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Abstract: Color constancy is used to determine the actual surface color of the scene affected by
illumination so that the captured image is more in line with the characteristics of human perception.
The well-known Gray-Edge hypothesis states that the average edge difference in a scene is achromatic.
Inspired by the Gray-Edge hypothesis, we propose a new illumination estimation method. Specifically,
after analyzing three public datasets containing rich illumination conditions and scenes, we found
that the ratio of the global sum of reflectance differences to the global sum of locally normalized
reflectance differences is achromatic. Based on this hypothesis, we also propose an accurate color
constancy method. The method was tested on four test datasets containing various illumination
conditions (three datasets in a single-light environment and one dataset in a multi-light environment).
The results show that the proposed method outperforms the state-of-the-art color constancy methods.
Furthermore, we propose a new framework that can incorporate current mainstream statistics-based
color constancy methods (Gray-World, Max-RGB, Gray-Edge, etc.) into the proposed framework.

Keywords: color constancy; illumination estimation; reflectance differences; gray-edge hypothesis;
achromatism

1. Introduction

Color constancy can ensure that the perception of object color is relatively stable under
different illumination conditions, and it is a characteristic of the human color perception
system [1–3]. For example, whether a piece of white paper is in the outdoor sunlight or in
the dim candle light indoors, we can always restore its original white color in our minds.
With the development of optics and material technology [4–6], the application of digital
cameras is becoming more and more extensive. In the digital world, color constancy plays a
vital role in areas such as object recognition and tracking, scene analysis, and image-based
localization, etc. For example, in the field of autonomous driving, color constancy algo-
rithms ensure that objects in a scene captured under different illumination conditions have
the same appearance, thereby improving the robustness of target (pedestrian, vehicle, etc.)
recognition and tracking.

Prevailing color constancy methods are mainly divided into the following two cate-
gories: learning-based methods and statistics-based methods. Learning-based color con-
stancy methods include the following two categories: (1) Gamut mapping color constancy.
(2) Learn a color constancy model from the training datasets. The gamut mapping [7,8]
color constancy method is based on the property that humans can only observe a limited
number of colors for a natural image under a given illumination. A typical color gamut
is the set of all RGB values of a typical light source (typically a white light source). In
RGB space, this canonical gamut proved to be a convex hull [7]. This approach computes
the changes that transfer the recorded color gamut into the canonical gamut, allowing us
to determine the hue of the light source. Barnard et al. [8] have demonstrated that the
gamut mapping method outperforms the Gray-World. The Gray-World assumes that the
mean value of the average reflection of light by natural scenes is a constant value close to
“grey”. Finlayson improved the gamut mapping algorithm by limiting the transformations
to chromaticity space, which means that only the illumination corresponding to the existing
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illumination is allowed [9]. The above improved algorithm is called GCIE, which can be
regarded as a robust improvement method to remove the limitation in the diagonal model
of illumination variation. The illumination estimation accuracy of the color constancy
method of gamut mapping is highly dependent on the proposed assumptions. Once the
assumptions do not meet the actual application scenarios, the color constancy performance
degrades severely.

The learning-based color constancy method obtains the illumination estimation model
through continuous iterative learning from a large amount of given training datasets.
Learning-based color constancy methods usually first extract intrinsic properties of nat-
ural images as features (e.g., edges, histograms, chromaticity and semantic information
of brightest colors, etc.), and then study the complex relationship between features and
illumination. Color cat [10] utilizes the linear regression relationship between illumination
and histogram to achieve illumination estimation. Corrected moments [11] also show
that color moments used as features provide satisfactory illumination estimation perfor-
mance with least squares training. Learning-based models [12,13], Bayesian-based color
constancy [14,15], exemplar-based methods [16], biologically-inspired models [17,18], high-
level information-based methods [19,20], and physics-based models [21,22] are commonly
used examples of learning-based color constancy. In recent years, with the rapid devel-
opment of deep neural network technology, the performance of color constancy methods
based on convolutional neural network models has been continuously improved [23].
However, its practical application is limited due to the large amount of parameters and
overloaded redundant features.

Statistics-based methods put greater attention on the correlation between illumination
and surface reflectance. Buchsbaum [24] introduced the Gray-World hypothesis, which
assumes that the average reflectance in a scene under a neutral light source is achromatic.
The color constancy method based on the Gray-World assumption can calculate the mean
value of the three RGB channels and eliminate the influence of ambient light as much as
possible. The color constancy method based on the gray world assumption works well
when the color components of the image are relatively uniform. However, once the color
distribution of the image is uneven, the effect drops sharply. White-Patch [25] assumes
that perfect reflections lead to a maximum response in the RGB channels, i.e., taking
the maximum value of RGB as the value of white. However, White-Patch-based color
constancy methods fail when the scene is flooded with a large number of monochromatic
colors. Grey-Edge is another popular color constancy method [26,27], which implies that
the average reflectance differences in a scene is achromatic. Both of the low-level statistical
methodologies listed above can be merged in a single framework:(∫ ∣∣∣∣∂n f σ

c (x)
∂xn

∣∣∣∣)1/p

= kec (1)

where the image fc(x) was captured by the camera. f σ
c (x) = fc(x) ⊗ Gσ,Gσ denotes a

Gaussian filter with standard deviation σ. k functions as a scaling coefficient that varies
according to the scene observed. The constant k is between 0 and 1, and color constancy
based on this equation indicates that the p − th Minkowski norm of the n − th order
derivative in a scene is achromatic. ec is the estimated lighting.

In this paper, we propose a novel low-level statistics-based method as a final extension
of the above-mentioned framework described in Equation (1). Inspired by locally normal-
ized reflectance estimation [28] and Gray-Edge hypothesis, to get the locally normalized
reflectance differences, we partition the reflectance difference picture into J non-overlapped
patches of equal size and divide each reflectance difference by the local maximum inside
the non-overlapping local patch. For the obtained color-biased image fc(x), the proposed
algorithm is first used to determine the light source estimate ec. Then, color constancy is
achieved by transforming image fc(x) according to illumination estimate ec into a photo-
graph taken under a standard light source.

The main contributions of the paper can be summarized as follows:
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(1) The relationship between the total of reflectance differences and the sum of locally
normalized reflectance differences is exploited. After analyzing the statistics of three
datasets containing different lighting conditions and scenes, we found that the ratio of the
global sum of reflectance differences to the global sum of locally normalized reflectance
differences is achromatic. Based on this finding, we propose a more accurate color constancy
method for recovering the true color of the scene.

(2) We propose a new framework that incorporates color constancy methods such as
Gray-World, maximum RGB, and Gray-Edge. We will also show how that Grey-World,
White-Patch, Grey-Edge, and Local-Surface [29] can all be incorporated into the proposed
framework of color constancy.

(3) The experiment demonstrates the feasibility and effectiveness of the proposed
method when facing scenarios with single or multiple illuminations. In particular, the
experimental results on the HDR test set show that the color constancy method proposed by
us is superior to the comparison algorithm, showing that the pro-posed method can restore
the actual color more accurately for different scenes. We also incorporated a clustering
algorithm to improve the results under multiple illuminations.

The rest of the paper is organized as follows: Section 2 presents the proposed algorithm
in detail, Section 3 tests the performance of the proposed algorithm on four commonly used
datasets, and finally, Section 4 summarizes and further discusses future research work.

2. Proposed Method

Assuming the scene is illuminated uniformly by a single light source I(λ), such as
outdoor lighting, the image fc(x) captured by the camera pipeline model are represented
in the following form:

fc(x) =
∫

ω
I(λ)R(λ, x)Sc(x)dλ (2)

where c ∈ {R, G, B} are color channels of the camera sensor, x is the spatial coordinate,
wavelength of the light is represented as λ. R(λ, x) denotes the surface reflectance, ω is the
visible spectrum. Sc(λ) = [SR(λ), SG(λ), SB(λ)] is the camera sensitivity, and under the
diagonal transform assumption [7], the observed light source color ec ∈ {eR, eG, eB} can be
calculated as:

ec =
fc(x)
Rc(x)

(3)

Figure 1 is a flowchart of the proposed color constancy approach, the details of which
are described in the following sections.
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2.1. Local Normalized Surface Reflectance Differences

This section will explain the meaning of local normalized surface reflectance differ-
ences. According to the paper [26], we can calculate the differences in the image fc,X(x) by
the formula:

fc,X(x) =
∣∣∣∣∂n fc(x)

∂xn

∣∣∣∣ (4)

The entire region of the differences picture fc,X(x) is divided into J equal-sized non-
overlapping patches. Let

Lc,X,j(x) =
fc,X,j(x)

fc,X,j
(

xj,max
) (5)

where xj,max denotes the spatial location of the pixel with the maximum intensity in the
J − th local region:

xj,max = arg max
{

fc,X,j(x), x = 1, 2, · · · , n
}

(6)

fc,X,j(x) is the edge intensity of the pixel at x position, which is normalized by the
maximum value of the edge value in the j− th local image patch.

The reflectance differences in a scene can be represented as RX
c,j(x), then local normal-

ized reflectance differences Lc,X,j(x) can be represented as:

Lc,X,j(x) =
fc,X,j(x)

fc,X,j
(
xj,max

) =
ec·RX

c,j(x)

ec·RX
c,j
(

xj,max
) =

RX
c,j(x)

RX
c,j
(
xj,max

) (7)

2.2. Hypothesis Validation

In this section, the validation process of the hypothesis in this paper is presented, and
it is shown the illuminant estimate ec can be obtained accurately calculated by dividing
the total of edges

∫
Ω fc,X(x)dx by the sum of local normalized reflectance differences∫ J

1

∫
ξ Lc,X,j(x)dxdj, where Ω denotes the overall image area, J represents the total number

of the local regions inside the image, and ξ indicates the space of the j− th local area.

Let
∨
R represent the ratio of total of edges

∫
Ω fc,X(x)dx and the sum of local normalized

reflectance differences
∫ J

1

∫
ξ Lc,X,j(x)dxdj:

∨
R =

∫
Ω fc,X,(x)dx∫ J

1

∫
ξ Lc,X,j(x)dxdk

= ec

∫
Ω RX

c (x)dx∫ J
1

∫
ξ Lc,X,j(x)dxdk

= ec
RDc,s

RDc,sln
(8)

where
RDc,s =

∫
Ω

RX
c (x)dx (9)

RDc,sln =
∫ J

1

∫
ξ

ec·RX
c,j(x)dx

ec·RX
c,j
(
xj,max

)
dx

=
∫ J

1

∫
ξ

RX
c,j(x)dx

RX
c,j
(
xj,max

)
dx

=
∫ J

1

∫
ξ

Lc,X,j(x)dxdj (10)

In order to exploit the relationship between RDc,s and RDc,sln, we used the Gehler-
Shi [30] reprocessed dataset containing 568 images and the NUS dataset [31] of 1737 images
taken with eight cameras for color checking, and SFU dataset [13] contains 105 high
dynamic range images of indoor and outdoor areas. The datasets above mentioned provide
illumination of each raw image, so that the no color-biased image of each color-biased image
can be obtained, and then we can compute the values of RDc,s and RDc,sln respectively.

As shown in Figure 2, columns (a), (b) and (c) are the
RDc,s

RDc,sln
statistics on the three

datasets of NUS, Gehler-Shi and SFU, respectively. The scatter points in each sub-graph

represent the
RDc,s

RDc,sln
information of one of the three RGB channels of a picture. For

example, the three plots in the first column of Figure 2 depict the 1737 ratios of RDc,s and
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RDc,sln in each of the three color channels in the NUS dataset, where each discrete point

corresponds to a picture in the NUS dataset, and
RDc,s

RDc,sln
with c ∈ {R, G, B}. In detail,

RDR,s

RDR,sln
denotes the ratio of RDc,s and RDc,sln in red color channel of the image.
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As we can see from Figure 2, it is obvious that most of the scattered points are
distributed along the diagonal line. Therefore, we can get the formula:

RDR,s

RDR,sln
=

RDG,s

RDG,sln
=

RDB,s

RDB,sln
= k (11)

where k is a constant. For uniform illumination, the light source color can be computed by:∫
Ω fc,X(x)∫ J

1

∫
ξ

fc,X(x)
fc,X
(
xj,max

)dxdj
=

ec
∫

RX
c (x)dx∫ J

1

∫
ξ

ec·RX
c,j(x)

ec·RX
c,j
(

xj,max
)dxdj

=
ec
∫

RX
c (x)dx∫ J

1

∫
ξ Lc,X,j(x)dxdj

= kec

(12)

Based on the above inference. Given a color-biased image fc(x) as input,
∨
R can be

determined by Equation (8), k functions as a scaling coefficient that varies according to
the scene observed. Given that k is the same for all color channels c ∈ {R, G, B}, based on
Equation (11) and Equation (3), we don’t have to find the actual value of k because it can be
negated by using the normalized form of ec as the final result of the illumination.

2.3. Expanded into a Unified Framework

In this section, we will show than we propose a new framework that can incorporate
several important statistics-based color constancy algorithms (Grey-World, maximum RGB,
Grey-Edge, etc.).

Our proposed method, like the previous framework Equation (1), can well be modified
to merge into the Minkowski norm:

∫ (
f n,σ
c,X (x)

)p
dx∫ J

1

∫
ξ

(
Ln,σ

c,X,j(x)
)p

dxdj


1/p

= ken,p,σ,J
c (13)

where

f n,σ
c,X (x) =

∣∣∣∣∂n f σ
c (x)

∂xn

∣∣∣∣ = ∣∣∣∣∂n fc(x)⊗ Gσ

∂xn

∣∣∣∣ (14)

Ln,σ
c,X,j(x) =

f σ,n
c,X (x)

f σ,n
c,X
(
xj,max

) (15)

f n,σ
c,X (x) denotes the spatial derivatives of order n. The Gaussian filter Gσ with standard

deviation σ is also introduced in order to exploit the local correlation. The Minkowski
norm p determines the relative weights of the multiple measures used to estimate the final
illuminant color.

What is more, Table 1 demonstrates that both Grey-World, White-Patch, Grey-Edge,
and Local-Surface methods are the extreme case of Equation (13). For example, for color

constancy method 2nd order Local-Edge,


∫ (

f 2,σ
c,X(x)

)p
dx∫ J

1

∫
ξ

(
L2,σ

c,X,j(x)
)p

dxdj


1/p

= kec, ec = e2,p,σ,J
c ,

that is, J represents the total number of the local regions inside the image, the spatial
derivatives is 2, p represents Minkowski norm and σ represents the standard deviation of
the Gaussian filter. Similarly, the remaining color constancy methods in Table 1 can also be
incorporated into the unified framework we propose.
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Table 1. A summary of the different illuminant estimations methods.

Methods Symbol Equation

Grey-World e0,1,0,N
c

(∫
fc(x)dx

)
= kec

White-Patch e0,∞,0,N
c

(∫
| fc(x)|∞dx

)1/∞
= kec

Grey-Edge e1,p,σ,N
c

(∫ ∣∣∣ f σ
c,X(x)

∣∣∣pdx
)1/p

= kec

Local-Surface e0,1,0,J
c

 ∫
| fc(x)|dx∫ J

1

∫
ξ

∣∣∣Lc,j(x)
∣∣∣dxdj

 = kec

Local-Edge e1,p,σ,J
c


∫ (

f 1,σ
c,X(x)

)p
dx∫ J

1

∫
ξ

(
L1,σ

c,X,j(x)
)p

dxdj


1/p

= kec

2nd order Local-Edge e2,p,σ,J
c


∫ (

f 2,σ
c,X(x)

)p
dx∫ J

1

∫
ξ

(
L2,σ

c,X,j(x)
)p

dxdj


1/p

= kec

3. Experimental Results

The previous section provided a generic formulation of color illuminant estimates
using low-level image features. In this section, the proposed approach is evaluated on four
benchmark datasets, one indoor light source dataset [32], two for the real-world dataset
(SFU indoor dataset and Grey-ball dataset) [13,30], and one for the HDR light source
dataset [33]. The light source color of the scene is given as extra data for both datasets.

The angular error is used as the color constancy error metric [34]:

angular error = cos−1
(∧

el ·
∧
ee

)
(16)

where the
∧
el indicates the actual light source and the

∧
ee indicates the estimated light source.

Smaller angular errors indicate more accurate color constancy results. In order to evaluate
the proposed algorithm more objectively, five metrics including median, mean, trimean,
max angular error are used to measure the accuracy of the color constancy of the method.

The proposed method in the paper is a low-level based method, so we compared it to
the following low-level based methods: Inverse-Intensity Chromaticity Space (IICS) [22],
Grey-World [24], White-Patch [25], Shade of Grey [35], General Grey World [34], 1-st order
Grey-Edge, 2-nd order Grey-Edge [26], Local Surface Reflectance [29]. It also includes
the most advanced methods available, such as pixel-based Gamut Mapping [7], edge-
based Gamut Mapping [36], Spatio-Spectral Statistics [37], Weighted Grey Edge [27], SVR
Regression [38], Natural Image Statistics [18], Exemplar-based method [16], Bayesian [15],
and Thin-plate Spline Interpolation [39].

3.1. Parameter Setting and Analysis

As previously stated in Section 2, the proposed method should select the best parame-
ter values. In our model there are a total of four variables, because of the computational
limitation, only 1st-order and 2nd-order are discussed, and the remaining variables are only
three, which are Minkowski norm p, scale σ, and number of the local regions J. Empirically,
we traverse the indoor image dataset to determine the optimal parameters. The final
selected parameters are shown in Table 2. As shown in Table 2, both Minkowski norm p
and the local regions J adopt the same setting in both 1st-order Local edge and 2nd-order
Local edge methods. We set scale σ = 4 and scale σ = 6 in the 1st-order Local edge and
2nd-order Local edge color constancy methods, respectively.
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Table 2. Parameter settings in the proposed 1st-order Local edge and 2nd-order Local edge color
constancy methods. Noted that the parameters are empirical.

Methods Minkowski (p) Scale (σ) Region Number (J)

1st-order Local edge 10 4 16
2nd-order Local edge 10 6 16

3.2. Indoor Dataset

The angular error results of various models on the SFU indoor dataset are presented
in Table 3. A total of 321 linear photos were captured in the laboratory under 11 various
illumination conditions in the SFU indoor dataset [32].

Table 3. The performance of different color constancy methods on the SFU indoor dataset.

Methods Median Mean Trimean Best-25% Worst-25%

IICS 8.2 15.5 12.0 2.2 40.0
Grey-World 7.0 9.8 8.1 0.90 23.3
White-Patch 6.5 9.1 7.6 1.8 20.9

Shade of Grey 3.7 6.4 5.0 0.6 16.4
General Grey World 3.3 5.4 4.1 0.5 13.7
1st-order Grey-Edge 3.20 5.6 4.2 1.0 14.0
2nd-order Grey-Edge 2.7 5.2 4.3 1.2 13.7

Local Surface Reflectance 2.4 5.7 4.1 0.5 15
Pixel-based Gamut 2.3 3.7 2.7 0.5 9.3
Edge-based Gamut 2.3 3.9 2.8 0.6 16.08

Bayesian 3.67 2.73 2.91 0.82 8.21
NIS 3.71 2.60 2.84 0.79 8.47

19-Edge Corrected-moment 2.0 2.6 2.25 0.68 7.08
Proposed 1st-order Local Edge 2.0 2.52 2.31 0.46 6.78
Proposed 2nd-order Local Edge 1.9 2.50 2.23 0.45 6.79

It can be seen from Table 3 that our model performed well when compared to other
models on a variety of measures. Specifically, our proposed 2nd-order Local Edge color
constancy method achieves the smallest angular error on the four metrics of median, mean,
trimean and best-25%, and the proposed 1st-order Local Edge method on the worst-25%
metric, it achieves better results than the comparison algorithm. Table 3 shows that the
proposed color constancy method can achieve more accurate lighting color estimation
results than the comparison algorithm in indoor lighting environments.

3.3. Real-World Dataset

The Gehler-Shi dataset includes 568 linear natural photos [15,30], all of which were
captured in RAW format with a DSLR camera, with no color correction. As in many prior
studies, the 24 patch color checkboard in every image of the dataset was disguised for
illuminant estimation.

Our approaches were then tested on the SFU Grey-Ball dataset [13], which comprises
11,346 non-linear photos. This dataset has been treated in camera using complicated pro-
cessing, making it impossible to derive an exact illuminant estimate. Before the experiment,
we masked out the gray balls in each photo for unbiased evaluation.

Table 4 shows the results on this color check dataset, and Table 5 lists the results
of the SFU grey-ball dataset. In general, among all models, our method shows the best
color constancy accuracy. As can be seen from Table 4, the 2nd-order Local edge method
we proposed achieved the lowest values on the five metrics of median, mean, trimean,
best-25% and worst-25%. Lower values for the above five metrics indicate more accurate
color constancy. Therefore, the 2nd-order Local edge method we proposed is superior to
Grey-World, White-patch, Shade of Grey, Grey-Edge, Local Surface Reflectance, Pixel-based
Gamut, Edge-based Gamut on the Gehler-Shi dataset test set, SVR Regression, Bayesian,
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Exemplar-based and NIS color constancy methods. Specifically, it can be seen from Table 5
that on the SFU Grey-Ball dataset, our proposed 2nd-order Local edge method achieves
optimal results on the three metrics of mean, best-25% and worst-25%. And it is only 0.36
higher than the best performing Exemplar-based method on the median metric.

Table 4. Performance of different color constancy methods on the Gehler-Shi dataset.

Methods Median Mean Trimean Best-25% Worst-25%

IICS 13.6 13.6 13.4 9.5 18.0
Grey-World 6.3 6.4 6.3 2.3 10.6
White-patch 5.7 7.5 6.7 1.5 16.1

Shade of Grey 4.0 4.9 4.4 1.1 10.2
General Grey World 3.5 4.7 4.0 1.0 10.2
1st-order Grey-Edge 4.7 5.9 5.4 1.6 11.9
2nd-order Grey-Edge 4.5 5.3 4.9 1.9 10.0

Local Surface Reflectance 2.6 3.4 2.9 0.8 7.2
Pixel-based Gamut 2.4 4.2 3.3 0.5 11.2
Edge-based Gamut 5.6 6.7 6.0 2.0 13.5

SVR Regression 6.7 8.1 7.4 3.3 14.9
Bayesian 3.5 4.8 4.1 1.3 10.5

Exemplar-based 2.3 2.9 2.5 0.8 6.0
NIS 3.1 4.2 3.5 1.0 9.2

19-Edge Corrected-moment 2.0 2.8 2.25 0.68 7.08
Proposed 1st-order Local edge 1.8 2.04 2.31 0.66 5.89
Proposed 2nd-order Local edge 1.75 1.97 2.28 0.65 5.80

Table 5. Performance of different color constancy methods on the SFU Grey-Ball dataset.

Methods Median Mean Best-25% Worst-25%

IICS 5.6 6.6 1.8 13.3
Grey-World 7.0 7.9 2.2 15.2
White-Patch 5.3 6.8 1.2 14.7

Shade of Grey 5.3 6.1 1.8 11.9
General Grey World 5.3 6.1 1.8 11.9
1st-order Grey-Edge 4.7 5.9 1.6 11.9
2nd-order Grey-Edge 4.8 6.1 1.6 12.4

Local Surface Reflectance 5.1 6.0 - 11.9
Pixel-based Gamut 5.8 7.1 1.7 14.7
Edge-based Gamut 5.8 6.8 1.9 13.5

Exemplar-based 3.4 4.4 1.0 9.4
NIS 3.9 5.2 1.2 11.1

Proposed 1st-order Local edge 3.8 4.36 0.9 8.89
Proposed 2nd-order Local edge 3.76 4.32 0.87 8.89

Figure 3 demonstrates the results on sample photos from the color checker dataset.
It can be seen from Figure 3 that the proposed color constancy method can well restore
the real color of the scene on the Gehler-Shi test data set. For the scenes shown in the first
and third rows in Figure 3, the White-Patch, Shade of Gray and Gray-Edge methods can
hardly restore the actual color of the scene, and the results have no obvious improvement
compared to the original input. Gray-World has achieved better color constancy results
than the above methods in all scenes, but it still has a certain degree of color cast. Our
proposed method achieves the smallest angular error on all test scenarios.
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3.4. SFU HDR Dataset

Our approach was then tested on a dataset with an HDR light source [33], which
includes 105 high-quality images captured under indoor and outdoor light sources.

The performance statistics for several methods on the SFU HDR dataset are shown
in Table 6. When compared to other models on this dataset, our model performs well on
a variety of metrics. It can be seen from Table 6 that on the SFU HDR image dataset, the
2nd-order Local edge method we proposed achieved the best results on the three metrics of
median, mean and worst-25%, and the proposed 1st-order Local edge algorithm achieves
as good results as the 2nd-order Local edge on the median metric. The proposed methods
are significantly better than the second-ranked Grey-Edge algorithm. Table 6 shows that
the color constancy method we proposed can also accurately restore the true color of the
scene in the HDR scene with rich light sources both indoors and outdoors.

Table 6. Performance of different color constancy methods on the SFU HDR image dataset.

Methods Median Mean Worst-25%

Grey-World 7.4 8.0 19.5
White-Patch 3.9 6.3 -

Shade of Grey 3.9 5.7 12.9
Grey-Edge 3.8 6.0 13.8

Proposed 1st-order Local edge 2.9 4.6 10.6
Proposed 2nd-order Local edge 2.9 4.5 10.4

4. Conclusions

In this paper, inspired by the Gray-Edge hypothesis, our statistical experiments on the
three public datasets of NUS, Gehler-Shi and SFU show that the ratio of the global sum
of reflection differences to the global sum of locally normalized reflection differences is
achromatic. Based on the above conclusion, we propose a new method for more accurate
color constancy. Qualitative and quantitative results of the proposed color constancy
method on multiple test datasets containing different lighting scenarios demonstrate its
effectiveness. In particular, the experimental results on the HDR test set show that the
color constancy method proposed by us is superior to the comparison algorithm, showing
that the proposed method can restore the actual color more accurately for different scenes.
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Additionally, we propose a new framework that can incorporate current mainstream
statistics-based color constancy methods (Gray-World, Max-RGB, Gray-Edge, etc.) into
the proposed framework. A limitation of our research work is that the four parameters
in the proposed color constancy algorithm are empirical rather than adaptive. Our future
research work is to combine the statistical information of the image with the convolutional
neural network to design a network structure with more accurate color constancy.
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