partitions of static data among workers, which also results in the
redistribution of the streaming data.

Figure 2 shows an example of the redistribution of static data. As in Figure 1, each circle
represents a worker who participates in the data stream processing, while the flat cylinders



Electronics 2023, 12, 1613 9 of 19

of different colors represent different partitions of static data. The number in each cylinder
shows what percentage of the total processing load for a partition has been measured.

2040 20
10

10

3. step

20
10

20
40

10

10
10

20

2. step 20

20
40

10
10

20

1. step

20
40

Dynamic
Distributor

Figure 2. Redistribution of partitioned static data.

In the first step, the left worker is overloaded three times more than the other two
workers. When all necessary conditions are satisfied, as explained previously in Section 3.2,
the redistribution is initiated. Our solution implements a greedy partitioning algorithm,
to find a new distribution of static data partitions that optimally balances the processing
load, with minimal migrations of partitions between workers; however, any partitioning
algorithm can be employed instead, as the redistribution is not initiated often. In the second
step, the Dynamic Distributor finds a new optimal distribution of partitions, such that
(1) the lower partition (20) on the left worker has to be migrated to the right worker, and
(2) the upper partition (10) on the right worker has to be migrated to the middle worker.
In the third step, we see the final distribution of partitions after finishing the redistribution,
when streaming data for migrated partitions are also redirected to new workers.

4. Experimental Evaluation

In this section, we experimentally evaluate our solution presented in Section 3, by
comparing the throughput and latency of four different stream processing pipelines that
contain a stream-static join. The source code of our solution, implemented using the Apache
Spark platform, is available in the following GitHub repository: https://gitlab.com/jmaric/
dynamic-join.git, accessed on 10 March 2023. The datasets and Bash scripts utilized in the
experimental evaluation presented in this section are also available in the same repository.

For the experimental evaluation, we decided to use stream processing pipelines
from our previous paper [6], in which we first proposed a distributed geospatial pub-
lish/subscribe (GeoPS) system based on the Apache Spark platform, and then defined
and compared four different subscription partitioning strategies for efficient processing of
incoming publications. In the case of these strategies, the subscriptions were static, which
allowed for their partitioning and replication among workers in the cluster. We saw these
strategies as an ideal use case for our solution, because their stream processing jobs were
based on a stream-static join between streaming publications and stored subscriptions.

https://gitlab.com/jmaric/dynamic-join.git
https://gitlab.com/jmaric/dynamic-join.git


Electronics 2023, 12, 1613 10 of 19

Moreover, such a join is the most demanding part of these jobs, and is also highly dependent
on load balancing, which we demonstrate in the experimental evaluation in this section.

To evaluate the performance of different elements of our solution, we ran each pipeline
in six different modes, where each of these modes either turned on different elements of
our solution or turned them off. In our experimental evaluation, we compared the through-
put and latency of the pipelines in different modes, as an indication of the performance
improvement achieved by our solution.

4.1. Apache Spark

Apache Spark [29] is an analytics engine, designed for processing Big Data, that in-
cludes pre-built modules for machine learning, data streaming, SQL, and graph processing.
Apache Spark can operate on clusters in standalone mode, using its own cluster manager,
or via other cluster managers, such as Apache Hadoop YARN [30]. In a Spark application,
a single driver process launches a set of executor processes that are distributed across
worker nodes. Executors have multiple task slots, and can execute many tasks concurrently
throughout their lifetimes. The driver process first converts the application into one or
more Spark jobs, and each job is then transformed into a logical execution plan represented
by a directed acyclic graph (DAG). Once the DAG is constructed, the driver process divides
it into stages that are subsequently divided into smaller tasks for execution by the executors.
The stages need to be executed in topological order, as they are dependent on one another,
while tasks within a stage can be executed concurrently.

4.2. Evaluated Stream Processing Pipelines

In Figure 3, we can see the most relevant part of the stream processing pipeline of
our subscription partitioning strategies from [6], in which the stream-static join appears.
For incoming publications from the data stream, we initiate such a join, to find candidate
subscriptions for each publication (i.e., subscriptions that are probably interested in the
publication). Then, using the mapToPair method, we match each publication with its
candidate subscriptions, to find subscriptions it satisfies (i.e., subscriptions that are certainly
interested in the publication). Finally, using the f ilter method, we filter out publications that
do not satisfy at least one subscription, as no subscriber is interested in these publications.
Hereafter, we present these four strategies briefly, as they are presented in detail in [6].

joins each publication with
candidate subscriptions

for each publication find
candidate subscriptions
it satsfies

filter out publications 
that do not satisfy any
subscription

Figure 3. Relevant processing steps of the geospatial publish/subscribe system.

The first strategy is Spatially Partitioned Subscriptions (sPS), which employs a spatial
partitioning method to distribute subscriptions among workers. Unlike the other strategies,
it is a pure partitioning strategy that does not use spatial indexing for subscriptions. When
a publication arrives, sPS identifies the spatial partitions to which it belongs, and forwards
it to the workers responsible for those partitions; the workers then match the publication to
the subscriptions belonging to the same partition.

The second strategy is Spatially Partitioned Index and Subscriptions (sPIS), which is
similar to sPS but more time-efficient. Instead of checking all subscriptions within each
partition, sPIS queries a spatial index of subscriptions for each partition, to efficiently
identify candidate subscriptions.



Electronics 2023, 12, 1613 11 of 19

The third strategy is Replicated Index Partitioned Subscriptions (RIPS), which uti-
lizes a subscription partitioning method and a replicated spatial index that stores pairs
of “partition ID–subscription ID”. Upon the arrival of a publication, RIPS identifies can-
didate subscriptions by querying the spatial index, and forwards the publication and
corresponding subscription IDs to the workers responsible for those partitions, who match
the publication to subscriptions corresponding to those IDs. As the subscription partition-
ing method is used only to partition subscriptions, and not for identifying partitions for
publications, RIPS can use both the hash and spatial partitioning methods for subscriptions.
Consequently, there are two versions of RIPS, namely Replicated Index Hash Partitioned
Subscriptions (RIhPS) and Replicated Index Spatially Partitioned Subscriptions (RIsPS).

4.3. Datasets

In our experimental evaluation, we used the datasets that are publicly available in
repositories [31,32]. As we needed a geospatial dataset for our experiments, we selected a
real-world dataset from [31], which provides information on car collisions in the UK. This
dataset includes the exact location of each accident, the number of vehicles involved, the
time of occurrence, and contextual details, such as road type, speed limit, and junction
type; however, we only used the location information for our experiments. Although this
dataset was useful, evaluating the selected stream processing pipelines based solely on
location was not realistic. In order to conduct a more realistic evaluation, we required a
dataset with more complex geospatial objects, such as polygons: we therefore combined the
car collision dataset with polygons of UK postcode sectors, districts, and areas from [32].
By randomly selecting locations from the car collision dataset, and identifying the corre-
sponding polygon from [32], we were able to generate spatial polygons in an approach
similar to [33]. We believe this approach was suitable for our experimental study, as the
generated polygons maintained the spatial distribution of the original geographic loca-
tions from [31]. It is important to note that the resulting data stream of publications was
heterogeneous, as polygons require more processing time than points.

Our GitHub repository did not include generated subscriptions and publications. In-
stead, it contained the original datasets from [31,32], and the source code for the publication
and subscription generators. This was because we conducted each experiment three times,
to obtain average values, which removed any random effects; therefore, each time we
generated a unique set of publications and subscriptions.

4.4. Experimental Setup

Our experimental evaluation was performed using Java 8 (OpenJDK) on a cluster
that comprised 16 worker nodes. Each of these nodes contained 64 GB of RAM memory,
and was equipped with an Intel Core i7-9700K CPU @ 3.60 GHz processor with eight
physical cores, and no Hyper-Threading. For the Spark driver node, we employed a node
with an Intel Core i7-4790 CPU @ 3.60 GHz processor containing 32 GB of RAM memory
and four physical cores with HyperThreading. Additionally, our cluster comprised 7
more nodes, including 3 service nodes and 4 identical Kafka brokers, each equipped with
16 GB of RAM memory and Intel Core i7-2600 CPU @ 3.40 GHz processors. Our worker
nodes were used solely for processing, and served as HDFS DataNodes, Spark Gateways,
and YARN NodeManagers. We used Cloudera CDH 6.2.1 Express as a software distribution
for the cluster, and enabled the HDFS, YARN, Spark, Zookeeper, and Kafka services.
The Spark applications implemented consisted of subscription partitioning strategies (i.e.,
stream processing pipelines), having the following default parameters: 100,000 publications;
10,000 subscriptions; 16 Spark executors with 48 GB of memory and four cores per executor;
four concurrent Spark jobs; 32 Kafka partitions; and a Spark micro-batch interval of 500 ms.

In Table 1, we can see the values of the Dynamic Distributor parameters that we used
in our experiments: these parameters defined the conditions under which the redistribution
was initiated, as shown in Algorithm 1, and as explained in Section 3.1.



Electronics 2023, 12, 1613 12 of 19

We performed the evaluation of each subscription partitioning strategy (i.e., the stream
processing pipeline), using the same method as proposed in [6]: “We generate subscriptions
and publications, and then publish publications to a Kafka topic. After that, we start
the Spark application of each subscription partitioning strategy that we want to test”.
During the experiments, we measured the throughput and latency as objective indicators
of performance improvement.

4.5. Evaluated Modes

To evaluate the performance of different elements of our solution, we ran each stream
processing pipeline in the following six different modes, which either turned on different
elements of our solution or turned them off:

• Static STRL—the baseline mode from [6];
• Static STAL;
• Dynamic LB STAL;
• Dynamic DB STAL;
• Dynamic LB STRL;
• Dynamic DB STRL—the mode analogue to SP-Partitioner from [23].

The Static keyword indicated that both the streaming and static data were statically
partitioned, while on the other hand, the Dynamic keyword indicated that they were
dynamically partitioned. The STRL keyword stood for STReam-Local join, indicating that
the join was performed on nodes containing streaming data. On the other hand, the STAL
keyword stood for STAtic-Local join, indicating that the join was performed on nodes
containing static data. For dynamic modes, we differentiated two types of load balancing:
data-based (DB), which balanced the number of streaming items processed by each worker,
and load-based (LB), which balanced the processing load (measured by the processing
time) per worker.

The Static STRL mode served as the baseline for comparison, as it did not incorporate
any of the load-balancing mechanisms from our solution presented in Section 3. This mode
was identical to our Apache Spark implementation from [6], and did not have any load-
balancing mechanisms. The Dynamic DB STRL mode dynamically balanced the number of
streaming items processed by each worker, being a load-balancing mechanism introduced
by SP-Partitioner in [23].

4.6. Experimental Results

In the experiment, we evaluated the throughput and latency of different stream
processing pipelines for different modes, when increasing the skew coefficient. The skew
coefficient was defined as a portion of streaming data that belonged to partitions for which
only 3 workers were responsible (out of 16 available). For example, half of the streaming
data would be processed by only 3 workers when the skew coefficient was 0.5. A skew
coefficient of 3/16 = 0.1875 would represent completely balanced partitions.

In Figure 4, we see the average throughput in streaming items per second for different
values of the skew coefficient. During the experiment, we increased the skew coefficient
from well-balanced (0.3) to very skewed partitions (0.7). For the RIhPS pipeline, we only
had values 0.3 and 0.4 of the skew coefficient, as we could not increase it further, due to the
hash partitioning method that the RIhPS strategy used.

As we can see, the Dynamic LB STAL mode achieved the highest throughput for all the
stream processing pipelines, as it turned on all elements of our solution, namely dynamic
partitioning of subscriptions and publications (Dynamic), performed the stream-static join
on nodes containing static data (STAL), and balanced the load on workers (LB). Moreover,
we can see that the difference in throughput of the Dynamic LB STAL mode and baseline
Static STAL mode increased with an increasing skew coefficient: this was expected, as
dynamic partitioning, in the case of a high-skew coefficient, eventually leads to better load
balancing, and thus to a more reduced skew coefficient, which results in higher throughput.



Electronics 2023, 12, 1613 13 of 19

0.3 0.5 0.7
400

450

500

550

600

650

700

750

800

850

900

Static STRL Static STAL

Dynamic LB STAL Dynamic DB STAL

Dynamic DB STRL Dynamic LB STRL

skew coefficient

th
ro

ug
hp

ut
 [i

te
m

s/
s]

(a) sPS pipeline

0.3 0.5 0.7
500

550

600

650

700

750

800

850

900

950

1000

Static STRL Static STAL

Dynamic LB STAL Dynamic DB STAL

Dynamic DB STRL Dynamic LB STRL

skew coefficient

th
ro

ug
hp

ut
 [i

te
m

s/
s]

(b) sPIS pipeline

0.3 0.5 0.7
800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

Static STRL Static STAL

Dynamic LB STAL Dynamic DB STAL

Dynamic DB STRL Dynamic LB STRL

skew coefficient

th
ro

ug
hp

ut
 [i

te
m

s/
s]

(c) RIsPS pipeline

0.3 0.4
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100

Static STRL Static STAL

Dynamic LB STAL Dynamic DB STAL

Dynamic DB STRL Dynamic LB STRL

skew coefficient

th
ro

ug
hp

ut
 [i

te
m

s/
s]

(d) RIhPS pipeline

Figure 4. Average throughput against skew coefficient for different modes and pipelines.

We can also see that the LB modes (i.e., Dynamic LB STAL and Dynamic LB STRL)
achieved higher throughput than the comparable DB modes (i.e., Dynamic DB STAL and
Dynamic DB STRL) for all the evaluated stream processing pipelines. This was expected,
because the incoming data stream of publications was heterogeneous, and thus we could
achieve higher throughput by balancing the processing load per worker (LB), instead of
balancing the number of streaming items processed by each worker (DB): for example,
in the case of two workers, it would take much more time for one to process 10 complex
items (i.e., publications that were polygons) than for the other to process 10 simple items
(i.e., publications that were points); therefore, LB balancing was more efficient than DB
balancing, because it would divide the load between workers, such that both would process
5 complex and 5 simple items.

Similarly, we can see that the STAL modes (i.e., Dynamic LB STAL, Dynamic DB STAL,
and Static STAL) achieved higher throughput than the comparable STRL modes (i.e., the
Dynamic LB STRL, the Dynamic DB STRL, and the Static STRL) for all the evaluated stream
processing pipelines. This was also expected, because it was more expensive to continuously
migrate larger static data between the workers than smaller streaming data.

In Figure 5, we see the average latency for the same experiment. As expected, the Dy-
namic LB STAL mode was again the best-performing, and had the lowest latency, when
compared to the other modes. The Dynamic LB STAL mode had a slightly higher latency



Electronics 2023, 12, 1613 14 of 19

than the Static STAL mode for the RIsPS pipeline, in the case of a skew coefficient of 0.3,
due to an unnecessary rebalancing, which took time, and thus increased the latency.

Additionally, for all the evaluated stream processing pipelines, the LB modes (i.e.,
the Dynamic LB STAL and the Dynamic LB STRL) generally achieved lower latency than
the comparable DB modes (i.e., the Dynamic DB STAL and the Dynamic DB STRL), while
the STAL modes (i.e., the Dynamic LB STAL, the Dynamic DB STAL, and the Static STAL)
achieved lower latency than the comparable STRL modes (i.e., the Dynamic LB STRL, the
Dynamic DB STRL, and the Static STRL).

0.3 0.5 0.7
4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

Static STRL Static STAL

Dynamic LB STAL Dynamic DB STAL

Dynamic DB STRL Dynamic LB STRL

skew coefficient

la
te

nc
y 

[m
s]

(a) sPS pipeline

0.3 0.5 0.7
4

4.5

5

5.5

6

6.5

7

Static STRL Static STAL

Dynamic LB STAL Dynamic DB STAL

Dynamic DB STRL Dynamic LB STRL

skew coefficient
la

te
nc

y 
[m

s]

(b) sPIS pipeline

0.3 0.5 0.7
2

2.5

3

3.5

4

4.5

Static STRL Static STAL

Dynamic LB STAL Dynamic DB STAL

Dynamic DB STRL Dynamic LB STRL

skew coefficient

la
te

nc
y 

[m
s]

(c) RIsPS pipeline

0.3 0.4
1.5

2

2.5

3

3.5

4

Static STRL Static STAL

Dynamic LB STAL Dynamic DB STAL

Dynamic DB STRL Dynamic LB STRL

skew coefficient

la
te

nc
y 

[m
s]

(d) RIhPS pipeline

Figure 5. Average latency against skew coefficient for different modes and pipelines.

While Figure 4 shows the average throughput as aggregated characteristics, Figure 6
shows how the throughput varied over time. The current throughput was shown by the
solid line, while the average throughput was shown by the dashed line. We show the
behavior of the sPS pipeline only because other pipelines and other modes followed a quite
similar pattern. As expected, the throughput oscillated, during the experiment, around
the average value. Again, we see that the difference in throughput increased with the
increasing skew coefficient.



Electronics 2023, 12, 1613 15 of 19

0 20 40 60 80 100 120
400

500

600

700

800

900

1000

1100

Dynamic LB STAL

Mean (Dynamic LB STAL)

Static STAL

Mean (Static STAL)

time[s]

th
ro

ug
hp

ut
 [p

ub
s/

s]

(a) 0.3 skew coefficient

0 20 40 60 80 100 120
300

400

500

600

700

800

900

1000

1100

Dynamic LB STAL

Mean (Dynamic LB STAL)

Static STAL

Mean (Static STAL)

time[s]

th
ro

ug
hp

ut
 [p

ub
s/

s]

(b) 0.5 skew coefficient

0 20 40 60 80 100 120
200
300
400
500
600
700
800
900

1000
1100

Dynamic LB STAL

Mean (Dynamic LB STAL)

Static STAL

Mean (Static STAL)

time[s]

th
ro

ug
hp

ut
 [p

ub
s/

s]

(c) 0.7 skew coefficient

Figure 6. Throughput against time for different modes of the sPS pipeline.

Figure 7 shows how the Maximum Load Distance Coefficient (MLDC) value changed
over time, during the experiment, for the Dynamic LB STAL and baseline Static STAL modes
in the sPS pipeline. The MLDC values are represented by the solid line in the graph, while
the dashed line indicates the threshold, which was a condition that had to be satisfied to
initiate partition redistribution, as specified in Algorithm 1. As in Figure 6, we do not show
analog figures for other pipelines and other modes, as they were quite similar.

We can see that the MLDC value for the Static STAL mode remained stable over
time. This was expected, as this mode did not dynamically rebalance the load, unlike
the Dynamic LB STAL mode. We can see that the MLDC value increased as the skew
coefficient value increased, because the higher partition skew led to a larger MLDC value.
In contrast to the Static STAL mode, the Dynamic LB STAL mode reacted promptly to the
identified load imbalance, which occurred when the MLDC value exceeded the threshold
(and when other conditions were satisfied, as explained in Section 3.2), and then initiated
the partition redistribution, to achieve a more balanced load distribution, which led to a
reduced MLDC value.

We can also see that the MLDC value for the Dynamic LB STAL mode stabilized below
the threshold for the rest of the experiment, suggesting that only one partition redistribution
was required during the entire experiment. The spike at the beginning was due to the
initial calculation of the MLDC value, and thus occurred in both modes. Moreover, because



Electronics 2023, 12, 1613 16 of 19

the actual distribution of data stream objects during the experiment varied slightly from
the average distribution, the MLDC value for both modes was not completely stabilized,
but rather oscillated, to some extent. We conclude that the load-balancing mechanism
implemented by the Dynamic LB STAL mode effectively manages load imbalances.

Finally, in Figure 8, we show how long it took for the Dynamic LB STAL mode to finish
the redistribution of static data (i.e., subscriptions), depending on their size, for the sPS
pipeline and skew coefficient of 0.7. As previously explained, we forced the rebalancing,
by the redistribution of static data. As expected, we found that the redistribution time
increased with the size of the static data; however, from the previous figures, we know that
the gain in higher throughput and lower latency outweighed the loss. Additionally, we can
see that the increase in the number of concurrent jobs, which is a Spark parameter for better
utilization of worker resources, did not have an influence on the redistribution time. We
conclude that it is beneficial to perform the redistribution of static data for long-running
jobs, such as stream processing pipelines, but that the impact of the overhead should be
taken into account in the case of huge quantities of static data.

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

Dynamic LB STAL

Static STAL

Threshold

time[s]

M
LD

C

(a) 0.3 skew coefficient

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

3.5

Dynamic LB STAL

Static STAL

Threshold

time[s]

M
LD

C

(b) 0.5 skew coefficient

0 20 40 60 80 100 120
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

Dynamic LB STAL

Static STAL

Threshold

time[s]

M
LD

C

(c) 0.7 skew coefficient

Figure 7. Maximum Load Distance Coefficient (MLDC) against time for different modes of the
sPS pipeline.



Electronics 2023, 12, 1613 17 of 19

0 1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

35

40

45

50

4 concurrent jobs 1 concurrent job

static data size [GB]

re
di

st
rib

ut
io

n 
tim

e 
[s

]

Figure 8. Redistribution time against static data size for the sPS pipeline.

5. Conclusions and Future Work

This paper addresses the problem of load imbalance in stream-static joins, due to
partition skew, where streaming data must be joined in real time with static data parti-
tioned among distributed workers. To address this, the paper proposes a solution that
dynamically balances the processing load, and reduces network traffic by ensuring the
optimal locality of static and streaming data, considering the load distribution during
the join and following operations. This solution offers different modes, depending on
(1) where the join is performed, (2) how imbalance is detected, and (3) whether the solution
adapts to detected imbalances. Our approach is designed to be flexible and applicable to
any streaming platform. As detailed in this paper, we evaluated the solution, using four
different stream processing pipelines in Apache Spark, and compared it to the baseline
approach from [6] and a similar approach in [23], which used a modified partitioning
method, whereas the proposed solution works with built-in methods. The contributions of
the paper include studying the problem of load balancing in stream-static joins, proposing
a dynamic load balancing solution, and experimentally evaluating it in Apache Spark.

Our experimental evaluation showed that the Dynamic LB STAL mode effectively
managed load imbalances, and performed best for all the evaluated stream processing
pipelines, by using dynamic partitioning (Dynamic), performing stream-static join on
nodes with static data (STAL), and balancing the load on the workers (LB). The LB modes
outperformed the DB modes for all the pipelines, because balancing the processing load
per worker was a more effective approach than balancing the number of streaming items,
as was done in [23]. The STAL modes performed better than the STRL modes, which
performed stream-static join on nodes with streaming data, for all the pipelines, due to
the cost of continuously migrating larger static data. The Dynamic LB STAL mode had the
lowest latency, except for the RIsPS pipeline, in the case of a small skew coefficient where
unnecessary rebalancing increased the latency. The LB modes generally had lower latency
than the DB modes, and the STAL modes generally had lower latency than the STRL modes
for all the pipelines.

In future work, we plan to extend the applicability of our approach, to design a
universal load balancing solution for data stream processing systems. Furthermore, we
intend to investigate the potential of our approach for stateful data stream processing,
which is a more challenging use case, in which items share states among themselves.

Author Contributions: Conceptualization, J.M., K.P., M.A. and D.Š.; methodology, J.M., K.P. and
M.A.; software, J.M.; validation, J.M., K.P., M.A. and D.Š.; formal analysis, J.M., K.P., M.A. and
D.Š.; investigation, J.M.; resources, K.P.; data curation, K.P.; writing—original draft preparation, J.M.
and K.P.; writing—review and editing, J.M., K.P., M.A. and D.Š.; visualization, J.M.; supervision,



Electronics 2023, 12, 1613 18 of 19

K.P.; project administration, K.P.; funding acquisition, K.P. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was supported in part by the European Regional Development Fund under
grant KK.01.1.1.01.0009 (DATACROSS), which included the salary of a PhD student, and reimburse-
ment for attending scientific conferences. This work was also supported in part by the Croatian
Science Foundation, under project UIP-2017-05-9066, which included the salary of a PhD student,
the cost of the equipment on which our experiments were performed, and reimbursement for attend-
ing scientific conferences.

Data Availability Statement: The datasets used in our experimental evaluation are available in
public repositories [31,32].

Acknowledgments: The authors would like to thank Ivan Livaja for developing subscription parti-
tioning strategies from [6] during his research studies, as we used stream processing pipelines from
these strategies in the experimental evaluation of our solution.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Golab, L.; Özsu, M.T. Issues in data stream management. ACM Sigmod Rec. 2003, 32, 5–14. [CrossRef]
2. Carbone, P.; Katsifodimos, A.; Ewen, S.; Markl, V.; Haridi, S.; Tzoumas, K. Apache flink: Stream and batch processing in a single

engine. Bull. IEEE Comput. Soc. Tech. Comm. Data Eng. 2015, 36, 28–38.
3. Zaharia, M.; Xin, R.S.; Wendell, P.; Das, T.; Armbrust, M.; Dave, A.; Meng, X.; Rosen, J.; Venkataraman, S.; Franklin, M.J.; et al.

Apache spark: A unified engine for big data processing. Commun. ACM 2016, 59, 56–65. [CrossRef]
4. Iqbal, M.H.; Soomro, T.R. Big data analysis: Apache storm perspective. Int. J. Comput. Trends Technol. 2015, 19, 9–14. [CrossRef]
5. Isah, H.; Abughofa, T.; Mahfuz, S.; Ajerla, D.; Zulkernine, F.; Khan, S. A Survey of Distributed Data Stream Processing

Frameworks. IEEE Access 2019, 7, 154300–154316. [CrossRef]
6. Livaja, I.; Pripužić, K.; Sovilj, S.; Vuković, M. A distributed geospatial publish/subscribe system on Apache Spark. Future Gener.

Comput. Syst. 2022, 132, 282–298. [CrossRef]
7. Irandoost, M.A.; Rahmani, A.M.; Setayeshi, S. MapReduce data skewness handling: A systematic literature review. Int. J. Parallel

Program. 2019, 47, 907–950. [CrossRef]
8. Ramakrishnan, S.R.; Swart, G.; Urmanov, A. Balancing reducer skew in MapReduce workloads using progressive sampling. In

Proceedings of the Third ACM Symposium on Cloud Computing, San Jose, CA, USA, 14–17 October 2012; pp. 1–14.
9. Chen, Q.; Yao, J.; Xiao, Z. Libra: Lightweight data skew mitigation in mapreduce. IEEE Trans. Parallel Distrib. Syst. 2014,

26, 2520–2533. [CrossRef]
10. Dhawalia, P.; Kailasam, S.; Janakiram, D. Chisel++ handling partitioning skew in MapReduce framework using efficient range

partitioning technique. In Proceedings of the Sixth International Workshop on Data Intensive Distributed Computing, Vancouver,
BC, Canada, 23–27 June 2014; pp. 21–28.

11. Gao, Y.; Zhang, Y.; Wang, H.; Li, J.; Gao, H. A distributed load balance algorithm of MapReduce for data quality detection. In
Database Systems for Advanced Applications—DASFAA 2016 International Workshops: BDMS, BDQM, MoI, and SeCoP; Springer:
Cham, Switzerland, 2016; pp. 294–306.

12. Myung, J.; Shim, J.; Yeon, J.; Lee, S.G. Handling data skew in join algorithms using MapReduce. Expert Syst. Appl. 2016,
51, 286–299. [CrossRef]

13. Liroz-Gistau, M.; Akbarinia, R.; Agrawal, D.; Valduriez, P. FP-Hadoop: Efficient processing of skewed MapReduce jobs. Inf. Syst.
2016, 60, 69–84. [CrossRef]

14. Shah, M.A.; Hellerstein, J.M.; Chandrasekaran, S.; Franklin, M.J. Flux: An adaptive partitioning operator for continuous query
systems. In Proceedings of the 19th International Conference on Data Engineering (Cat. No. 03CH37405), Bangalore, India, 5–8
March 2003; pp. 25–36.

15. Zhao, X.; Zhang, J.; Qin, X. k NN-DP: Handling Data Skewness in kNN Joins Using MapReduce. IEEE Trans. Parallel Distrib. Syst.
2017, 29, 600–613. [CrossRef]

16. Gavagsaz, E.; Rezaee, A.; Haj Seyyed Javadi, H. Load balancing in join algorithms for skewed data in MapReduce systems. J.
Supercomput. 2019, 75, 228–254. [CrossRef]

17. DeWitt, D.J.; Naughton, J.F.; Schneider, D.A.; Seshadri, S. Practical Skew Handling in Parallel Joins. In Proceedings of the 18th
International Conference on Very Large Data Bases Madison, Vancouver, BC, Canada, 23–27 August 1992; pp. 27–40.

18. Zhang, X.; Chen, H.; Hu, F. Back Propagation Grouping: Load Balancing at Global Scale When Sources Are Skewed. In
Proceedings of the 2017 IEEE International Conference on Services Computing (SCC), Honolulu, HI, USA, 25–30 June 2017;
pp. 426–433.

19. Nasir, M.A.U.; Morales, G.D.F.; Garcia-Soriano, D.; Kourtellis, N.; Serafini, M. The power of both choices: Practical load balancing
for distributed stream processing engines. In Proceedings of the 2015 IEEE 31st International Conference on Data Engineering,
Seoul, Republic of Korea, 13–17 April 2015; pp. 137–148.

http://doi.org/10.1145/776985.776986
http://dx.doi.org/10.1145/2934664
http://dx.doi.org/10.14445/22312803/IJCTT-V19P103
http://dx.doi.org/10.1109/ACCESS.2019.2946884
http://dx.doi.org/10.1016/j.future.2022.02.013
http://dx.doi.org/10.1007/s10766-019-00627-0
http://dx.doi.org/10.1109/TPDS.2014.2350972
http://dx.doi.org/10.1016/j.eswa.2015.12.024
http://dx.doi.org/10.1016/j.is.2016.03.008
http://dx.doi.org/10.1109/TPDS.2017.2767596
http://dx.doi.org/10.1007/s11227-018-2578-0


Electronics 2023, 12, 1613 19 of 19

20. Lv, W.; Tang, Z.; Li, K.; Li, K. An Adaptive Partition Method for Handling Skew in Spark Applications. In Proceed-
ings of the 2018 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable
Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (Smart-
World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Guangzhou, China, 8–12 October 2018; pp. 1063–1070.

21. Cardellini, V.; Nardelli, M.; Luzi, D. Elastic stateful stream processing in storm. In Proceedings of the 2016 International
Conference on High Performance Computing & Simulation (HPCS), Innsbruck, Austria, 18–22 July 2016; pp. 583–590.

22. Tang, Z.; Zhang, X.; Li, K.; Li, K. An intermediate data placement algorithm for load balancing in spark computing environment.
Future Gener. Comput. Syst. 2018, 78, 287–301. [CrossRef]

23. Liu, G.; Zhu, X.; Wang, J.; Guo, D.; Bao, W.; Guo, H. SP-Partitioner: A novel partition method to handle intermediate data skew in
spark streaming. Future Gener. Comput. Syst. 2018, 86, 1054–1063. [CrossRef]

24. Chou, T.; Abraham, J. Load Balancing in Distributed Systems. IEEE Trans. Softw. Eng. 1982, SE-8, 401–412. [CrossRef]
25. Jiang, Y.C.; Jiang, J. A multi-agent coordination model for the variation of underlying network topology. Expert Syst. Appl. 2005,

29, 372–382. [CrossRef]
26. Jiang, Y. A survey of task allocation and load balancing in distributed systems. IEEE Trans. Parallel Distrib. Syst. 2015, 27, 585–599.

[CrossRef]
27. Khan, A.; Attique, M.; Kim, Y. iStore: Towards the optimization of federation file systems. IEEE Access 2019, 7, 65652–65666.

[CrossRef]
28. Madsen, K.G.S.; Zhou, Y.; Cao, J. Integrative dynamic reconfiguration in a parallel stream processing engine. In Proceedings of

the 2017 IEEE 33rd International Conference on Data Engineering (ICDE), San Diego, CA, USA, 19–22 April 2017; pp. 227–230.
29. Zaharia, M.; Chowdhury, M.; Franklin, M.J.; Shenker, S.; Stoica, I. Spark: Cluster computing with working sets. HotCloud 2010,

10, 95.
30. Vavilapalli, V.K.; Murthy, A.C.; Douglas, C.; Agarwal, S.; Konar, M.; Evans, R.; Graves, T.; Lowe, J.; Shah, H.; Seth, S.; et al.

Apache Hadoop YARN: Yet another resource negotiator. In Proceedings of the SoCC: ACM Symposium on Cloud Computing,
Santa Clara, CA, USA, 1–3 October 2013; pp. 1–16.

31. UK Car Accidents 2005–2015. 2021. Available online: https://www.kaggle.com/silicon99/dft-accident-data/ (accessed on
25 February 2021).

32. Pope, A. GB Postcode Area, Sector, District, [Dataset]. University of Edinburgh. 2017. Available online: https://doi.org/10.7488/
ds/1947 (accessed on 20 February 2021).

33. Kassab, A.; Liang, S.; Gao, Y. Real-time notification and improved situational awareness in fire emergencies using geospatial-based
publish/subscribe. Int. J. Appl. Earth. Obs. Geoinf. 2010, 12, 431–438. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.future.2016.06.027
http://dx.doi.org/10.1016/j.future.2017.07.014
http://dx.doi.org/10.1109/TSE.1982.235574
http://dx.doi.org/10.1016/j.eswa.2005.04.015
http://dx.doi.org/10.1109/TPDS.2015.2407900
http://dx.doi.org/10.1109/ACCESS.2019.2917841
https://www.kaggle.com/silicon99/dft-accident-data/
https://doi.org/10.7488/ds/1947
https://doi.org/10.7488/ds/1947
http://dx.doi.org/10.1016/j.jag.2010.04.001

	Introduction
	Related Work
	Dynamic Load Balancing
	Monitoring Load Metrics
	Load Imbalance Detection
	Partition Redistribution

	Experimental Evaluation
	Apache Spark
	Evaluated Stream Processing Pipelines
	Datasets
	Experimental Setup
	Evaluated Modes
	Experimental Results

	Conclusions and Future Work
	References

