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Abstract: Extracting complete portrait foregrounds from natural images is widely used in image
editing and high-definition map generation. When making high-definition maps, it is often necessary
to matte passers-by to guarantee their privacy. Current matting methods that do not require additional
trimap inputs often suffer from inaccurate global predictions or blurred local details. Portrait matting,
as a soft segmentation method, allows the creation of excess areas during segmentation, which
inevitably leads to noise in the resulting alpha image as well as excess foreground information, so it
is not necessary to keep all the excess areas. To overcome the above problems, this paper designed a
contour sharpness refining network (CSRN) that modifies the weight of the alpha values of uncertain
regions in the prediction map. It is combined with an end-to-end matting network for bust matting
based on the U-Net target detection network containing Residual U-blocks. An end-to-end matting
network for bust matting is designed. The network can effectively reduce the image noise without
affecting the complete foreground information obtained by the deeper network, thus obtaining a
more detailed foreground image with fine edge details. The network structure has been tested on the
PPM-100, the RealWorldPortrait-636, and a self-built dataset, showing excellent performance in both
edge refinement and global prediction for half-figure portraits.

Keywords: image matting; bust portraits; deep learning; driver monitoring

1. Introduction

Natural image matting is widely used in image and video processing. It cuts out
the exact area in the foreground of an image by predicting the alpha value of the target.
There are currently two methods for matting images: traditional matting methods and
deep learning methods. The pixel value of the unknown area is predicted from the known
area in the traditional methods. Among them, the more representative ones are the Ruzon
method based on parameter sampling [1], the Poisson matting method [2], and the Bayesian
matting method [3]. However, the traditional methods rely on trimaps and are limited by
their working principle, which leads to the poor prediction of foregrounds while predicting
discontinuous objects.

Unlike traditional matting methods, deep learning methods can automatically find the
representational information for natural-image-matting tasks in large amounts of training
data without human intervention [4]. Most of the current deep learning matting methods
in the field of image matting rely on deep convolutional neural networks. It can cause
image distortion during upsampling, result in rough local details in the portrait, and reduce
the accuracy of the matting results. At the same time, existing matting methods face the
problem of a lack of training data due to the difficulty of obtaining real transparency
masks. Most of the masking methods require additional input trimaps, which undoubtedly
increase the difficulty of the matting work.

To address these issues, this paper proposes an end-to-end neural network for bust
matting, which focuses on the uncertain region at the edges of the bust and can obtain an
alpha map with good edge detail without additional input. The work in this paper has
three aspects:
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1. Aiming at the problem of the automatic matting of half-body portraits, a new contour
sharpness refinement network is proposed to improve the prediction of edge details;

2. Focusing on high-quality bust portrait matting improves the accuracy of predictions;
3. It produces a bust-matting dataset containing high-resolution busts and their corre-

sponding alpha images.

2. Related Work
2.1. Matting

As shown in Equation (1), mathematical models of natural image matting were first
proposed by T Porter and T Duff [5].

Ii = αiFi +
(

1− αi
)

Bi (1)

where I is the composite image, α is the transparency of the image, F is the foreground
of each image, B is the background of each image, and i is the pixel index. At this stage,
the methods predict F, B, and α. In this equation, only I is known and predicting α is
a pathological problem. Therefore, many image-matting methods use additional inputs
to assist with the matting process, with trimaps being the most common method. The
use of additional inputs leads to an increase in workload and raises the difficulty of the
matting task. In recent decades, image-matting methods based on deep learning have
become mainstream. Ruan et al. optimized the U-Net backbone network and proposed an
edge segmentation network that improved the speed of segmenting target locations and
smoothed the edges of the detected targets [6]. Traditional deep learning architectures are
not convenient to use when the foreground color is close to the background color. Qiao et al.
got rid of the limitation of the trimap and proposed an end-to-end hierarchical attentional
matting network and successfully predicted alpha masks with a strong visual quality
and matting accuracy [7]. Yihui et al. developed a multi-scale evolutionary pixel pair
optimization framework that reduces computational effort while predicting high-quality
alpha mattes [8]. Wang et al. separated the matting task into two stages, and by adopting a
segmented refinement approach, the alpha value of the image was obtained more accurately,
but the segmented approach resulted in more convolution and pooling layers, which
increased the computing time [9]. Hou et al. devised a dual encoder and dual decoder
model, allowing the model to output both foreground and alpha values [10]. Liu et al.
proposed a novel cascaded segmented matting network that used a shared encoder and
two separate decoders, achieving the end-to-end human image matting [11]. In recent
years, many researchers have tried to apply a transformer to vision tasks. Park et al.
designed the first transformer-based image-matting network and proposed a prior-token
to be used as a global prior [12]. Cai et al. proposed a transformer-based image-matting
network and used global features and a non-background mask to guide the propagation
of multiscale features from the encoder to the decoder in order to maintain the context of
transparent objects [13]. The transformer model can be used for matting, but is not the
most suitable model. Although the transformer model can learn the relationship between
different positions in a sequence through a self-attentive mechanism, for a pixel-level task
such as image matting, the spatial relationship between pixels needs to be considered. The
transformer model does not directly consider it, and the current transformer-based matting
model suffers from the need for trimaps. In addition, the transformer takes a long time
to train and is not computationally efficient. Therefore, it may not perform as well as the
CNN and FCN models in the image matting task.

Qin et al. proposed a hybrid loss for boundary-aware saliency target detection by
superimposing two U-Nets to enhance the sharpness of saliency target edges, in response
to the problem of the blurred edges of traditional target detection [14]. For the complex
instance segmentation problem, Xie et al. devised a framework to fuse target detection with
instance segmentation, simplifying the computational complexity [15]. Xiao et al. proposed
a multi-feature selection module to improve the accuracy of detecting foreground targets
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in complex backgrounds [16]. Luo et al. proposed a multi-task collaborative network
to achieve the joint learning of RES and REC, solving the problem of segmentation and
detection needing to be performed separately [17]. Traditional deep learning architectures
such as VGG [18], Res Net [19], and other networks are used to extract deep features using
the existing backbone, leading to their extracting the global information of the image first
and ignoring the edge parts of the image.

In a network for edge detail processing, Zhou et al. proposed an attention transfer
network, effectively reducing the computational complexity and exactly extracting an
object with fine structures from a complex background [20]. Fang et al. proposed a user-
guided approach for practical human matting, enhancing the accuracy of edge prediction
by an interactive matting strategy [21]. Islam MA et al. proposed a stage-wise refinement
mechanism to make the edge detail more visible in matting images to a certain extent [4].
Wang et al. proposed an image-matting method based on graph theory and guided
feathering, which improves the prediction of the local details of images [22].

Inspired by these, this paper designs a contour sharpness refinement network and
a natural image-matting method based on the U-Net deep learning model framework to
make the portrait-matting network improve the prediction of local details on the premise
of complete global prediction.

2.2. Datasets

As shown in Figure 1, existing portrait-matting datasets are divided into two cate-
gories: synthetic-background datasets and natural-background datasets. A more represen-
tative synthetic-background dataset is the Adobe Image Matting dataset [23] published by
Xu et al., which consists of 431 portrait images with fine annotation and 100 background
images without portraits. Lin et al. released the PhotoMatte85 dataset [24] containing
85 portrait foregrounds with their corresponding hand-annotated alpha images and later
released 193 background images without portraits for post-composition. The synthetic back-
ground can significantly increase the data volume of the dataset and reduce the training
cost of deep learning.
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J Li et al. showed that models trained in a natural context have a better generalization
ability than those trained in a synthetic context [25], so a large number of researchers choose
to train the models using natural-context datasets. The PPM-100 datasets [26] published by
Ke et al. contain 100 portraits with a sharpness between 1080 p and 4 k, and the ground
truth of each image is carefully hand-annotated. The RealWorldPortrait-636 dataset [27]
published by Yu et al. contains 636 portraits with fine annotations in the range of 720 p
to 1080 p, and additional annotated masks for hair areas and other soft tissue areas. The
Matting Human Datasets published by www.aisegment.cn contain 34,427 images and

www.aisegment.cn
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the corresponding matting results, which are 600 × 800 portraits generated after face
detection and region cropping. This is the largest known natural-background portrait
dataset. However, this dataset suffers from the problems of rough edge markings of
characters and blurred ground truth details, and although the data volume is large, it does
not generate a model that achieves the expected effect of clear visibility of hairs in the
actual training process. However, the production cost of high-quality natural-background
datasets is higher than that of synthetic-background datasets, so natural-background
datasets generally have the problem of insufficient training data due to the small amount
of data. To enrich the training data, 100 natural-background portraits are collected and
each image is manually labeled meticulously and combined with the PPM-100 datasets,
and then the images are randomly rotated for data enhancement to finally generate a bust
dataset containing 2000 high-quality labeled portraits.

3. Approach
3.1. Overall Network Structure

The entire bust-matting network is shown in Figure 2. To make the global prediction
of the portrait-matting network more accurate, this paper adopts the U2-Net network
structure with Residual U-blocks (RSU) to improve the capture of multi-scale features.
To make the predicted local details more precise, this paper adds the contour sharpness
refinement network after the third and fourth decoder layers to realize the refinement of
the uncertain regions at the edges of the portrait, and then fuses the output images of each
level to generate the final feature maps.
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3.2. Contour Sharpness Refining Network

To address the problem of the inaccurate prediction of edges in deep learning matting
models, this paper designs a contour sharpness refinement network that processes the
uncertain regions that appear in the deep network during upsampling. The main function
of the contour sharpness refinement network designed in this paper is to judge the uncertain
regions in the input αl-1 whose weights are between (0, 1) and set their weights to 0, to
generate a new mask gl. The specific effect is shown in Figure 3.
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The contour sharpness refinement network devised in this paper consists of two com-
ponents as follows:

(1) An upsampling using bilinear interpolation to upsample each layer of the initial
feature map progressively by Fi(x) ∈ RHi ,Wi ,Cin (i = 1, 2 · · · 6) into a high-resolution feature
map that matches the size of the original image F′i (x) ∈ RH,W,Cin (i = 1, 2 · · · 6).

(2) A sharpening block sharpening the generated high-resolution feature maps F′i (x)
by sharpening gl = F′i (x)· fgl (i = 1, 2 · · · 6) to generate a new mask, where the formula for
generating a new mask is shown in Equation (2).

fgl =

{
0 i f 0 < αl−1

1 otherwise
(2)

As a common upsampling method in image processing, the bilinear interpolation
method has the characteristics of a simple calculation and smooth scaling of the image.
Since the bilinear interpolation method only considers the effect of the grey values of the
four direct neighbors around the sample point to be measured, but not the effect of the
rate of change of the grey values between neighbors, if upsampling is performed after
sharpening the network, it will inevitably lead to a blurring of the scaled image in terms of
edge details. Since the final prediction is a fused image with multiple levels of sampling,
adding a contour sharpening network after only one layer of the decoder will result in
a poorly sharpened figure edge and will not allow it to be used to its maximum effect.
Adding the network after two or more decoder layers may result in over-sharpening and
over-complicated calculations, affecting the final fusion result. Therefore, this paper is
designed to prevent this problem by adding the network after two decoder layers.

The external layer network can preserve more detailed information in the convolu-
tional neural network. In contrast, the information in the deep layer network is more
abstract. Its primary role is to determine the approximate location of the foreground and
background, so the detail processing of the edges of the portrait is lacking, which will cause
detail loss and generate a lot of noise when image fusion is performed after upsampling
dimensional matching [28]. In convolutional neural networks, the decoders of different
layers handle different tasks. Specifically, the different layers in U2-Net have the following
functions: The shallow convolution layers in the encoder are used to extract low-level
features from images, such as edge and texture information. The deep convolution layers
in the encoder are used to extract high-level features from images, such as the shape and
texture information of objects. The attention module in the encoder adjusts the weights of
feature maps to enhance the model’s focus on target regions. By combining these different
layers, U2-Net can accurately segment input images and has good processing capabilities
for complex backgrounds and small targets.

Considering the different effects produced by different layers, the contour sharpness
refinement network is placed in the fifth layer decoder and sixth layer decoder, the third
layer decoder and fourth layer decoder, and the first layer decoder and second layer decoder,
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respectively, for testing in this paper, which is to improve the accuracy of the network
model. As shown in Figure 4, the fifth layer decoder and sixth layer decoder need to judge
the foreground and background information of the image. When judging the part of the
human portrait where the hair is in contact with the body, the hair belongs to continuous
semantic information. Therefore, the shoulder and the hair are not continuous with each
other after the addition of the contour sharpness refinement network. Adding the contour
sharpness refinement network after the fifth layer decoder and sixth layer decoder may lead
to errors in judging the foreground and background image, and the complete foreground
information cannot be obtained; adding the contour sharpness refinement network after
the first layer decoder and second layer decoder will lead to the problem of the low
refinement of edges; adding the contour sharpness refinement network after the third layer
decoder and fourth layer decoder can obtain the complete foreground information and the
shoulder and hair outline of the character are extremely clear. Moreover, the addition of
the contour sharpness refinement network after the third layer decoder and fourth layer
decoder prevents over- or under-fitting. Thus, this paper proposes to add the contour
sharpness refinement network after the third layer decoder and fourth layer decoder of the
network to achieve a finer matting of the contour edges of the bust portrait while obtaining
a complete foreground.
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As shown in Figure 5, to verify the effectiveness of this approach, the contour sharp-
ness refinement network placed on different layers was tested on the PPM-100 dataset
and the RealWorldPortrait-636 dataset, and the results found that placing the contour
sharpness refinement network on the third and fourth layers still gave the best results on
the different datasets.
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4. Experiments and Analysis
4.1. Experimental Environment

In this paper, the deep learning framework based on Pytorch is used for training and
testing, the interface language is Python 3.6.6, the operating system is Windows 10, the
CPU model is Intel Xeon W-2123, and the GPU model is Quadro p4000. The batch size is
set to 10 and the epoch is 1000.

4.2. Experimental Results and Analysis

To test the performance of the designed network, the proposed method is trained
and tested with U2-Net [14], Glance and Focus Matting Network [25], and MOD Net [26],
respectively, on the PPM-100 datasets, RealWorldPortrait-636 dataset, and self-built dataset.

In this paper, the quantitative comparison uses the evaluation metrics of sum of
absolute difference (SAD), mean squared error (MSE), gradient error, and connectivity
error [29] between the pixels of the predicted alpha map and ground truth proposed by
Rhemann et al. The lower value of the four indicators represents a better quality of the
generated alpha map. The comparison results in the PPM-100 test set are shown in Table 1,
in the RealWorldPortrait-636 test set in Table 2, and in the self-built test set in Table 3.

Table 1. Comparison of the results of several methods on the PPM-100 test set.

Method Name SAD MSE(10−3) Gradient Connectivity

U2-NET [13] 114.62 12.26 103.16 73.87
GF Matting [22] 142.36 6.92 124.35 227.27
MOD Net [23] 125.85 11.25 114.96 87.52

Ours 66.26 12.18 97.70 72.86

Table 2. Comparison of the results of several methods on the RealWorldPortrait-636 test set.

Method Name SAD MSE(10−3) Gradient Connectivity

U2-NET [13] 72.79 11.99 71.08 51.35
GF Matting [22] 96.37 8.94 84.21 60.63
MOD Net [23] 50.34 9.77 58.36 30.19

Ours 45.14 9.49 44.72 26.10

Table 3. Comparison results of several methods on self-built test sets.

Method Name SAD MSE(10−3) Gradient Connectivity

U2-NET [13] 72.78 11.56 28.81 50.18
GF Matting [22] 108.11 7.26 34.51 43.86
MOD Net [23] 85.71 10.27 27.55 38.05

Ours 62.09 10.57 20.46 32.64

As can be seen from Table 1, the bust-matting network with the contour sharpness
refinement network proposed in this paper is significantly lower than the comparison
methods in the SAD evaluation index, the Gradient and Connectivity evaluation indices
are lower than the comparison methods, and the MSE evaluation index has no obvious
advantage. As can be seen from Table 2, the method proposed in this paper outper-
forms the comparison method in the SAD, Gradient, and Connectivity evaluation indices,
and is second only to GF Matting in the MSE evaluation indices. As can be seen from
Table 3, although the method proposed in this paper outperforms only U2-NET in the MSE
evaluation indices, it is significantly lower than the comparison method in the SAD and
Gradient indices, and the reason for the lack of an advantage in the MSE metrics may be
that the contour sharpness refinement network designed in this paper reduces the pixel
value of the foreground uncertainty region after superimposition, thus affecting the MSE
evaluation metrics.
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To more intuitively verify the effectiveness of the network designed in this paper, the
qualitative comparison results of the relevant methods are presented in this paper. The
experimental results of the PPM-100 test set are shown in Figure 6, the experimental results
of the RealWorldPortrait-636 test set are shown in Figure 7, and the experimental results of
the self-built Matting test set are shown in Figure 8.
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The foreground part of the portrait is accurately predicted by U2-Net, but the predic-
tion of the hair is incomplete; for example, in (a), the edges of the portrait are very blurred,
and in (b), the uppermost part of the hair is not predicted. Although GF Matting and MOD
Net have some improvement in the detail of the character’s hair, there is the problem of an
incomplete foreground in global prediction. For example, MOD Net predicts the shadow
behind the portrait as the foreground in (a); GF matting gets an incomplete prediction
of the shoulder part in (a) and forecasts the collar as the background in (b), resulting in
a gap in the final generated image. The method devised in this paper provides a more
complete global prediction of the portrait foreground and has some advantages in terms of
hair detail.
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As seen in Figure 7, several of the comparison methods have incomplete predictions
of the portrait in (a) and unclear predictions of the hair in the portrait, with all of them
predicting the grass in the background as hair. In (b), although the U2-Net prediction of the
foreground is more complete, there is a blurring of the edges of the hair. GF Matting and
MOD Net have a clearer prediction of the character’s hair but an incomplete prediction of
the character as a whole. In contrast, the method in this paper produces better prediction
results for the detailed part of the edge of the portrait while obtaining a complete foreground
image. The method in this paper has specific progress in the detail processing of the part of
the edge of the portrait compared to other comparison methods.
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As can be seen in Figure 8, several of the comparison methods have good results in
predicting busts, but there are still cases where the details on the edges of the portrait are
missing and the foreground areas of the portrait are misjudged. In (a) and (b), U2-Net,
GF Matting, and MOD Net have good results in global prediction, but the local details of
the portrait are blurred and the hair is not well-processed, not to the extent that the hair is
visible. In (c), GF Matting and MOD Net both judge the mountain behind the portrait as
the foreground, thus leading to a serious foreground prediction error.
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In summary, the network designed in this paper outperforms the comparison methods
in quantitative comparisons for the SAD, Gradient, and Connectivity indices. Meanwhile,
in qualitative comparisons, it can have more refined predictions of local details on the
premise of complete global predictions for busts, verifying the feasibility of the method
designed in this paper.

5. Conclusions

This paper proposes a contour sharpness refinement network for the edge detail
processing of busts and designs a matting method based on a combination of U2-Net and
contour sharpness refinement network. The method is characterized by accurate global
foreground prediction, high-quality local edge detail, and no additional manual annotation
of thirds. Based on the high level of edge detail in the bust, the edge detail of the figure
is refined by the contour sharpness refinement network. The network used in this paper
is not trained with trimaps, but still has better results and relatively more precise edge
detail in the portrait. This is mainly due to the fact that the proposed contour sharpness
refinement network refines the edges of the bust and removes some of the noise in the
foreground. The experimental results show that the method improves the performance on
the PPM-100 datasets, the RealWorldPortrait-636 dataset, and the self-built dataset, and that
the edge details of the bust can be seen through intuition, which validates the effectiveness
of the method in this paper. The sharpening process carried out by this method to obtain
images with sharp edges has a large and abrupt change to the boundaries, and therefore
has certain drawbacks for the processing of defocused images, for which we will make
further modifications to the model in the next step.
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