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Abstract: The brix of syrup is an important parameter in sugar production. To accurately measure
syrup brix, a novel measurement method based on support vector regression (SVR) is presented.
With the resonant frequency and quality factor as inputs and syrup brix as the output, a mathematical
model of the relationship between the resonant frequency, quality factor, and syrup brix is established.
Simultaneously, the particle swarm optimization (PSO) algorithm is used to optimize the penalty
coefficient and radial basis kernel function of SVR to improve the performance of the model. The
calculation model is trained and tested using the collected experimental data. The results show
that the mean absolute error, mean absolute percentage error, and root mean square error of the
syrup brix calculation model based on the improved SVR model can reach 0.74 ◦Bx, 2.24%, and
0.90 ◦Bx, respectively, while the determination coefficient can reach 0.9985. The simulation of the
online measurement of syrup brix in the actual production process proves the excellent prediction
performance of the syrup brix calculation model based on the improved PSO–SVR model, which can
thus be used to predict the syrup brix.

Keywords: syrup brix; resonant frequency; quality factor; support vector regression; particle
swarm optimization

1. Introduction
1.1. Background

The clarification of cane juice and the crystallization of boiled sugar are important
processes in sugar production. Both clarification and crystallization affect the quality
of sugar and its economic benefit to sugar factories. The brix of syrup is an important
monitoring parameter in these two processes. The rapid and accurate measurement of
syrup brix is essential to realize the automatic control of the sugar manufacturing process
and improve product quality [1]. The syrup brix is the percentage by mass of soluble solids
(the main component is sugar) in the syrup mixture, and it is expressed as η in ◦Bx.

1.2. Existing Syrup Brix Measurement Methods Research

At present, several measurement methods have been proposed, among which the
conductivity method, refractive index method, density method, and microwave method are
the most common. The syrup is a mixture containing electrolytes that ionize positive and
negative ions in water and thus have electrical conductivity, so the syrup brix can be calcu-
lated by measuring the electrical conductivity in the syrup solution. Marzougui et al. [2]
developed a method in which gamma-irradiated solid table sugar was investigated for
dosimetry, and the absorbed dose was estimated by measuring the conductivity of aque-
ous solutions of dissolved irradiated solid sugar. The results showed that the electrical
conductivity of the solution increases linearly with the dose absorbed. However, in actual
production, the purity of the cane juice that is squeezed from sugarcane of different varieties
and different origins varies, and the composition and quantity of the electrolytes contained
also vary. Therefore, the conductivity of the syrup mixture fluctuates within a certain range
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during the production process, that is, there is a large error in the brix value when measured
by the conductivity. In contrast, it is more accurate to use the refractive index to measure
the syrup brix. Li et al. [3] developed a refraction laser–CCD molasses malleability sensor
with a high stability laser light source and a high-performance CCD charge-coupled device,
which can automatically detect the syrup brix and add temperature compensation with a
measurement error of 0.3%. Dongare et al. [4] presented a mathematical model of the optical
geometry of a prismatic refractometer for syrup brix measurement, and the simulation and
experimental results showed a good correlation. However, due to the poor penetration
of the refractometer, a surface layer of 0.1 µm thickness is sufficient to greatly change the
intensity of the light transmission. Therefore, when a small amount of dirt is generated
on the lens and not cleaned in time, the refractive index will change significantly, which
will seriously affect the accurate measurement of the instrument. The density method uses
a pre-developed mathematical model of syrup brix and density, including comparison
tables, empirical data fitting formulas, etc., in order to obtain the syrup brix measurement
by looking up the table or substituting it into the calculation formula after measuring the
density of syrup [5]. Nunak et al. [6] developed an instrument to measure the concentration
of sugar solutions using a relative density. The results showed that the instrument can
accurately analyze the concentration. Huang et al. [7] designed an online automatic detec-
tion system for syrup brix based on the density method and PLC technology, and added
linear programming correction and temperature compensation, which can obtain a more
accurate brix value. Although the density method has a simple measurement principle
and low cost, the measurement range is narrow, the structure of the measuring device is
complicated, and the measurement accuracy depends on the accuracy of the processing
and assembly of the measuring device, which easily leads to large measurement errors
and poor stability. Microwave technology can be used as an alternative method for food
analysis [8]. The microwave method has the advantages of a simple mechanical structure,
no harm to the sample, and high measurement accuracy. In addition, due to the strong
penetration of the microwave, the micro dirt generated in the measurement site has little
impact on the measurement, so it has high stability. Hosseini et al. [9] proposed a new
technique that enables a microwave resonator to perform a volume fraction analysis of
complex dynamically changing liquids, while maintaining the original characteristics of
the microwave resonator sensor. Multiple simulations and experimental results validated
the ability of this technique to monitor ethanol, water, and sugar concentrations in real time
during fermentation. However, this method cannot yet be used in the sugar production
process. Liu et al. [10] designed a microwave coaxial resonator sensor to characterize the
syrup brix by measuring the resonant frequency and quality factor of the syrup, which
exhibited an excellent performance when measuring brix, with an accuracy equivalent to
that of the brix meter produced by Germany’s proMtec in the actual sugar manufacturing
process [11]. However, this method did not investigate the model used to calculate the
syrup brix.

As can be seen, the current measurement of syrup brix is mainly focused on finding
more suitable measurement methods, and little research has been conducted in order to
improve the accuracy of the brix calculation model. On this basis, this paper adopts the
microwave method to measure the syrup brix, using the microwave coaxial resonant cavity
in [10] as the measurement sensor, and conducts further research to improve the accuracy
of the sugar brix calculation model.

When the microwave method is used for measurement, the syrup brix is usually calcu-
lated by the model based on the mixed dielectric law. The syrup is a mixed solution; hence,
the complex permittivity of each component is different. According to the mixed dielectric
law, when the proportion of each component is different, their complex permittivity also
varies [12]. According to this feature, a theoretical calculation model can be established to
derive the brix from the resonant frequency and quality factor. However, measurement
errors are caused by the measurement hardware and the approximate processing of the
theoretical calculation model based on the microwave perturbation method and mixed
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dielectric law. The accumulation of these errors will lead to relatively large measurement
errors. A stable measurement system will reduce the fluctuations in the measurement errors
of the resonant frequency and quality factor. Therefore, the negative impact of these errors
on the measurement accuracy can be reduced or eliminated by directly establishing the
numerical values of the resonant frequency, quality factor, and the syrup brix. Regression
fitting is a method that is widely used to establish measurement models in measurement
technology. Using the regression fitting method to establish the regression equation of
the relationship between the resonant frequency, quality factor, and brix, a calculation
model can be developed based on multiple regression to reduce the negative impact of
the above errors. Multiple regression analysis describes the mathematical relationships
between the overall trends in the resonance parameters and syrup brix. However, these
cannot be accurately predicted when the data significantly deviate from the fitting curve.

The support vector machine (SVM) is a new machine learning algorithm that was
proposed by Vapnik et al. based on the statistical learning theory, which can be used for
the classification of small samples [13]. The SVM performs the nonlinear mapping of the
input vector from the low-dimensional to the high-dimensional feature space. It adopts
the principle of structural risk minimization to improve the generalization ability of the
model and avoid the “dimensional disaster”. For regression fitting, Vapnik et al. [14]
proposed the insensitive loss function τ based on the SVM classification to enable the
construction of a support vector regression (SVR) algorithm with superior performance.
Compared with other algorithms, such as random forest (RF), radial basis function (RBF),
and artificial neural network (ANN), SVR is more suitable for complex and nonlinear
regression problems when they are based on statistical supervised learning theory and
structural risk minimization. It has a sound theoretical foundation, strong fitting ability,
strong generalization ability, and strong robustness [15]. SVR has been applied to solve
many problems. Castro-Neto et al. [16] presented the application of a supervised statistical
learning technique called Online-SVR, which was used to predict the short-term traffic
flow; the results showed that its performance was better than other models. Liang et al. [17]
proposed a fuzzy multilevel algorithm based on PSO to optimize SVR in order to realize
the real-time dynamic evaluation of drilling risk; the results showed that the accuracy of
the PSO–SVR model can reach 99.99%, which is obviously better than that of the multilayer
perceptron neural network model. Quan et al. [18] established an SVR model by using the
measured water temperature data in a reservoir for many years, and the genetic algorithm
was introduced to optimize the parameters; the results showed that this model could
predict the vertical water temperature and water temperature structure in the reservoir
area well. Benkedjouh et al. [19] presented a method that was based on nonlinear feature
reduction and SVR in order to assess the condition of tools and predict their life; the
results showed that the proposed method was suitable for assessing the wear evolution
of the cutting tools and predicting their remaining useful life. Paniagua-Tineo et al. [20]
presented a method based on SVR for daily maximum temperature prediction, and different
meteorological variables were obtained, including temperature, precipitation, relative
humidity, air pressure, the synoptic situation of the day, and the monthly cycle. By using
this pool of prediction variables, it was shown that the SVR could accurately predict
the maximum temperature 24 h later. Li et al. [21] developed an improved gray wolf
optimization algorithm to optimize the SVR in order to estimate knee joint extension force
accurately and timely; the indexes showed that this model provided the best performance
and was better than other models. In summary, it can be seen that SVR can be used for
syrup brix prediction.

To improve the accuracy of the syrup brix calculation model, this paper studies an
SVR-based syrup brix calculation model, optimizes the SVR using improved particle
swarm optimization (PSO), and establishes a one-to-one mapping relationship between
the resonant parameters and syrup brix. Compared with other calculation models, the
PSO–SVR model could obtain the best performance using different evaluation indexes.
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1.3. Contributions

The main contributions of this paper are as follows:

1. A new SVR-based syrup brix calculation model is introduced, and the improved PSO
is used to optimize the key SVR parameters. The adaptive PSO has multiple inertia
weights, which can balance the global and local search abilities.

2. The first application of the proposed PSO–SVR model in syrup brix calculation.
3. It is the first time that a method combining the microwave method with the PSO–SVR

calculation model is used to predict the syrup brix.

The rest of the paper is structured as follows: In Section 2, we introduce the data
collection, experimental setup, the theory of the SVR and PSO, and the improvement of the
PSO; then, we establish the PSO–SVR model and the other two traditional models, finally
introducing the evaluation indexes. In Section 3, we show the results of the PSO–SVR
model and the comparison with other models; then, we simulate the online measurement
of the syrup. In Section 4, we present our conclusions and avenues for future research.

2. Materials and Methods
2.1. Data Collection

A number of methyl syrups that had not been completely boiled were obtained from a
sugar factory in Nanning, Guangxi, China. A total of 200 samples of syrup with a density of
10–90 ◦Bx were prepared and placed in volumetric cups. The brix value within this range
was random. The brix range was set as 10–90 ◦Bx because the syrup brix was greater than
10◦Bx in the sugar production process. The maximum brix of the original syrup was 90 ◦Bx
because of the limited experimental conditions. In addition, samples of standard syrups
with brix values of 60, 65, 70, 75, 80, 85, and 90 ◦Bx (60–90 ◦Bx is the required range for the
sugar crystallization process) were prepared to simulate the online brix measurement of
the actual sugar crystallization process. The brix of the syrup samples was measured using
a fully automatic refractometer (DigiPol-R600, Shanghai Jiahang Instrument Company),
and the measured values were taken as the standard values. The refractometer had a
measurement range of 0–100 ◦Bx and a measurement accuracy of 0.01 ◦Bx.

The steps in the experimental data collection are as follows:
Step 1: Pour the appropriate amount of syrup into a volumetric cup. Use a rubber tip

dropper to draw distilled water and inject it into the cup. Mix the syrup and water slowly
and evenly using a glass rod.

Step 2: Let the syrup stand for 10 min to allow the bubbles to rise to the surface. Use
the dropper to draw a small amount of syrup from the cup and place it in the measuring
area of the automatic refractometer to record the measured brix value.

Step 3: Repeat Steps 1 and 2 until 200 standard syrup samples of 10–90 ◦Bx and seven
standard syrup samples of 60, 65, 70, 75, 80, 85, and 90 ◦Bx are prepared.

Step 4: Immerse the open end of the developed coaxial resonator into the syrup sample,
maintain an immersion depth of 1 cm, and record the measured resonant frequency and
quality factor.

Step 5: Repeat Step 4 until all samples are collected.
If a group of data collected significantly deviates from the actual situation, it shall be

discarded, and the measurement shall be conducted again after checking the equipment.

2.2. Experimental Setup

The experimental setup is shown in Figure 1. In this experiment, a self-designed
microwave coaxial resonator was used as the measurement sensor. The resonator sen-
sor was connected to the NanoVNA V2 Plus4 vector network analyzer by two coaxial
cables (A-info SM-SM-SFD147A, DC-18GHz). The analyzer was developed by HCXQS
in collaboration with OwOComm. The frequency of the analyzer ranged from 50 kHz to
4.4 GHz, the frequency resolution was 1 Hz, and the power resolution was 0.01 dB. The
analyzer was directly connected to a personal computer by a LAN cable. The data were
displayed on the NanoVNA-QT and collected using MATLAB. In the test, the analyzer was
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operated in the network analyzer mode at a frequency of 2.0–2.45 GHz with 2000 sampling
points. The calibration method known as SOLT(T/R) was adopted, in which calibration
was performed at the port 1 and port 2 connectors. During the test, the open end of the
sensor was completely immersed in the syrup. The working principle of the experimental
platform is shown in Figure 2.
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All experiments were conducted at room temperature (25 ± 1 ◦C). Special attention
was paid to prevent bubbles from forming in the liquid and to ensure that the volume of
each liquid sample and the depth of the sensor immersed in the liquid were the same.

2.3. Construction of Syrup Brix Calculation Model Based on SVR
2.3.1. SVR

The basic idea of SVR is to determine the optimal hyperplane in order to minimize the
total deviation of all sample points from the hyperplane [22]. For the training sample, set
D = {(xi, yi), i = 1, 2, · · · , l}; xi(xi ∈ Rd) is the input vector, xi = [x1

i , x2
i , · · · , xd

i ]
T

, yi ∈ R
is the corresponding output value, and its regression function is as follows:

f (x) = wφ(x) + b (1)

where φ(x) is the nonlinear mapping function, w is the coefficient vector, and b is the threshold.
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The τ linear insensitive loss function is defined by the following formula:

L( f (x), y, τ) =

{
0, |y− f (x)|≤ τ

|y− f (x)|−τ, |y− f (x)|> τ
(2)

where y is the true value corresponding to f (x).
If the error between f (x) and y is not greater than τ, then the loss is zero. However, if

the error between f (x) and y exceeds τ, then a fitting error occurs. Therefore, the relaxation
factors ξi and ξ∗i were introduced. The objective function and constraints of SVR are
as follows: 

min 1
2 ||w||2 + C

l
∑

i=1
(ξi + ξ∗i )

s. t.


yi − f (xi) ≤ τ + ξi, i = 1, 2, · · · , l
f (xi)− yi ≤ τ + ξ∗i , i = 1, 2, · · · , l
ξi, ξ∗i ≥ 0

(3)

where C is the penalty coefficient. The greater the C, the greater the penalty for the sample
whose training error exceeds τ. The τ limits the error of the regression function; hence, the
lower its value, the smaller the error of the regression function.

According to quadratic programming and the kernel function problem, the following
regression functions can be obtained.

f (x) =
l

∑
i=1

(αi − α∗i )K(xi, x) + b∗ (4)

where the sample xi corresponding to the nonzero coefficient (αi − α∗i ) is the support vector,
K(xi, xj) is the kernel function K(xi, xj) = φ(xi)·φ(xj), and b∗ is the optimized threshold.

Common kernel functions include the sigmoid kernel function, radial basis function
(RBF), and polynomial kernel function [23]. Compared with the other kernel functions,
RBF contains only one parameter σ, which is easily optimized in the subsequent model.
Therefore, RBF was selected as the kernel function of SVR in this study.

2.3.2. SVR Parameter Optimization

The penalty coefficient C and RBF parameter σ in SVR have a significant impact on
the SVR performance. However, their values are unknown. Thus, these two parameters
must be optimized to improve the performance of the model.

PSO is a swarm intelligent optimization algorithm that is based on the foraging be-
havior of birds [24]; using the overall cooperation ability among birds allows the group to
achieve the optimal [25]. It has the characteristics of fast convergence and easy realization,
and is widely used in problems such as multi-objective optimization [26], function opti-
mization [27], and feature selection [28]. At the same time, the PSO algorithm is simpler
compared with the rules of the genetic algorithm [29]. Therefore, in this article, the PSO is
used to optimize the above two parameters.

In the PSO, each particle is regarded as a point in the D dimension space, which
represents a solution to the optimization problem. Suppose the position of particle i is Xi =
(Xi1, Xi2, · · · , XiD), Vi = (Vi1, Vi2, · · · , ViD) is its current speed, Pi = (Pi1, Pi2, · · · , PiD) is
the individual extreme value, and Pg = (Pg1, Pg2, · · · , PgD) is the population extreme value.

In the iteration process, the position and velocity of the particle are updated by the
following formulas:

Vk+1
id = ωVk

id + c1r1(Pk
id − Xk

id) + c2r2(Pk
gd − Xk

id) (5)

Xk+1
id = Xk

id + Vk+1
id (6)
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where N is the number of particles; d = 1, 2 · · · , D; i = 1, 2 · · · , N; k is the number of
iterations; ω is the inertia weight; c1 and c2 are the coefficients of acceleration, and r1 and
r2 are random numbers between 0 and 1.

The individual and group extreme values are updated by the following formulas:

Pk+1
id =

{
Xk+1

id , f itness(Xk+1
id ) < f itness(Pk

id)

Pk
id, f itness(Xk+1

id ) > f itness(Pk
id)

(7)

Pk+1
gd = min

{
Pk+1

1d , Pk+1
2d , · · · , Pk+1

Nd

}
(8)

where f itness(·) is the fitness function.
The inertia weight ω in formula (5) reflects the ability of particles to inherit the velocity

of the last iteration, which affects their search range. To balance the global and local search
abilities of PSO, this study adopted adaptive PSO with multiple inertia weights to optimize
the penalty coefficient C and kernel parameter σ.

Let the inertial weight set be W = {ω1, ω2, · · · , ωs}, in which each weight performs
better within a certain optimization stage. The inertial weights of the five algorithms are
as follows: EXPI [30], SUGENO [31], CHAOTIC [32], AIWPSO [33], and SSRDIW2 [34],
were selected to form the inertial weight set, which has been proven to have better perfor-
mance [35].

To evaluate the degree of evolution of the algorithm, the degree of K-step evolution is
defined as follows:

r(k) = 1−
f itness(Pk

gd)

f itness(Pk−K+1
gd )+ f itness(Pk−K+2

gd )+···+ f itness(Pk
gd)

K

(9)

where K is a constant. For any l < k, f itness(Pl
gd) ≥ f itness(Pk

gd), it can be seen from
formula (9) that r(k) ∈ [0,1). The larger the r(k), the better the algorithm evolution;
otherwise, it becomes worse. When k > 0 and k is a multiple of K, the degree of evolution
r(k) of the algorithm is calculated. If r(k) < t (t is the threshold value), then the inertia
weight ωs is randomly selected from the inertia weight set W as the current inertia weight;
otherwise, it is retained. Because the above inertia weights were randomly selected, the
currently selected inertia weights performed worse than the previous inertia weights. This
study reduced the negative impact of this situation by decreasing the number of iteration
steps; that is, when r(k) < t, K is taken as K/2 (if K is an odd number, it is taken as
(K + 1)/2); otherwise, K is the initial value. The improved PSO was used to optimize the
penalty coefficient C and kernel parameter σ of SVR. The root mean square error (RMSE)
of the syrup brix was taken as the fitness value. The optimization process is shown in
Figure 3.

2.3.3. Build Calculation Model

The dimensions and orders of magnitude of the resonance frequency, quality factor,
and brix are different. If the model is directly constructed, then the characteristics with
a large order of magnitude, such as the resonance frequency, will have a more obvious
impact on the model, while those with a small order of magnitude, such as the quality
factor, will have a small contribution to the model, leading to a lower prediction accuracy.
Therefore, to obtain more accurate results, it is necessary to normalize the feature data to
make different features comparable. In general, the data are normalized to the interval
[−1, 1] using the Min–Max scaling method. The calculation formula is as follows:

xi =
xi − 0.5(xmax + xmin)

0.5(xmax − xmin)
(10)



Electronics 2023, 12, 1535 8 of 18

where xi is the original data before normalization; xmax and xmin are the maximum and
minimum values in the original dataset, respectively; and xi is the normalized original data.
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Figure 3. Flowchart of the improved PSO to optimize the parameters of the SVR model.

To display the predicted output data as the original brix value, the output data should
also be reverse-normalized. The formula is as follows:

y =
ymax − ymin

2
y +

ymax + ymin

2
(11)

where y is the brix value after reverse normalization; ymax and ymin are the maximum and
minimum values of all the output values of the model, respectively; and y is the output
value of the model.

The syrup brix calculation model based on the improved PSO–SVR model takes the
measured resonant frequency and quality factor as the input variables, and the syrup brix
as the output variable. The flowchart of the model is shown in Figure 4.

2.4. Calculation Model Evaluation Index

To evaluate the performance of the syrup brix calculation model, the evaluation criteria
must be defined to improve the analysis of the results. Suppose there are n test samples, the
actual value of the i-th test sample is xi, the measured value of the corresponding i-th test
sample is x̂i, and the mean value of the test sample is x = ∑n

i=1 x̂i/n. The mean absolute
error (MAE), mean absolute percentage error (MAPE), RMSE, and determination coefficient
(R2) were selected as the evaluation indexes of the model performance [36]. The calculation
formula is shown in Table 1. The smaller the MAE, MAPE, and RMSE, and the closer the
R2 is to 1, the better.
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Table 1. Performance evaluation index of model.

Evaluation Index Calculation Formula Evaluation Index Calculation Formula

MAE MAE = ∑n
i=1|xi − x̂i|/n RMSE RMSE =

√
∑n

i=1 (xi − x̂i)
2/m

MAPE MAPE = ∑n
i=1 |xi − x̂i|/xi/n× 100% R2 R2 =

∑n
i=1(x̂i − xi)

2/∑n
i=1(xi − xi)

2
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3. Results and Discussion

The partial experimental data collected in Section 2.1. are presented in Table 2. The
200 sets of resonance parameters measured were plotted as scatter plots, and the relation-
ship curves between the resonant frequency (f ) and syrup brix (η), and between quality
factor (Q) and η, are shown in Figure 5. In the 200 groups of measured data with a
brix range of 10.25–89.24 ◦Bx, f almost increases with the increase of η, ranging from
2104.46–2177.50 MHz. There is no linear relationship between Q and η, ranging from
72.22–148.86. Some statistical data of the three resonance parameters can be seen in Table 3.

Table 2. Samples of experimental data.

Serial Number f /MHz Q η Serial Number f /MHz Q η

1 2104.44 147.13 10.25 11 2124.36 127.19 50.08
2 2106.84 146.04 13.47 12 2126.35 124.46 53.39
3 2104.71 148.86 17.65 13 2131.14 120.93 57.84
4 2107.09 142.71 21.19 14 2135.42 118.99 61.56
5 2106.58 141.72 25.86 15 2139.77 115.27 65.20
6 2109.44 145.51 29.50 16 2145.23 106.65 69.64
7 2112.15 141.11 33.80 17 2149.15 102.16 73.52
8 2114.74 141.50 37.73 18 2157.77 89.89 77.68
9 2116.00 135.71 41.35 19 2165.78 75.16 83.51
10 2118.10 132.89 45.41 20 2175.35 86.89 88.90
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Table 3. Relevant statistical data of three resonance parameters.

Resonance Parameters Mean Variance Standard Deviation Q1 Q2 Q3 Q4

f /MHz 2128.97 461.91 21.49 2109.57 2123.26 2145.22 2177.50
Q 122.19 541.57 23.27 107.62 129.39 141.99 148.86

η/◦Bx 49.77 534.89 23.13 29.70 50.08 69.87 89.24

3.1. Calculation of Syrup Brix Based on PSO–SVR Model
3.1.1. Improved SVR Model Training

The training set consists of 150 groups that were randomly selected from the 200 groups
of normalized data, while the test set consists of the remaining 50 groups. Because the
sample size is small, the 3:1 ratio is selected to divide the training set and test set, which
can not only ensure the training effect, but also verify the measurement effect. The training
set was primarily used to build the SVR model and optimize the model parameters. The
test set was used to test the established model and verify its performance. The improved
PSO was used to optimize the penalty coefficient C and kernel function parameter σ of
SVR. Other parameters of SVR were set by default. The RMSE of the brix was selected as
the fitness of the algorithm. The parameter settings of the improved PSO algorithm are
listed in Table 4.

Table 4. Parameter settings of improved PSO algorithm.

Improved PSO Parameters Set Value

C optimization range
σ optimization range

[0, 1024]
[0, 100]

Population size N 20
Particle dimension D 2
Maximum iterations k 300

Acceleration coefficient c1, c2 1.5
Evolutionary steps K 10

There are two input variables and one output variable in this model. To balance
the convergence of the algorithm, take c1 = c2 = 1.5, which is the improved PSO with
300 iterations, other parameters are set based on experience and actual conditions.

The fitness curve of the PSO is shown in Figure 6. In order to compare the performance
of the PSO, grid search (GS) was used to optimize SVR. Figure 7 shows the contour map
for SVR parameter selection, and the optimized parameter results of these two methods
are listed in Table 5. It can be seen from the results that although GS can take less time,
the fitness RMSE is significantly greater than the PSO. The fitness RMSE of the PSO is low
(0.74 ◦Bx), indicating its capabilities for strong optimization.
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Table 5. Parameter optimization result of SVR model.

Output of Model Optimization Time/s RMSE/◦Bx C σ

PSO Syrup brix 62.84 0.74 181.02 0.18

GS Syrup brix 14.98 4.87 111.43 0.25

Using the optimized C and σ by PSO, the training set was used for model training in
order to build the PSO–SVR model. The training results are shown in Figure 8.
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Electronics 2023, 12, 1535 12 of 18

3.1.2. PSO–SVR Model Test

To test the prediction performance of the PSO–SVR model after training, the resonant
frequency and quality factor of 50 groups of data in the test set were input into the SVR and
PSO–SVR models, respectively. The comparison between the predicted brix values of the
model and the real values measured by the refractometer are shown in Figures 9 and 10.

SVR model:
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Figure 9. Measurement results of syrup brix based on SVR in the independent test set. (a) Measure-
ment results of brix; (b) Measurement errors of brix.

PSO–SVR model:

Electronics 2023, 12, x FOR PEER REVIEW 13 of 19 
 

 

  
(a) (b) 

Figure 9. Measurement results of syrup brix based on SVR in the independent test set. (a) Measure-
ment results of brix; (b) Measurement errors of brix. 

PSO–SVR model: 

  
(a) (b) 

Figure 10. Measurement results of syrup brix based on PSO–SVR in the independent test set. (a) 
Measurement results of brix; (b) Measurement errors of brix. 

Table 6 shows the evaluation index values of the syrup brix calculation model based 
on the SVR and PSO–SVR models. To eliminate the errors caused by the algorithm and 
improve its accuracy, the algorithm was run 10 times. The average values are listed in 
Table 6. It can be seen that the MAE, MAPE, and RMSE of the modified syrup brix signif-
icantly decreased compared with previous values, and that the 2R  is closer to 1. This 
indicates that the syrup brix values predicted by the PSO–SVR model strongly agree with 
the brix values measured by the refractometer. Thus, the PSO–SVR model performs well 
in terms of prediction and generalization. 

Table 6. Evaluation index of syrup brix measurement based on SVR and PSO–SVR. 

Calculation Model MAE/°Bx MAPE/% RMSE/°Bx 2R  
SVR 3.11 6.87 5.12 0.9593 

PSO–SVR 0.74 2.24 0.90 0.9985 
  

10 20 30 40 50 60 70 80 90

True value

10

20

30

40

50

60

70

80

90

M
ea

su
re

d 
va

lu
e

Sample number

Er
ro

r/°
B

x

Ideal error Measurement error

10 20 30 40 50 60 70 80 90

True value

10

20

30

40

50

60

70

80

90

M
ea

su
re

d 
va

lu
e

Sample number

Er
ro

r/°
B

x

Ideal error Measurement error

Figure 10. Measurement results of syrup brix based on PSO–SVR in the independent test set. (a) Mea-
surement results of brix; (b) Measurement errors of brix.

Table 6 shows the evaluation index values of the syrup brix calculation model based
on the SVR and PSO–SVR models. To eliminate the errors caused by the algorithm and
improve its accuracy, the algorithm was run 10 times. The average values are listed
in Table 6. It can be seen that the MAE, MAPE, and RMSE of the modified syrup brix
significantly decreased compared with previous values, and that the R2 is closer to 1. This
indicates that the syrup brix values predicted by the PSO–SVR model strongly agree with
the brix values measured by the refractometer. Thus, the PSO–SVR model performs well in
terms of prediction and generalization.
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Table 6. Evaluation index of syrup brix measurement based on SVR and PSO–SVR.

Calculation Model MAE/◦Bx MAPE/% RMSE/◦Bx R2

SVR 3.11 6.87 5.12 0.9593

PSO–SVR 0.74 2.24 0.90 0.9985

3.2. Comparison and Analysis of Measurement Results

To verify the performance of the syrup brix calculation model based on PSO–SVR,
syrup brix calculation models based on the mixed dielectric law and on multiple regression
were introduced for comparison.

A syrup is a mixture that consists of many components. Its complex dielectric constant
is not only related to the complex dielectric constant of each component, but also to the
proportion of each component. The dielectric constant of the mixture is generally described
by the equivalent dielectric constant, which is a macroscopic reflection of the electric field
of the mixed medium. The mixed dielectric law characterizes the relationship between
the complex permittivity of the mixture and the complex permittivity and content of its
components. Its mathematical expression is called the mixed dielectric model. Through
theoretical derivation and data fitting, the syrup brix calculation model based on the mixed
dielectric law is obtained as follows:

η =
−2879

(
1− f

2291.16

)
+ 1029

(
1
Q −

1
186.52

)
+ 239.1

−25.42
(

1− f
2291.16

)
− 1.159

(
1
Q −

1
186.52

)
+ 2.473

(12)

The measurement results using this model are shown in Figure 11.
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Figure 11. Measurement results of syrup brix based on mixed dielectric model in the independent
test set. (a) Measurement results of brix; (b) Measurement errors of brix.

Regression analysis is a statistical analysis method that approximates the relationship
between variables. It selects the appropriate mathematical functions when the relationship
between the independent variables and dependent variables is unknown, in order to
minimize the overall deviation between the curve and the data of the independent variables.
The selected functions are called regression equations. The resonant parameters measured
by the resonant cavity sensor include two independent variables: the resonance frequency
and the quality factor; hence, multiple regressions can be used to fit the relationship
between the brix, resonance frequency, and quality factor. The brix of syrup η is fitted with
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the resonant frequency f and quality factor Q using the binary quadratic polynomial. The
calculation model of the syrup brix based on multiple regression can be obtained as follows:

η = −18330 + 17.53 f − 24.77Q− 0.004161 f 2 + 0.01106 f Q + 0.005055Q2 (13)

The measurement results using this model are shown in Figure 12.
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Figure 12. Measurement results of syrup brix based on multiple regression fitting in the independent
test set. (a) Measurement results of brix; (b) Measurement errors of brix.

By testing the three calculation models with the experimental dataset, the evaluation
indicators in Table 7 can be compared.

Table 7. Measurement performance of syrup brix with different calculation models.

Calculation Model MAE/◦Bx MAPE/% RMSE/◦Bx R2

Mixed dielectric model 3.68 20.87 5.35 0.9674
Multiple regression model 2.82 10.73 3.94 0.9824

PSO–SVR model 0.74 2.24 0.90 0.9985

Table 7 shows that the three error evaluation indicators of the syrup brix calculation
model based on the PSO–SVR model are lower than those of the mixed dielectric and
multiple regression models. The R2 is also the closest to 1; hence, it is the best syrup brix
calculation model. There are two main causes of the large measurement error in the syrup
brix calculation model based on the mixed dielectric law. The first is the error caused by
simplification and approximation during the process of establishing the theoretical calcula-
tion model; this error is caused by the model itself. The second is the external interference
encountered by the microwave signal during measurement, and the accuracy problems that
exist in the measurement hardware; these are errors caused by the measurement method.
The superposition of these two types of errors eventually leads to large measurement errors.
The multiple regression and PSO–SVR models utilize the principle of nonlinear fitting to
directly establish the relationship between the resonant frequency, quality factor, and syrup
brix from a numerical point of view. They make full use of the information contained in
the actual data and significantly reduce the errors caused by the model itself; thus, the
measurement error is obviously smaller than that of the mixed dielectric model. In addition,
the PSO–SVR model has a stronger numerical mapping ability than the multiple regres-
sion model because of the introduction of the kernel function; hence, the measurement
effect improves.
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3.3. Online Measurement of Simulated Syrup Brix

During sugar production, as the syrup flows into the sugar jar, the syrup is transformed
from a Newtonian into a non-Newtonian fluid when the brix reaches the critical value. This
changes the viscosity of the brix, which could cause a change in the resonance parameter
with the change in the brix. Therefore, to verify the accuracy of the syrup brix calculation
model based on the PSO–SVR model when it is used in practical applications, this study
built an online platform for measuring syrup brix with fluidity, as shown in Figure 13. The
platform consists of a water tank, propeller, motor, lifting platform, and resonant cavity
measurement system. The resonant cavity measurement system consists of a resonant
cavity, STM32F103 micro controller, microwave signal source, isolator, demodulator, and
display unit. The working principle of it is shown in Figure 14. Substances other than
syrups (e.g., water tanks and propellers) close to the opening of the resonant cavity can
disrupt the electromagnetic field distribution, which affects the measurement accuracy.
Therefore, the opening of the resonant cavity must be located at a certain distance from
other non-measuring substances. Because the penetration depth of the microwave signal at
2.45 GHz in pure water is approximately 40 mm, while that in a sugar–water mixture is less
than that in water [37], the opening of the resonator should be at least 40 mm away from
other non-measuring substances. In the flowing state, the distribution of syrup is uniform
and consistent with the actual production, so even if the temperature of syrup in the
laboratory is different from the actual production (50–70 ◦C), the influence of temperature
on the measurement can be ignored.
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Figure 13. Online measurement platform for syrup brix.

The standard syrup samples prepared with brix of 60, 65, 70, 75, 80, 85, and 90 ◦Bx
were poured into the water tank for the experiments. The lifting platform was adjusted
to immerse the open-end face of the sensor in the syrup, the motor was started to rotate
the propeller and the syrup flowed at a uniform speed under the action of the propeller
to simulate the actual sugar production process. To avoid measurement errors caused by
uneven syrup, three measurements were made, and their average values were taken.

The evaluation index of the syrup brix online measurement is listed in Table 8.

Table 8. Evaluation index of syrup brix online measurement.

Output Variable MAE/◦Bx MAPE/% RMSE/◦Bx R2

Syrup brix 0.85 3.16 1.15 0.9969



Electronics 2023, 12, 1535 16 of 18

Electronics 2023, 12, x FOR PEER REVIEW 16 of 19 
 

 

Figure 13. The platform consists of a water tank, propeller, motor, lifting platform, and 
resonant cavity measurement system. The resonant cavity measurement system consists 
of a resonant cavity, STM32F103 micro controller, microwave signal source, isolator, de-
modulator, and display unit. The working principle of it is shown in Figure 14. Substances 
other than syrups (e.g., water tanks and propellers) close to the opening of the resonant 
cavity can disrupt the electromagnetic field distribution, which affects the measurement 
accuracy. Therefore, the opening of the resonant cavity must be located at a certain dis-
tance from other non-measuring substances. Because the penetration depth of the micro-
wave signal at 2.45 GHz in pure water is approximately 40 mm, while that in a sugar–
water mixture is less than that in water [37], the opening of the resonator should be at least 
40 mm away from other non-measuring substances. In the flowing state, the distribution 
of syrup is uniform and consistent with the actual production, so even if the temperature 
of syrup in the laboratory is different from the actual production (50–70 °C), the influence 
of temperature on the measurement can be ignored. 

 
Figure 13. Online measurement platform for syrup brix. 

 
Figure 14. Working principle of syrup brix online measuring system. 

The standard syrup samples prepared with brix of 60, 65, 70, 75, 80, 85, and 90 °Bx 
were poured into the water tank for the experiments. The lifting platform was adjusted to 
immerse the open-end face of the sensor in the syrup, the motor was started to rotate the 
propeller and the syrup flowed at a uniform speed under the action of the propeller to 

Motor

Water tank

Propeller

Lifting platform
Resonant cavity

Microwave 
signal source

STM32F103
micro controller

Resonant cavity

Quality factor

Resonant 
frequency

Drive

Isolator
Excite

Microwave 
signal

Demodulator

DC signal

Coupling

Display unit
Syrup brix

Signal 
processing

Syrup brix 
calculation model 

based on PSO-SVR

Input Output 
Syrup brix

Figure 14. Working principle of syrup brix online measuring system.

A comparison of Tables 6 and 8 shows that although the three error evaluation indexes
in Table 8 are slightly larger than those in Table 6, and that the R2 is slightly smaller than
that in Table 6; however, the measurement evaluation indexes in both cases are very close.
The MAE is less than 1 ◦Bx, indicating that the syrup brix calculation model based on the
PSO–SVR model can be used for the online measurement of syrup brix in actual situations.

3.4. Discussion

According to the experimental results, it can be proven that the syrup brix measure-
ment model based on the improved PSO–SVR model has a lower level of error and an R2

that is closer to 1 compared with those based on the mixed dielectric law and multiple
regression models. Thus, the performance of the proposed model is significantly better
than that of the other two models. Since the training and test sets are randomly assigned
during the experiment, this model can still be applied when the dataset is different. By
comparing the results before and after SVR optimization, it can be seen that using the PSO
algorithm to optimize C and σ can effectively improve the prediction capabilities of the
model. Compared with other syrup brix measurement methods, the PSO–SVR calculation
model proposed in this paper is helpful when aiming to quickly and accurately measure
the syrup brix during the sugar production process; it thus contributes to improving the
benefits of sugar factories.

However, several limitations still exist in this study. From the measurement results, it
is clear that most models perform poorly at low brix levels, and that the measured value
deviates greatly from the true value; even the predicted brix is negative in the mixed
dielectric model. Since the input variables of the PSO–SVR model are resonant frequency
and quality factor, the model relies on the use of the microwave method to measure the
syrup brix. At the same time, the accuracy of the measurement hardware affects the
measurement of the resonant frequency and quality factor, so it also affects the performance
of this model. Meanwhile, although the performance of this model is excellent, some
parameters are set according to experience. In addition, this model may has potential
drawbacks; when the data set is large, the algorithm may take more time. SVR may scale
poorly as the number of samples increases; when coupled with the evolutionary approach
in order to optimize it, in other datasets, this methodology may be very computationally
expensive.

Therefore, in future research, in addition to improving the accuracy of the syrup brix
measurement sensor, our efforts will be focused on the further optimization of the model’s
combination of parameters or on finding a more excellent model; this may lead to an
increased measurement accuracy as, for example, combining PSO with GS might reduce
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the computation time while obtaining a good fitness value. At the same time, it is necessary
to improve the accuracy of prediction under low brix levels.

4. Conclusions

In this study, a new model for measuring syrup brix was proposed. The syrup brix
calculation model was established by SVR and optimized by PSO. The one-to-one mapping
relationship between the resonance frequency, quality factor, and syrup brix was established.
Syrup samples were prepared and used for training and testing. The results showed that
the MAE, MAPE, and RMSE could reach 0.74 ◦Bx, 2.24%, and 0.90 ◦Bx, respectively, while
the R2 could reach 0.9985. The proposed PSO–SVR model is superior to other existing
calculation models in its evaluation indexes. It has thus been proven that this model has
high levels of accuracy and an excellent prediction performance, which can be used to
predict the brix of syrup.
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