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Abstract: Shared transportation is widely used in current urban traffic. As a representative mode of
transport, shared bikes have strong mobility and timeliness, so it is particularly critical to accurately
predict the number of bikes used in an area every hour. In this paper, London bike-sharing data are
selected as a data set to primarily analyze the impact of meteorological elements and time factors on
bike-sharing demand. At the same time, it is important to use LSTM neural network models and
popular machine learning models to predict demand for shared bikes at an hourly level. Through
data analysis and visualization, the major elements affecting the bike-sharing demand are found to
include humidity, peak hours, temperature, and other elements. The root mean squared error of the
LSTM model is 314.17, the R2 score is as high as 0.922, and the error is small in comparison to other
machine learning models. Through the evaluation indicators, it can be seen that the LSTM model
has the smallest error between the prediction results and the true values of the compared machine
learning methods, and the change trend of the model prediction result curve is basically consistent
with the actual result curve.

Keywords: shared bikes; transport; LSTM network; demand forecast; data analysis

1. Introduction

With the increasing attention on environmental protection in different countries, envi-
ronmentally friendly, pollution-free, and energy-saving transportation methods have been
widely used and developed; shared transportation is one such method. Within the field
of shared transportation, shared bikes are a popular mode of transportation in different
cities that effectively solves the problem of commuting the last kilometer of a trip [1,2].
Originating in the Netherlands, the bike-sharing model became popular around the world
in the mid-1990s. According to statistics, at least 535 cities in 49 countries have set up
bike-sharing schemes. Therefore, it is an urgent problem to quickly and precisely predict
the bike-sharing demand at a specific time and place by analyzing the data to reasonably
determine the number of required bikes and plan their arrangement [3–5].

At present, the research status of bike-sharing demand forecasting is as follows. It was
indicated by Matton et al. that meteorological conditions such as temperature, wind speed,
and precipitation are the major components affecting the demand for shared bikes [6].
Faghih et al. suggested that time-related factors, including weekends, weekdays and peak
hours, are the key variables affecting bike-sharing demand [7]. Bacciu et al. applied an
SVM model and a random forest model in traditional machine learning algorithms for bike-
sharing prediction but did not describe in detail how to predict bicycle usage changes over
a short period of time [8]. Bajari et al. used several popular machine learning models for
demand forecasting, among which the random forest model and stacking model obtained
better prediction results. The ordinary least square linear model, the binary classification
model, and the multi-classification logit model are the main methods applied to bike-
sharing demand forecasting. These empirical models require a large number of observations
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and have obvious limitations, and the regression relationships generated do not match
the actual demand situation well [9]. Cao et al. used support vector machine, extreme
random tree, random forest, and other methods to perform short-term demand prediction
of shared bicycles, and the extreme random tree obtained better results [10]. To predict the
hourly demand of bike sharing more accurately, the trend in algorithm usage has shifted
away from machine learning algorithms toward deep learning algorithms. The BP neural
network has good adaptability; this network can solve the nonlinear problem by learning
the data set itself, but it has a drawback in that the trained model is prone to local extremes
when making predictions [11]. Gao X et al. chose rental data in the Washington area of the
United States as a research object and proposed a time-based model and a hybrid method
combining a backpropagation network and a genetic fuzzy c-means algorithm. The genetic
algorithm provided better classification performance for the training data. The trained
backpropagation network predictor was used to predict rental demand in the future [12].
Recurrent neural networks (RNN) are mainly applied to process sequence type data and are
now widely used to process continuous sequence data for prediction [13,14]. However, due
to imperfect processing of historical information, problems such as gradient disappearance
and gradient explosion can easily occur in practical applications [15]. To overcome the
shortcomings of the RNN model, the long short-term memory (LSTM) model emerged,
and has been widely used in the study of sequence prediction problems so far and has
achieved good prediction results [16–19].

Compared with previous forecasting methods, the innovation of the demand forecasting
method used in this paper is as follows. (1) In the aforementioned related work, only one
method is mainly used to predict demand for bicycles. In this paper, multiple machine
learning methods and LSTM deep learning methods are used to predict demand, and the
prediction effects and associated indicators of different methods are compared. (2) Compared
with other related works, this paper introduces big data machine learning and deep learn-
ing methods into the “hourly” short-term demand prediction of the bike-sharing industry,
which improves the prediction efficiency of the industry’s immediate demand so as to assist
enterprises in real-time scheduling and enhance the overall utilization level of bike resources.

The paper introduces an LSTM network algorithm to the shared transportation indus-
try to predict the demand of bicycle sharing at the “hourly” level, improve the efficiency of
immediate demand prediction, and help companies plan in real-time and determine the
overall utilization of bicycle resources.

The rest of paper is organized as follows. In Section 2, the principles of the proposed
method, data prepossessing, and influencing factors analysis are introduced. The details of
the proposed model and the results are introduced in Section 3. In Section 4, future research
directions are mainly discussed. Finally, in the conclusions section, the main significance of
this study is expounded.

2. Theory and Methods

In general, public transportation methods exhibit a strong time dependency. Bike
sharing is an important part of public transportation, and the short-time demand for bike
sharing is also strongly influenced by the time. Usually, this demand pattern varies over
time and has a certain pattern. Similarly, weather factor conditions have a significant
impact on the short-time demand of shared bikes [20–22]. Therefore, in order to make bike-
sharing planning timelier and more accurate, the following prediction model is applied in
this paper.

2.1. Predictive Models Based on Machine Learning
2.1.1. XGBoost

XGBoost is a machine learning algorithm implemented in a gradient boosting framework
and is efficient, flexible, and portable. The XGBoost algorithm is a combination of several
known decision tree models with low prediction accuracy levels that combine to build a model
with higher accuracy. The model is improved iteratively, with each iteration generating a tree
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that fits the residuals of the previous tree. For regression problems, XGBoost is an efficient
implementation of the gradient boosting algorithm. It balances speed and efficiency, and this
algorithm has shown excellent performance in major competition tasks since its release in
2015 [23].

2.1.2. Bagging

The full name of bagging is bootstrap aggregation, where bootstrap means that the
training samples of the base learner are obtained by bootstrap sampling of the original data.
For regression problems, aggregation means using simple averaging to obtain the final
model output by arithmetically averaging the regression results obtained from the base
learner. This algorithm is the most famous representative of parallel integrated learning
methods. Repolho et al. used the bagging method algorithm in air transport demand
forecasting and obtained better results compared to SARIMA and other methods [24].

2.1.3. Random Forest

Random forest is a model that uses multiple CART trees to train the samples of the
training set and then performs regression prediction on the samples of the test set. It
consists of several decision trees, and these decision trees are not related to each other.
When using the random forest model to predict the demand for shared bicycles, each
decision tree in the random forest appears each time a new sample is input, one regression
prediction is made for each sample, and finally, all regression results are averaged to create
the final model prediction [25,26].

2.1.4. Light Gradient Boosting (LightGBM)

LightGBM is an evolutionary version of the GBDT model [27]. LightGBM similar to
XGBoost is in principle, but it is faster to train, consumes less memory, supports parallel
learning, and can handle large amounts of data. The basic idea of LightGBM is to first
discretize continuous floating-point feature values into k integers while constructing a
histogram of width k. When constructing a decision tree for selecting features and feature
splitting points, it is necessary to iterate through k discrete values to find the best splitting
point. More importantly, LightGBM sets a maximum depth limit for the leaf growth strategy
to keep the model efficient while preventing overfitting. Lu et al. applied this algorithm to
obtain good results in dynamic bike-sharing distribution prediction [28,29].

2.1.5. Stacking Model

Stacking is the most popular method in the field of model fusion in recent years. It is
not only one of the most common fusion methods used by competition champion teams,
but also one of the solutions considered for practical applications of artificial intelligence
in industry. As a strong learner fusion method, stacking combines the three advantages
of good model effect, strong interpretation ability, and applicability to complex data and
is one of the most practical pioneer methods in the field of fusion. According to Wolpert,
model stacking can derive the bias in the model on a specific data set so that the bias in the
meta-learner can be corrected [30].

2.2. Predictive Models Based on LSTM

LSTM was first described by Hochreiter et al. It was developed in 1997 and based
on improvements to RNN networks [31]. The difference between LSTM neural networks
and RNN is that it not only adds a storage unit that preserves previous information, but
it also trains the data through a back propagation algorithm, eliminating the problem of
the disappearance of the gradient, and the loss of long-term dependence in RNN networks
is effectively mitigated [13]. LSTM networks are widely used in various fields such as
machine translation, text generation, speech recognition, etc. They can also be applied to
regression prediction and have good prediction results [18,19,32–34].
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The LSTM model works mainly with a gating mechanism. It contains a memory cell
and three control gates: input, output, and forget gates. The cell state is equivalent to the
path that can transmit relevant information so that information can be passed down the
sequence chain, and this part can be regarded as the ”memory” of the network. The input
gate is used to update the cell state. The forget gate determines what information should
be discarded or retained. The output gate determines the value of the next hidden state,
which contains information about the previous input. In this process, LSTM uses a sigmoid
function to determine which data to forget and which data to keep. The output of the
sigmoid function is (0,1); when the output is 0, this part of the information is forgotten
because any number multiplied by 0 is 0. Correspondingly, when the output of the sigmoid
function is 1, the information is completely preserved, because any number multiplied by 1
is the same value. The network structure is shown in Figure 1.

Figure 1. LSTM network structure.

In Figure 1, Xt is the input at time t, Ht is the state value of the cell at time t, and the
small box with tanh is a feedforward network layer with activation function tanh. Gates are
a way of conditionally letting information through, and they are accomplished through a
sigmoid layer and dot multiplication operations. LSTM cells generally output two types of
states to the next cell: the cell state and the hidden state. The individual gates of the LSTM
work as follows. The first step in LSTM is to decide what information to discard from the
unit state. The forget layer has two inputs, Ht−1 and Xt, where Ht−1 is the hidden state of
the previous cell, and Xt is the input of the current time step. The calculation process of the
forgetting layer is as follows. The value of the input gate and the state value of the input
cell at time t are first calculated by the formula:

ft = δ[W f (Xt, Ht−1) + b f ] (1)

The next step is to decide on the new information to be stored in the cell state. First,
the sigmoid layer of the input gate layer decides which values will be updated.

It = δ[Wi(Xt, Ht−1) + bi] (2)

Then, a tanh layer creates a new candidate vector C̄t that can be added to the state.

C̄t = tanh[Wc(Xt, Ht−1) + bc] (3)

Next, the cell state is updated in conjunction with the creation of these two gates,
updating the old cell state Ct−1 to the new cell state Ct.

Ct = ItC̄t + ftCt−1 (4)
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Last, the information to be output is finalized. The output will be based on the unit
state but is actually a filtered version.

Ot = δ[Wo(Xt, Ht−1) + bo] (5)

Ht = OttanhCt (6)

2.3. Experiment Process

The overall process of short-term demand forecasting for shared bicycles is shown in
Figure 2. After loading the London shared bike data set, data pre-processing is performed
on its database and feature engineering is performed. After that, the prediction models are
built and the effects of the prediction models are compared.

Figure 2. Flowchart of the experiment.

2.3.1. Experimental Environment

This project is conducted on PC with Intel(R) Core(TM) i7-10510U CPU @ 1.80 GHz
2.30 GHz and 16 GB memory and Windows 10 system. Anaconda Navigator3 (Jupyter
notebook) and Python 3.8 served as experimental platform for simulation experiments.
The integrated development environment (IDE) is Jupyter notebook and python libraries
including Sklearn (1.1.3), Tensorflow (2.9.1), and Keras (2.9.0) are used to implement all the
algorithmic models.

2.3.2. Acquisition and Introduction of Experimental Data Sets

The data set is from the website Kaggle and contains data on bike-sharing rides in the
city of London. The data are hourly data from 4 January 2015 to 3 January 2017 (a total of
24 months), and the data set contains 17,414 data items. As can be seen from Table 1, the
properties of the data set include date, hour, holiday, weekend, season, real temperature,
apparent air temperature, wind speed, and weather. Additionally, the holiday and weekend
values are represented by boolean fields.
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Table 1. Properties description of data set.

Properties Description and Value Range

timestamp timestamp field for grouping the data
[4/1/2015/00:00:00, 3/1/2017/23:00:00]

cnt the count of bike shares [0, 7860]
t1 real temperature, unit: °C [−1.5, 34.0]
t2 apparent air temperature, unit: °C [−6.0, 34.0]

hum humidity in percentage [20.5, 100.0]
windspeed wind speed, unit: km/h [0.0, 56.5]

isholiday 0 = non holiday
1 = holiday

isweekend 0 = working day
1 = weekend

season

Seasonal Category
0 = spring

1 = summer
2 = fall

3 = winter

weathercode

Weather category
1 = clear/mostly clear but have some values
with haze/fog/patches of fog/fog in vicinity

2 = scattered clouds/few clouds
3 = broken clouds

4 = cloudy
7 = rain/light rain shower/light rain

10 = rain with thunderstorm
26 = snowfall

94 = freezing fog

2.3.3. Experimental Data Preprocessing

It is necessary to detect if there are missing values in the received data set, which can
be detected by using isnull().sum() in the pandas library. The isnull().sum() function is used
to count the number of missing values. By inspection, there are no missing values in this
data set.

From the box plot in Figure 3, the number of shared bikes used is mainly concentrated
in the range of 0 to 2000. There are 17,414 entries in this data set. The data set is split into a
training set (70%), a validation set (10%), and a test set (20%). The validation set is taken
from the training set and set with validation_split = 0.1 before training.

To make training the model more simple, the continuous variables such as temperature,
humidity, and wind speed were normalized to [0, 1] through the minimum–maximum
normalization method. The conversion factors were also saved so that the converted data
features can be recovered after the subsequent completion of prediction. The formula is
as follows:

Xij =

xij − min
1≤i≤N

xij

max
1≤i≤N

xij − min
1≤i≤N

xij
(7)

where max is the maximum value in the feature data, and similarly, min represents the
minimum value in the feature data. xij is the original data. Xij is the normalized data.
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Figure 3. Target variable cnt.

2.3.4. Analysis of the Influencing Factors

Bike sharing is a mode of transport that is heavily influenced by meteorological
factors [20]. As can be seen from Figure 4, when the real temperature is greater than 10
degrees, the temperature change has little effect on shared bike usage. When the actual
temperature is below 10 degrees, there is a significant reduction in shared bike usage.
The effect of apparent air temperature on the shared bike usage is consistent with the
effect of actual temperature. When apparent air temperature is greater than 10 degrees,
the temperature change has little effect on the shared bike usage. When the apparent air
temperature is lower than 10 degrees, the shared usage is significantly reduced. Overall,
the influence of humidity on the use of shared bikes is not very large, and use is reduced
when humidity is higher than 90%, probably because it is already raining when humidity
reaches 90%. The effect on bike-sharing usage was also not significant when the wind speed
was in the range of 0 km/h to 40 km/h, but when the wind speed approached 40 km/h
and above, bike-sharing usage decreased significantly.

Figure 4. The influence of meteorological factors on the short-time demand of shared bikes.
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As shown in Figure 5, the heat distribution plot shows the correlation matrix between
the total bike-share demand and the four meteorological factors in London from January
2015 to January 2017. From Figure 5, we can see that there is a correlation between
demand for shared bikes and four meteorological factors. In addition, there is a strong
positive correlation between both real and apparent air temperature and the demand
for bike sharing, with cold suppressing the demand for bike sharing. The correlation
coefficient between ‘t1’ and ‘cnt’ and the correlation coefficient between ‘t2’ and ‘cnt’
is very close, which are 0.39 and 0.37, respectively. Humidity is negatively correlated
with the number of rental bikes, which is −0.46. Rain and snow dampened demand for
rental bikes. The correlation between the demand for shared bikes and temperature and
humidity is the highest. The demand for shared bikes has little correlation with wind
speed and weather, which have correlation values of 0.12 and −0.17, respectively. Based
on Figures 4 and 5, there is a strong correlation between real temperature and apparent
air temperature. Including both features in the model will cause multicollinearity issues;
therefore, it is required to removed on of the features. In this paper, the apparent air
temperature feature is removed because the correlation between it and the count is weaker
than that of the real temperature.

Figure 5. Correlation analysis figure between meteorological factors and demand for shared bikes.

Time of day has a large impact on the short-term demand for bike sharing, which
includes not only long-term time of day such as months, weekends, and weekdays but
also includes short-term time of day such as different times of the day. Data from the
bike-sharing project in London, UK, were analyzed regularly, and the results are shown in
Figure 6.

As can be seen from Figure 6, the demand for shared bikes gradually increases between
January and July, reaching a peak in July followed by a slow decline from July to October
and a sharp drop after October, which is clearly related to the seasons. After analyzing the
data in the Figure 6, the month feature also has a more obvious influence on the number of
demand for shared bikes. Because the month and season features have a consistent impact
on demand, and the month feature is more detailed, the month feature was retained and
the season feature was deleted.
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Figure 6. Average shared bike usage per mouth.

As can be seen from Figure 7, the shared bike usage level is relatively large from
Monday to Friday, and there are two peak periods every day, which are at 7:00–8:00 and
17:00–18:00; these are the peak traffic times on weekdays. In addition, during the weekend,
the demand for shared bikes is higher during the hours of 12:00–4:00, so it can be seen that
the time of day is a significant factor influencing the demand for shared bikes. The trend in
demand for shared bikes on different days of the week shows that whether it is a weekend
or not also has an impact on the number of shared bikes used.

Figure 7. Shared bike usage per hour of weekday.

2.3.5. Predictive Model Evaluation Metrics

Through an in-depth analysis of the target research problem, the short-time demand
forecasting problem of bike-sharing can be considered as a regression problem. Therefore,
the root mean squared error (RMSE), mean squared error (MSE), and R2 score can be used
to evaluate the prediction model. The MSE calculates the sum of squares of the prediction
residuals, and a smaller value indicates better prediction of the model. Mean squared error
is sensitive to discrete points because it has a larger penalty for large error samples, but the
outliers have been deleted in the preprocessing stage, so it has little effect. RMSE takes the
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square root such that the vector stiffness and y are equal. R2 score takes into account both
the difference between the predicted and true values and the difference between the true
values of the problem itself. Its maximum value is 1, but it can also be negative. A value of 0
indicates that the model is approximately as good as a random estimate. A value of 1 means
the model is error free, and a value closer to 1 means the model is better. The calculation
formula is as follows:

RMSE =

√√√√ 1
N

N

∑
i=1

(ŷi − yi)2 (8)

SSres =
1
N

N

∑
i=1

(ŷi − yi)
2 (9)

SStot =
1
N

N

∑
i=1

(yi − ȳ)2 (10)

R2 = 1 − SSres

SStot
(11)

where yi and ŷi are the actual value and the predicted value, respectively, and N is the
number of data items. In this paper, we mainly refer to the RMSE and R2 score value to
train the neural network and also refer to the changes in the MSE values.

3. Predictive Model Analysis
3.1. Model Structure

Regarding the construction of machine learning models, this paper uses the python(3.8)
sklearn library to complete the construction of decision tree regression, linear regression,
kernel ridge regression, support vector regression, extra tree regressor, Adaboost, gradient
boosting, XGBoost, light gradient boosting, random forest, bagging, etc. Among them,
linear regression, kernel ridge regression, and support vector regression prediction results
are not ideal and the R2 score is less than 0.5, so no parameter description is given. On
the other hand, XGBoost, bagging, random forest, and light gradient boosting have good
prediction results, so they are used as the first layer of stacking model. The second layer of
the stacking model is set as gradient boosting regressor.

The first step is to build the CPU version of the Tensorflow(2.9.1) and Keras(2.9.0)
framework in a Windows 10 operating environment. This project uses the “tf.keras.layer.LSTM”
module provided by Keras, a deep learning framework, to complete the construction of LSTM
models. This module encapsulates the basic structure of LSTM in Keras, which mainly
contains three gate structures: the input gate, the forget gate, and the output gate structures.
The dropout mechanism is used so that reducing the weights makes the network more robust
to the loss of specific neuronal connections and avoids overfitting. Previously, the process
of building deep learning models was laid out in terms of neural network nodes, and the
current process of building LSTM framework using Keras is to build the model in terms of
network layers. The LSTM class in the Keras deep learning framework contains multiple
input and output layers of network nodes, which are represented by vectors. In simple terms,
the number of nodes in each layer is the length of the vector.

This paper uses the LSTM neural network model to predict the hourly demand for bike-
sharing in London. The prediction of hourly bike demand was accomplished using the deep
learning framework Tensorflow and the LSTM class module in Keras. Multiple network
layers are linearly stacked by “add” functions. The final network model is continuously
debugged to determine the following network structure parameters.

1. Layer number settings: build the LSTM model structure, set the number of LSTM
layers to 4 and the feature size to 12, the input of LSTM is the [time_steps, feature],
and the output layer is 1.

2. Model parameter settings: when debugging the LSTM neural network, we tried to
change the batch size of training samples, the number of neurons, and the step size.
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The batch sizes were set to 32, 64, and 128; the time_steps were set to 10, 12, 24;
and the numbers of neurons were set to 32, 64, and 128. Its results with respect to
these parameters are given in the following tables. The learning_rate is set to 0.0005,
the optimizer chooses Adam, the loss function is set as mse, and the LSTM model
is trained for 100 rounds (epochs). In order to prevent overfitting in the training
process, the dropout of each layer is set to 0.2. For the activation function, the ReLU
activation function is chosen. The main purpose is to reduce the interdependence of
the parameters and alleviate the overfitting problem.

3. Dimension transformation: when inputting the features into the prediction model,
the tensor needs to be transformed into a two-dimensional matrix to use its computed
results as inputs to the hidden layer. Finally, the tensor is transformed into three
dimensions as the input to the LSTM class. In addition, batch processing of data is
performed via the get_batches function.

3.2. Model Prediction Results
3.2.1. Prediction Results of LSTM Neural Network Model

According to Tables 2–4, there are three main parameters, time_step, batch_size, and
number of neurons, that have impacts on the LSTM model performance. As can be seen
from Table 2, when the batch size is 64 and the number of neurons is 64, the optimal result of
RMSE is 329.49 and the R2 score is 0.915. The optimal result, as shown in Table 3, indicates
that RMSE is 336.37 and the R2 score is 0.911 with a time_step of 12, a batch size of 64,
and 64 neurons. In the below Tables 2–4, a comparison of the LSTM model performance
with different parameters is presented. An RMSE of 314.17 and a R2 score of 0.922 are the
optimal overall experimental results.

Table 2. Experimental results (time_step = 10).

Batch_Size Number of Neurons RMSE R2 Score

32

32 335.68 0.912
64 345.73 0.906

128 357.58 0.899

64

32 373.94 0.890
64 329.49 0.915

128 354.90 0.901

128

32 332.15 0.914
64 342.07 0.908

128 342.03 0.907

Table 3. Experimental results (time_step = 12).

Batch_Size Number of Neurons RMSE R2 Score

32

32 352.02 0.903
64 355.72 0.901

128 350.33 0.904

64

32 344.29 0.907
64 336.37 0.911

128 361.55 0.897

128

32 353.83 0.902
64 368.25 0.892

128 373.38 0.891

In addition, the trained model was used to test the 1000 h data, the predicted value
of the model was compared with the true value, and the comparison results are shown in
Figure 8. Figure 8 shows that the LSTM model has a good prediction performed. The trend
of the shared bicycle usage curve predicted by the model is basically consistent with the
real usage curve, and there are errors only in some peak parts. In general, the fitting effect
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of the model is very good, which meets the empirical error requirements in the regression
prediction process. It is further illustrated that the short-time demand forecasting problem
of bike-sharing can be solved by using LSTM forecasting model.

Table 4. Experimental results (time_step = 24).

Batch_Size Number of Neurons RMSE R2 Score

32

32 353.75 0.902
64 314.17 0.922

128 333.82 0.912

64

32 337.36 0.911
64 348.93 0.904

128 367.07 0.894

128

32 328.38 0.915
64 334.48 0.912

128 359.23 0.899

Figure 8. The prediction results of LSTM model.

Figure 9 displays the variation of the loss function on the training and validation sets
during the training period of the LSTM model. During training, the “validation_split” of
the module is set to 0.1. This means that 10% of the data in the training set are validation
data. Furthermore, for each completed round of training, a round of validation is performed
on the validation set. From Figure 9, we can see that the value of the loss function of the
model on the training and validation sets gradually decreases with the increase in the
number of training rounds and stabilizes after 40 rounds (epochs), where the value is close
to 0.

Figure 9. Train set and validation set loss curve.
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3.2.2. Predictive Model Comparison

The RMSE and R2 score obtained by the above eight models after fitting all the data are
displayed in Table 5. According performance indicator data of each model in the table, it
can be seen that the smallest RMSE value and the highest R2 score are generated when using
the LSTM model for prediction, with values of 314.17 (RMSE) and 0.922 (R2 score). The
OLS model has the worst performance, the lowest R2 score, and the largest RMSE value. In
addition, the fusion model achieves good prediction results in terms of performance metrics,
because it incorporates several machine learning models with good prediction results, but
there is still a small gap in prediction error compared to the LSTM model. Therefore, the
LSTM model is a better choice for short-time demand prediction of shared bikes.

Table 5. Comparison of prediction results of different forecasting models.

Predictive
Model LSTM Stacking

Model
Light
GBM

Random
Forest Bagging XGBoost Extra Tree

Regressor
OLS

Model

RMSE 314.17 351.47 356.57 358.13 366.13 367.19 487.95 881.62
R2 score 0.922 0.857 0.853 0.805 0.805 0.843 0.724 0.099

4. Conclusions

In the short-term demand forecasting of shared transportation, to address the problem
of effective prediction of the hourly demand of shared bikes in a region, this paper uses a
public data set of shared bikes in London and analyzes the impact of each of its characteristic
variables on the total demand of shared bikes. Finally, multiple prediction models are used
to predict the hourly demand of bike sharing in London and compare the prediction results.
The following conclusions are obtained through experiments.

The main factors affecting the demand for shared bikes are temperature, public hol-
idays, seasons, morning and evening rush hours, etc. The most important factors are
temperature and morning and evening peak hours (7:00–8:00 and 17:00–18:00).

Compared with machine learning models, the LSTM model has the minimum RMSE
of 314.17, the highest R2 score (0.922), the prediction error is small, the change curve of the
prediction result is basically consistent with the real result, and only some of the extreme
value regions have error. This model is suitable for short-term demand forecasting of
shared bikes. The use of LSTM neural network models does not differ much from machine
learning algorithms in terms of algorithm running speed.

Therefore, the LSTM neural network model can be used in the actual city bike-sharing
service to predict the demand for bike sharing at the hourly level to assist bike scheduling
and better serve users.

In further research, we need to explore other relevant factors such as the locations
of buses and subway stations and population distribution. By analyzing these factors
and optimizing the short-term demand prediction model of shared bikes, the scheduling
of shared bikes can be executed more effectively. Finally, it provides a more effective
implementation scheme for scientific planning of public transport.
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