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Abstract: Nasopharyngeal carcinoma (NPC) is a malignant tumor, and early diagnosis and timely
treatment are important for NPC patients. Accurate and reliable detection of NPC lesions in magnetic
resonance (MR) images is very helpful for the disease diagnosis. However, recent deep learning
methods need to be improved for NPC detection in MR images. Because NPC tumors are invasive
and usually small in size, it is difficult to distinguish NPC tumors from the closely connected
surrounding tissues in a huge and complex background. In this paper, we propose an automatic
detection method, named MWSR-YLCA, to accurately detect NPC lesions in MR images. Specifically,
we design two modules, the multi-window settings resampling (MWSR) module and an improved
YOLOv7 embedded with a coordinate attention mechanism (YLCA) module, to detect NPC lesions
more accurately. First, the MWSR generates a pseudo-color version of MR images based on a multi-
window resampling method, which preserves richer information. Subsequently, the YLCA detects the
NPC lesion areas more accurately by constructing a novel network based on an improved YOLOv7
framework embedded with the coordinate attention mechanism. The proposed method was validated
on an MR image set of 800 NPC patients and obtained 80.1% mAP detection performance with only
4694 data samples. The experimental results show that the proposed MWSR-YLCA method can
perform high-accuracy detection of NPC lesions and has superior performance.

Keywords: nasopharyngeal carcinoma; multi-window resampling; attention mechanism; object detection

1. Introduction

Nasopharyngeal carcinoma (NPC) is a malignant tumor that occurs in the nasopharyn-
geal site and lateral wall, and is endemic in southern China, North Africa, and Southeast
Asia [1]. According to the data of the World Health Organization [2] in 2021, the number of
new cases of NPC diagnosed globally reached 133,000. The incidence of NPC in China is
higher than the average incidence rate in the world. New NPC cases in China account for
about 50% of the world’s total. Incidences of NPC is one of the highest of malignant tumors
in China, and the incidence is highest in otolaryngology malignant tumors. Therefore,
research on NPC needs to continue, and a new synergistic relationship between distant
metastasis in patients with nasopharyngeal carcinoma has been discovered in the latest
study [3]. Detailed examination of magnetic resonance (MR) imaging is necessary to ac-
curately depict the primary tumor, and, as a routine clinical procedure for the diagnosis
of NPC, preoperative MR is used to assess tumor progression. Most nasopharyngeal
cancers are moderately sensitive to radiation therapy, and radiation therapy is the treat-
ment of choice for NPC. Tumor detection and segmentation of MR images is an important
step in computer-aided tumor diagnosis [4]. A reliable automatic detection model can
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quickly detect tumor areas and effectively reduce the radiation therapy planning workload
of radiologists.

At present, there are few studies on the detection of NPC. NPC tumors usually occupy
a small volume in MR images, and the tissue background is closely connected to the tumor,
with complex and variable border shapes that are difficult to distinguish and sometimes
impossible to identify by the human eye, making the detection of NPC lesions more
challenging. To address these issues, several segmentation methods for NPC detection
have been proposed in previous work. For example, in 2015, Huang et al. [5] introduced a
region-based NPC segmentation method, which used clustering and classification methods
to segment nasopharyngeal carcinoma from MR images. In 2018, Mohammed et al. [6]
proposed a new method for diagnosing NPCs from endoscopic images, which includes a
trainable segmentation of NPC tissues, a genetic algorithm to select the best features, and a
support vector machine for classifying NPCs, and the detection shows high accuracy. The
disadvantage is that this method needs to display tumors on several incisions, and doctors
need to draw separate ROIs on different tumor incisions to detect NPC segmentation in
one patient, which is complex and requires a lot of time and money. In 2019, Zhao et al. [7]
proposed a DL method, which used a deep convolutional neural network (DCNN) to
achieve automatic NPC segmentation on 2D PET-CT images with dice similarity coefficient
(DSC), sensitivity, and accuracy of 0.785, 0.764, 0.789, respectively. However, it only
collected PET-CT images from 22 patients, with a small number of samples, and increased
the complexity of image data. In 2020, Chen et al. [8] proposed a new multimodal MR fusion
network (MMFNet) based on a multi-encoder and introduced a 3D-CBAM attention module
to highlight information features. This method mainly uses different forms of MR images
to complete accurate segmentation. The above methods [5–7] are complex and demanding
in terms of data processing for NPC detection, increasing the complexity of NPC images
(multimodality). Their experiments uses 256, 381, and 1100 images, respectively, and the
data scale is small. Our experiment uses 4694 NPC MR images for lesion detection, and the
results are more reliable. The existing NPC segmentation methods for MR images need to
be improved in the aspects of data processing cost, data scale, and algorithm performance.

The difficulty of NPC detection is partly due to the small size of the NPC lesion area
in proportion to the whole MR image, while the complex background occupies the major
part. Moreover, the shape of nasopharyngeal carcinoma is diverse, the background and
tumor boundary are blurred, and the lesion shape is complex and difficult to distinguish,
which makes NPC detection very difficult. In 2022, Wang et al. [9] proposed a new network
based on an improved Mask R-CNN framework using global-local attention to detect
abnormal lymph nodes in MR images with good performance. Inspired by this literature,
we introduced an attention mechanism [10] to enhance the feature representation of NPC
lesion regions and weaken the influence of background regions.

The traditional detection method of NPC takes a long time, and the accuracy of
the algorithm is affected by the way of image feature extraction [11,12]. It uses manual
operation, which is costly and has a high tendency for errors. In contrast, deep neural
networks have powerful automatic representation learning capabilities. As one of the main
architectures of DL, the convolutional neural network (CNN) method provides superior
performance for classification, segmentation, and detection tasks in digital pathological
images (DPGA) [13]. Therefore, the CNN-based architecture is often used as a tool for faster
and more accurate diagnosis by processing multimodal MRI images [14]. Deep neural
networks have powerful automatic representation learning capabilities and have been
widely used in the detection and segmentation tasks of medical images. Zhang at al. [15]
developed a computer-aided detection method based on the deep learning model Faster
R-CNN, which has the potential to detect brain metastases with high sensitivity and
reasonable specificity. Elakkiya at al. [16] proposed a hybrid deep learning technology,
which developed a small object detection generative adversarial network (SOD-GAN) based
on RCNN to automatically detect and classify cervical precancerous lesions and malignant
lesions according to deep features without any preliminary classification and segmentation
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assistance. However, the R-CNN and Faster R-CNN methods only focus on the number
of randomly selected and determined regions, and do not scan the entire input image, so
they may miss key regions or concentrate on unimportant regions. These two cases will
lead to error detection and classification results, while the YOLO object detector can scan
the entire input image for classification and area detection. Salman at al. [17] developed an
automatic tool for detection and diagnosis of prostate cancer based on the YOLO algorithm,
and empirical results demonstrate that it is possible to develop high-performance prostate
cancer diagnostic tools using the object detection method. These diagnostic tools can reduce
inter-observer variation between pathologists and decrease time delay in the diagnostic
phase. Salman at al. [17] also show that the YOLO algorithm can have good performance
in cancer detection. In addition, there is no research on NPC detection in MR images using
YOLO algorithm. In order to solve the above challenges of NPC detection, we improved
the YOLO algorithm by integrating MWSR and YLCA modules, which can more accurately
locate the object when performing lesion detection, and have higher detection performance
and faster real-time detection of NPC lesions.

Deep neural network-based object detectors continue to evolve and are used in various
applications. Object detectors accomplish both classification and localization by providing
the location of the object as well as category labels and confidence scores, which are
essential in high-impact real-world applications, and new methods are constantly being
proposed. The CNN-based One-stage object detection OverFeat [18], YOLO [19], SSD [20],
and RetinaNet [21] are improved step by step and are the basis for subsequent research in
the object detection domain. In 2016, Redmon at al. [19] proposed the YOLO (You Only
Look Once) algorithm, which treats object detection as a spatial location regression problem
containing category information and forms a new paradigm for object detection. After
continuous optimization and innovation, Wang at al [22] proposed YOLOv7 detector in
2022, and conducted the validation experiments on PASCALVOC and MS-COCO datasets.
Empirical results demonstrate that YOLOv7 outperforms all known object detectors in the
range of 5 FPS to 160 FPS in terms of speed and accuracy. YOLOv7 algorithm is the most
advanced method for object detection and classification. We use the detector based on
YOLOv7 algorithm to perform NPC detection. The main reason is that it determines the
lesion area more accurately by analyzing the input features of the entire image. When using
the image training detector in a specific field, it performs positioning and classification tasks
more accurately than the previous algorithm, and has higher positioning and classification
rates. Moreover, the algorithm detects real-time object faster than other algorithms [22].

Medical images are more complex and have greater variability than natural scene
images. In recent years, convolutional neural networks (CNNs) have been successfully
applied to automatic medical image detection, and the automatic detection of NPC in MR
images has effectively reduced the doctor’s workload in NPC diagnosis. In this paper, we
propose an automatic method (MWSR-YLCA) for detection and diagnosis of NPC. Specif-
ically, we design two modules in the MWSR-YLCA method, the multi-window settings
resampling (MWSR) module and an improved YOLOv7 with an embedded coordinate
attention mechanism (YLCA) module, to detect NPC lesions more accurately. First, the
MWSR processes MR images of NPC through an image resampling method based on
multi-window settings, which uses a windowing technique to fuse the optimal window
width window position and nearby image information to enrich the amount of image
information. Subsequently, the new YLCA network is constructed by embedding the
fusion attention mechanism to enhance the feature representation of objects of interest
for automatic detection and diagnosis of NPC. Due to the lack of public NPC detection
data sets, we trained and evaluated our proposed model on our collected data sets, which
include 26,000 MR images of 800 patients. By conducting extensive experiments using
4694 MR images containing lesion annotations, we evaluated the effectiveness of our pro-
posed MWSR-YLCA and obtained high-accuracy NPC lesion detection performance. This
paper main contributions are as follows.



Electronics 2023, 12, 1352 4 of 19

(1) We use the multi-window setting based image resampling method (MWSR) to process
NPC MR images. This method uses window technology to fuse image information
in several windows (the optimal window and nearby windows), which reduces the
information loss of the original image and enriches the image information for model
input. The NPC detection performance using our method is improved compared to
the detection performance using the original image, which provides a new way for
medical MR images for NPC detection.

(2) We propose an NPC detection network YLCA for automatic detection and diagnosis
of NPC, which builds a new network based on a YOLOv7 object detection network,
embeds the fusion attention mechanism, and designs MP-CA Block to enhance the fea-
ture representation of objects of interest. Through extensive experimental evaluation,
our detection network obtained the highest 80.2% mAP and 0.77 F1 compared to other
comparison methods, proving that it is more effective for NPC MR image detection.

2. Method

The MWSR-YLCA method proposed in this paper consists of two main parts to jointly
realize the detection of NPC lesions. The first part (MWSR) uses multi-window technology
to resample the NPC MR image to obtain a three-channel (RGB) pseudo-color image for
model training evaluation. The second part (YLCA) is based on the YOLOv7 [22] frame-
work, embedding the coordinate attention (CA [23]) mechanism, constructing the attention
convolution module MP-CA, obtaining the attention features, and fusing the attention
features to construct the YLCA network, thereby improving the detection performance of
the network.

2.1. Window Technique

The window technology in the field of medical images includes window width (WW)
and window level (WL), which are used to select the range of CT values of interest. Because
each tissue structure has a different range of CT values, when displaying a certain tissue
structure, the suitable window width and window level for observing the tissue or lesion
should be selected to obtain the best display effect. MR images are reconstructed analogue
digital grey-scale images and therefore also have the characteristics to obtain the best
display and perform various image post-processing using windowing techniques. However,
unlike CT, the grey scale on MR images does not represent the density of soft tissues and
lesions, but rather their MR signal intensity, reflecting the length of the relaxation time,
and, therefore, the windowing technique for MR imaging does not have a fixed window
width/level, which needs to be adjusted for each image. The DICOM image protocol
specifies that medical images need to be stored as 16 bits (the actual number of bits used
may be different), which indicates that the brightness of the pixel will be expressed in
216 gray levels, and the role of window technology is to take out the grayscale value in
a certain range of pixels in a 216 grayscale image to display according to its gray level
(usually 28), so as to display more image details.

Figure 1 shows the MR image window width and window level diagram. First, we
set a range, and the gray value range of the observed tissue is listed separately, called
the window. The gray value of a certain range is taken from the MR grayscale range and
mapped to the gray image. The tissue whose gray value is higher than the window range
is displayed as white; tissues below this window range appear black, then the size of this
MR grayscale range is called window width WW, and the central value of this grayscale
range is called window level WL.

2.2. YOLOv7

The convolutional neural network (CNN) is a major branch of neural networks and one of
the main algorithms for deep learning in image applications [24,25]. It is a deep feedforward
neural network with three characteristics of local connection, weight sharing, and down sam-
pling, which can effectively reduce the complexity of the network and prevent the occurrence of
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overfitting. The core feature of CNN is based on the convolution kernel, which is composed of
several convolution layers, pooling layers, and fully connected layers. The convolution layer
extracts different features of input image through convolution operation. The pooling layer
reduces the feature dimension of data by partitioning the features. For the image, the main
function of the pooling layer is to compress image features. The fully connected layer connects
the extracted features to generate global features for image classification.
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Figure 1. MR image window width and window level diagram.

The YOLOv7 [22] model was proposed in 2022 and validated on the COCO dataset to
obtain better performance, standing out with faster speed and higher accuracy compared
to the latest object detectors and attracting much attention. The general architecture of
YOLOv7 consists of backbone, neck, and head. The entire network structure of 106 layers,
of which the backbone layer is 51 and the head part 55, and consists mainly of modules
such as CBS, MP, ELAN, and SPPCSPC. The structure of each module is shown in Figure 2.
Compared to the previous YOLO model, YOLOv7 has been architecturally reformed using
E-ELAN [22] and composite model scaling. It outperforms all real-time object detectors in
terms of speed and accuracy, and it improves performance while reducing parameters by
40% and calculations by 50%.
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2.3. Attention Mechanism

The attention mechanism is derived from the study of human vision. Generally
speaking, because humans have a limited capacity to process information, they selectively
focus on the more important part of all information and ignore the rest. The attention
mechanism is similar to the logic that humans use to look at pictures. When we look at a
picture, we do not see the whole picture, but we focus our attention on the focal point of
the picture. The core logic of an attention mechanism is focusing on the focal point instead
of focusing on the whole. The attention mechanism has been widely used to achieve good
performance in a variety of computer vision tasks, such as image classification, image
segmentation, and object detection. The attention mechanism in neural networks is mainly
implemented through the attention score. The attention score is a digital value between
0 and 1, and the sum of all scores under the attention mechanism is 1. Each attention score
represents the attention weight assigned to the current item. Attention mechanisms can
make the neural network ignore unimportant feature vectors and focus on calculating
useful feature vectors. While eliminating the interference of unimportant features on
the fitting results, the operation speed is improved. There are many types of attention
mechanisms, such as channel attention [26], spatial attention [27], self-attention [28], mutual
attention [29], coordinate attention [23], mixed attention, etc.

For mobile networks, the standardized attention mechanism SE (squeeze-and-excitation
attention) effectively constructs the interdependence between channels by simply squeezing each
two-dimensional feature map, which is significantly effective for improving the performance of
the model. However, SE [26] attention only considers the importance of encoding inter-channel
information while ignoring location information, which largely influences the generation of
selective attention maps and is important for focusing on feature regions of interest. In this paper,
experiments are conducted using the embedded coordinate attention CA [23], which splits the
channel SE [26] into two parallel 1D feature encodings, and clusters the features separately in
the two directions. The method embeds localization information in channel attention, enabling
it to capture long-range correlations in one spatial direction while maintaining accurate location
information in another, effectively integrating spatial coordinate information into the generated
attention map. These graphs are applied to the input feature maps to enhance the representation
of objects of interest by supplementing the feature map information, which is essential for
locating object regions in computer vision tasks. The schematic diagram of the CA network
structure is shown in Figure 3.
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CA [23] divides the attention mechanism into two stages to encode channel rela-
tion and long-term dependence with accurate location information, and divides it into
two stages, coordinate information embedding and coordinate attention generation.

(1) Coordinate Information Embedding

Squeezing in the SE module is used for global information embedding. Given the
feature tensor input X = [x1, x2, . . . , xc,] ∈ RH×W×C in the network, the squeezing step for
the cth channel can be formulated as follows.

zc =
1

H ×W

H

∑
i=1

W

∑
j=1

xc(i, j) (1)

where zc is the output associated with the cth channel. H and W are the height and width
of the input data feature map. The input X comes directly from a convolution layer with a
fixed convolution kernel, and the feature tensor set is obtained by convolution processing.

To enable the attention block to spatially capture long-distance interactions with pre-
cise location information, the global pool is decomposed into equations that are converted
into one-to-one feature encoding operations. Given an input X, we encode each channel
using pooling kernels of sizes (H, 1) or (1, W) along horizontal and vertical coordinates,
respectively. Therefore, the output of the cth channel at height h and width w is obtained
respectively, and the formula is as follows:

zh
c (h) =

1
W ∑

0≤i<W
xc(h, i) (2)

zw
c (w) =

1
H ∑

0≤j<H
xc(j, w) (3)

These two transformations combine features in each of two spatial directions, resulting
in a pair of discriminative features with orientation. This is very different from the SE
block of the channel attention method, which generates a single feature vector. These
two transformations also help the network to locate objects of interest more accurately,
which allows the attention module to capture long-term correlation in one space direction
and maintain precise position information in another space.

(2) Coordinate Attention Generation

Through the above transformation, we can get a good global perception and encode
accurate location information. In order to use the resulting representation, the second trans-
formation is proposed. Given the generated aggregated feature maps, they are connected
by Equations (2) and (3) and then transformed using the 1 × 1 convolutional transform
function F1.

f = δ
(

F1

([
zh, zw

]))
(4)

where f ∈ RC/r×(H+W) represents an intermediate feature map encoding spatial informa-
tion in the horizontal and vertical directions, respectively. Here, r is the reduction ratio
used to control the size of the blocks in the SE block. [·, ·] represents cascading operations
in two spatial dimensions, and δ is a non-linear activation function. Then, we split f into
two independent tensors f h ∈ RC/r×H and f w ∈ RC/r×W along the two spatial dimensions
of h and w. Using the other two 1 × 1 convolutions transforms Fh and Fw, and f h and
f w are transformed into tensors with the same number of input X channels, respectively,
as follows:

gh = σ
(

Fh

(
f h
))

gw = σ(Fw( f w))
(5)

Here σ is the Sigmoid function, and, after the calculation of Formula (5), the attention
weight gh and gw of the input feature map in the height direction and in the width direction
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will be obtained. Finally, by multiplying and weighting the original feature map, the final
feature map with attention weight in the width and height directions will be obtained. The
output Y of the coordinate attention block can be written as:

yc(i, j) = xc(i, j)× gh
c (i)× gw

c (j) (6)

2.4. Resampling Based on Multi-Window Settings

In medical imaging, the principle of MR imaging differs from that of CT. Compared
with CT, MR has a better imaging effect on the body’s soft tissue and can provide more
information. However, there is no corresponding window width and window level setting
for MR images of different soft tissues of the body. Therefore, professional radiologists need
to adjust each image to a suitable window for lesion labeling when labeling the lesion area,
and obtain a better contrast image under this optimal window width and window level.
However, the best window position selection for the same body part is usually different
under different doctors, machines, sequences, and angle processing. Due to the diversity
of window width and window level selection, we believe that the same MR image has
different feature information with varying importance in different windows. If we can
fuse the information in multiple windows to obtain richer image features, it is beneficial
for the deep learning algorithm to analyze image features. From the above analysis, on
the one hand, because of the special characteristics of MR images, NPC in MR images
cannot identify a relatively fixed optimal window area as CT images do; on the other hand,
selecting information within any single window may lead to information loss.

In this paper, we need to perform lesion detection on NPC MR images, and we need to
convert the DICOM images to JPG format for neural network training. Traditional medical
image processing methods only acquire the image information under a certain window,
which leads to a large amount of information loss in the NPC images, so we fuse the image
information under multiple windows to obtain a richly layered image for the detector
training. In order to improve the data utilization efficiency of the detector for the original
image, transmit more image information to the deep learning model, and enable it to obtain
richer image features, we adopt the image resampling method based on multi-window
setting (our previous MWSR research [30]). The DICOM image metadata is used to obtain
information about the preset window (default window width and position), and then
the other two windows to the left and right of the preset window are used to obtain a
three-channel pseudo-color image, resulting in a more informative and better contrasted
nasopharyngeal cancer image.

The image resampling based on multi-window setting is as follows: obtain the preset best
window width/level information (ww0, wl0) from the MR image metadata of nasopharyngeal
cancer in DICOM format. Based on the optimal window (ww0, wl0), we set two new window
width/level at a certain proportion in the gray level range covered nearby, namely:

wwi = µ× ww0 wli = µ× wl0, (7)

where wwi and wli denote the new window width and window level, respectively, and µ is
the weighting factor of the window width and window level.

By observing the image contrast ratio, it was found that the image contrast effect was
best at µ = 0.5, 1.5, thus two new windows (ww1, wl1) and (ww2, wl2) were obtained, and
the grayscale images under the three windows were combined into RGB images as R, G,
and B channels, respectively, to enrich the image information.

As shown in Figure 4, from the range of pixels contained in the MR image (a), the
images (b) under the window width/level acquired at µ = 0.5, 1, 1.5 are taken out and
displayed according to their grey scale, respectively, as R, G, and B channels to synthesize
RGB pseudo-color images (c). Specifically, we convert the NPC MR image (Dicom format)
in the data set, and convert the Dicom image into a grayscale image I0, I1, I2 (JPG format) by
the above three window width window levels (ww0, wl0), (ww1, wl1), and (ww2, wl2), and
then the grayscale images under the three window width window levels are synthesized
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into RGB pseudo-color images. The grayscale images under the three window width
window levels correspond to the three channels of the RGB image. I1 corresponds to B
channel, I0 corresponds to G channel, and I2 corresponds to R channel. It takes about 4 h to
process the MR dataset used in this experimental hardware environment, and it is easy and
fast to process by computer automation.
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Figure 4. Schematic diagram of MR image resampling based on multi window setting. (a) is the
pixel range contained in the MR image. (b) MR NPC images obtained under three groups of window
width and window level. (c) is a synthesized RGB pseudo-color image.

2.5. YLCA Network

Considering that the attention mechanism can make the neural network focus on
calculating the most important feature vectors, and by embedding position information
into the channel attention CA [23], it can not only capture cross-channel information, but
also capture direction-aware and position-sensitive information and more accurately locate
and identify objects of interest. In the MP-2 module, we replace the 1 × 1 convolution’s
CBS module with a CA to build the MP-CA module, as shown in Figure 5.
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In Figure 5, the CA module uses coordinate attention to process the input features.
In YOLOv7, the MP-2 module uses concat to fuse the features extracted from the input
data by one pooling, 1 × 1 convolution and one 1 × 1 convolution, and 3 × 1 convolution,
respectively. The MP-CA module constructed in this paper replaces the 1 × 1 convolution
in the MP-2 block with the CA module, and the input and output remain unchanged. The
other structures remain unchanged.

We embedded the fused CA block and MP-CA modules in backbone and head, re-
spectively, in the YOLOv7-based framework, aggregated the primary features extracted
from each stage into two independent direction-aware feature maps, encoded them into
two attention maps respectively to retain location information, and then applied the two at-
tention maps to the input feature maps to enhance the representation of nasopharyngeal
cancer lesion areas to construct a novel network YLCA. A schematic diagram of the YLCA
network structure is shown in Figure 6, and this model is used to detect lesion areas of
nasopharyngeal cancer.
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Figure 6. YLCA network structure diagram.

As shown in Figure 6, the YLCA network structure has 107 layers, composed of
backbone and head. The first 52 layers are backbone and the last 55 layers are head. In
backbone, we add the 51st layer attention mechanism module CA after ELAN, denoted as
[−1,1, CoordAtt, [1024]]], where −1 indicates that the upper layer output is the local layer
input and the input feature is 1024. In head, we replace the original MP-2 module with the
MP-CA module for attention feature fusion at the 81st layer, which is expressed as [−3,1,
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CoordAtt, [128]], where −3 indicates that the output of the upper layer 3 is the input of this
layer, and the input feature is 128. The schematic diagram of the MA-CA module is also
shown in Figure 6, which is used to construct the target object network YLCA.

3. Experimental Settings
3.1. Dataset Description

The experimental data were obtained from the Sun Yat-sen University Cancer Centre.
MR images of 800 patients with nasopharyngeal carcinoma were acquired from January
2010 to December 2011. These MR images were T2-weighted (T2WI) axial cross-sectional im-
ages with the following imaging parameters: fast spin-echo sequence (FSE), TR = 4000 ms,
TE = 99 ms, mean slice thickness of 5 mm, layer spacing of 6 mm, and intraplanar pixel
resolution of 0.74 mm × 0.74 mm.

Of the 800 cases, a total of 26,000 MR images were available. Since the nasopharyngeal
lesion area accounts for a small proportion of the MR imaging of the head and the clinical
presentation is complex and varied, not every image has a lesion area, so only some of
the images have a labeled cancerous area. We selected 4694 MR images with lesion areas
and corresponding annotated images for the experiment, including 3540 images of male
patients and 1154 images of female patients (1596 12-bit DICOM images and 3098 16-bit
DICOM images). An expert consensus was formed by four experienced imaging physicians
to give the appropriate tumor area annotation. Data enhancement processes, including
rotation and horizontal flip, were used. We use the evaluation metrics Precision, Recall, AP
(Average Precision), mAP (mean Average Precision), F1-Score, and Confidence to assess
the performance of NPC detection.

3.2. Data Conversion

The medical image data used in this experiment is in DICOM format, and the lesion
area corresponding to each MR image in the original data is annotated as a PNG format
image. In this paper, we use a deep convolutional network for NPC lesion detection,
and the annotated area is a rectangular bounding box, so we convert the NPC lesion
information outlined by the doctor into rectangular box information and store it in YOLO
data annotation format to facilitate the training of the detector. A schematic diagram of the
nasopharyngeal cancer lesion labeling process is shown in Figure 7.
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Figure 7. Nasopharyngeal carcinoma lesion labeling processing diagram. (a) The original NPC MR
image. (b) NPC lesion area Labeling. (c) The NPC lesion detection Box. (d) The real NPC lesion area.

In Figure 7, the image (a) is the original MR medical image. The specific annotation
process consists of pixel-level annotation of the nasopharyngeal cancer lesion area (b) by a
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pixel traversal algorithm to frame the white lesion area (c) and output the corresponding
coordinates and convert the coordinate information into YOLO data format (e), indicating
the categories Cancer, X-center, Y-center, w, and h, respectively, then saved as a txt file. The
red dashed arrows in the figure point to the effect of converting the pixel-level annotation
of the lesion area (white) to (d) a bounding box area covering the real lesion area.

3.3. Other Setting

Data set division: A total of 4694 images were used for detector training in the
experiment after data processing. Considering that the detection of NPC lesion area is
essentially a single category object detection, and the test set is not easy to be too many,
we divided the NPC MR images of each patient into training validation sets and test sets
according to 4:1 in 800 patients to ensure the balance of data distribution. Therefore, we
used 3755 images as the training validation set, of which 3004 images were used as the
training set, 751 images as the validation set, and 939 images as the test set.

Object detector setup: The constructed YLCA network was used as the object detector
for this experiment. During the experiment, the input image size was 640 × 640 for both
training and testing, the batch size was 32, the initial learning rate was le-2, the loss was
calculated using the Stochastic Gradient Descent (SGD) optimizer, the number of iterations
of the whole network was 300 epochs. It takes about 2 min to train one iteration (epoch),
and each iteration is saved as a model. For the constructed YLCA detector, the performance
is optimal around the 180th epoch.

Experimental environment: The algorithm in this paper is built using the deep learning
framework Pytorch and the programming language Python. The training and testing of
the model is based on the Ubuntu 18.04.6 operating system, with 128G RAM and a high-
performance graphics card NVIDIA RTX A6000 GPU (48G).

3.4. Evaluating Metrics

In order to ensure the rationality of the experimental results and the fairness of the
comparison test, the algorithm is evaluated by referring to the evaluation indexes widely
used in the existing object detection methods, including Precision, Recall, F1, PR curve,
and mAP.

(1) Precision rate: the number of samples correctly predicted as true accounts for the
proportion of all samples predicted as true, and the accuracy represents the accuracy
of the prediction in the positive sample results.

Precision =
TP

TP + FP
(8)

(2) Recall rate: the number of samples correctly predicted as true accounts for the pro-
portion of all samples that are actually true. In the samples that are actually true, the
proportion of predicted positive samples to the total actual positive samples.

Recall =
TP

TP + FN
(9)

(3) F1-score: F1 is the harmonic mean of precision and recall. It is used to balance the
influence of precision and recall, and to evaluate a classifier more comprehensively.
The larger F1 indicates the higher quality of the model.

F1 =
2 ∗ precision ∗ recall

precision + recall
=

2TP
2TP + FP + FN

(10)

(4) PR curve: according to the value of accuracy and recall rate, the PR curve is drawn to
evaluate the model more comprehensively. The larger the area under the PR curve,
the higher the average accuracy of the model.
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(5) mAP: in this experiment, mAP was used as the main evaluation index. mAP@0.5
(referred: AP50) refers to the value of AP under the condition that IOU (predicted
overlap between borders and real borders) is greater than 0.5. mAP@50:5:95 (referred:
AP50:95) refers to the value of IOU from 0.5 to 0.95, the step size is 0.05, and then the
mean value of AP is taken under these IOUs.

4. Results and Discussions
4.1. Evaluation of Multi-Window Resampling

To verify the effectiveness of the resampling method based on the multi-window
setting (i.e., multi-window width window setting), we performed object detection experi-
ments on a single-window nasopharyngeal cancer image set (gray) and a multi-window
resampled nasopharyngeal cancer image set (MWSR [30]), respectively. The results are
shown in Table 1, where Ptest is the Precision of the test set, and Rtest is the Recall of the test
set. We use the model trained under the YOLOv7 detector using the gray image set as the
baseline model.

Table 1. Comparison of model performance on single window and multi window images.

Sample Selection Model Ptest Rtest APval
50 APval

50:95 APtest
50 APtest

50:95

Gray YOLOv7 0.771 0.72 77.0% 36.0% 77.8% 36.7%
MWSR YOLOv7 0.812 0.714 78.3% 36.3% 78.9% 36.8%
Gray YLCA (Ours) 0.802 0.719 78.0% 37.0% 78.3% 36.5%

MWSR YLCA (Ours) 0.839 0.711 79.0% 36.4% 80.1% 37.6%

From Table 1, it can be seen that when using the YOLOv7 object detector for ex-
periments, compared to the single-window NPC image set (gray), the multi-window
setting-based resampled RGB image (MWSR) object detection performance is better, and
the evaluation metrics of APval

50 , APval
50:95, APtest

50 , and APtest
50:95 are improved by 1.3%, 0.3%,

1.1%, and 0.1%, respectively. In experiments based on our YLCA object detector, the
MWSR improved the evaluation metrics of APval

50 , APtest
50 , and APtest

50:95 by 1.0%, 1.8%, and
1.1% respectively. In this experiment, the NPC MR image set with multi-window setting
is tested under different models. It is verified that the resampling processing based on
multi-window setting for NPC MR image can improve the data utilization rate of the
original image, and the detection performance is improved under different models, which
is suitable for improving the lesion detection performance of NPC tumor.

4.2. Ablation Study

The algorithm in this paper mainly includes two parts: image resampling and con-
structing YLCA network. The ablation study can be divided into five parts: MWSR, gray,
YOLOv7, CA and MP-CA. They are respectively using training data MWSR or gray, using
object detector original YOLOv7 model, and adding fusion attention mechanism network
CA and MP-CA modules, respectively.

As shown in Table 2, with the addition of each module, AP50 and AP50:95 gradually
increase, indicating that each module can improve the detection ability of the network.
Compared with (1) and (2) in Table 2, it can be seen that when using the YOLOv7 object
detector for experiments, the RGB map (MWSR) object detection performance based on
multi-window image resampling is better. Compared with the single-window NPC image
set (gray), the AP is improved by 1.1% and 0.1%, respectively. Compared with (2) and (3)
in Table 2, the AP is improved by 0.6% and 0.4%, respectively, after adding the attention
feature module (CA) compared with the simple YOLOv7 network. Compared with (2)
and (4) in Table 2, the AP is improved by 0.3% after adding the attention feature fusion
module (MP-CA). Compared with (2) and (6), the attention mechanism and attention
feature fusion module are combined and applied to the YOLOv7 network, and the AP is
significantly improved, reaching 1.2% and 0.8%, respectively.
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Table 2. Quantitative test results for each module of the MWSR-YLCA algorithm.

Number MWSR Gray YOLOv7 CA MP-CA APtest
50 APtest

50:95

(1)
√ √

77.8% 36.7%
(2)

√ √
78.9% 36.8%

(3)
√ √ √

79.5% 37.2%
(4)

√ √ √
79.2% 37.1%

(5)
√ √ √ √

80.1% 37.6%

4.3. Algorithm Comparison and Analysis

In order to verify the effectiveness of the proposed algorithm, it is compared with
some mainstream object detection algorithms. Due to the particularity of NPC data sets,
the data required by different models are different. Here, it is mainly compared with the
newer YOLO series detection models, including: YOLOv5 [31], YOLOR [32], YOLOX [33],
YOLOv7 [22], and RetinaNet [21]. In order to compare different experiments fairly, we
used multi-window resampling NPC image set for training, and used the optimal model
provided by the original paper for testing.

We compare the proposed method with the state-of-the-art object detectors. From
Table 3, we can see that YLCA performs best in the NPC MR dataset compared with
the five newer object detection algorithms (using their respective optimal models). Our
attention fusion network enhances the feature representation of NPC lesion area and
improves the object detection performance. Our network achieves the highest detection
performance on F1, APval

50 , APtest
50 , and APtest

50:95, and the highest APval
50:95 appears on YOLOv7-

tiny. Compared with the current excellent YOLOv7, the AP of our method is 0.3%, 0.4%,
1.2%, and 0.8% higher, respectively. In addition, the APtest

50 and APtest
50:95 of our model in

the test set are 0.9% and 0.8% higher than the best models YOLOv7-tiny and YOLOv7,
respectively. The model training time of YLCA is about 8.2 h, and the FPS value is 77.52.
The training and reasoning speed is close to that of YOLOv7, but the AP is increased by
1.2%, which suggests that our method improves performance while maintaining training
rate. As can be seen from Table 3, our YLCA achieves the highest indicator F1 of 0.77 and
a higher indicator Ptest of 0.839, which has a substantial improvement compared to other
methods and has a better PR curve. This shows that the prediction image obtained in the
large-scale dataset is closer to the truth value and has higher average accuracy. The P-R
and F1 curves of the YLCA model are shown in Figure 8.
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Table 3. Comparison of lesion detection results based on each model of NPC MR dataset.

Model Size Ptest Rtest F1 APval
50 APval

50:95 APtest
50 APtest

50:95 Year

YOLOv5-S [31] 640 0.809 0.717 0.76 76.0% 34.0% 77.7% 35.0% 2021
YOLOv5-X [31] 640 0.767 0.723 0.74 76.0% 34.2% 77.0% 34.5% 2021
YOLOv5-L [31] 640 0.781 0.681 0.73 76.1% 34.1% 74.0% 33.1% 2021
YOLOv5-M [31] 640 0.757 0.754 0.76 75.6% 35.7% 77.6% 35.8% 2021

YOLOR-CSP [32] 640 0.786 0.708 0.75 76.0% 35.7% 77.0% 35.5% 2021
YOLOR-CSP-X [32] 640 0.8 0.715 0.75 77.4% 35.3% 78.0% 36.8% 2021

YOLOR-P6 [32] 640 0.761 0.668 0.71 69.3% 31.0% 71.5% 30.8% 2021
YOLOR-D6 [32] 640 0.771 0.672 0.72 71.4% 31.7% 72.7% 33.0% 2021

YOLOX-S [33] 640 0.855 0.657 0.74 76.9% 35.7% 78.2% 36.4% 2021
YOLOX-X [33] 640 0.817 0.705 0.76 75.1% 33.5% 75.5% 33.2% 2021
YOLOX-L [33] 640 0.838 0.683 0.75 76.7% 34.3% 76.4% 34.1% 2021
YOLOX-M [33] 640 0.842 0.666 0.74 76.5% 34.9% 76.3% 34.7% 2021

YOLOv7 [22] 640 0.812 0.714 0.76 78.3% 36.0% 78.9% 36.8% 2022
YOLOv7-X [22] 640 0.812 0.707 0.76 77.0% 35.9% 78.4% 36.2% 2022

YOLOv7-tiny [22] 640 0.804 0.737 0.77 77.8% 37.2% 79.2% 36.5% 2022
YOLOv7-W6 [22] 640 0.814 0.678 0.74 76.9% 35.3% 77.3% 35.5% 2022
YOLOv7-E6 [22] 640 0.807 0.686 0.74 75.6% 35.0% 76.9% 35.8% 2022
YOLOv7-D6 [22] 640 0.785 0.706 0.74 76.4% 34.8% 77.8% 36.2% 2022
YOLOv7-E6E [22] 640 0.803 0.704 0.75 75.8% 34.8% 77.1% 35.8% 2022

RetinaNet [21] 640 - 0.913 - - - 72.9% - 2018

YLCA (Ours) 640 0.839 0.711 0.77 79.0% 36.4% 80.1% 37.6% 2022

In terms of statistical tests, we performed the Shapiro–Wilk test on all the test data, and
the test results showed that our data were normal. Therefore, we use t-test to determine
whether there is a significant difference between the mean values of the two variables, to
let us know whether they belong to the same distribution. We conducted five experiments
under MWSR-CAYL and baseline detectors, and performed t-tests under APtest

50 and APtest
50:95,

respectively. The null hypothesis is that the mean values of the two groups of data are
the same. We set a high standard of Alpha = 0.01 for testing, and the p-values under the
two indicators are 0.0021 and 0.0024, respectively. The experimental results show that the
p-value is less than the Alpha value under both detection indicators. We will reject the null
hypothesis and show that our data is statistically significant.

To ensure that the experimental results are reasonable, the algorithm is evaluated
with reference to the confusion matrix that is widely used in existing object detection
methods. The confusion matrix for model evaluation is the most basic, intuitive, and
computationally simple method to measure the accuracy of the sub-types of models. Where
the horizontal coordinates represent the true labels and the vertical coordinates represent
the predicted results of the model, the confusion matrix of the YLCA model on MR images
of nasopharyngeal carcinoma is shown in Figure 9.

Object detection determines whether the test results are correct. The most commonly
used way is to calculate the detection box and the real box IOU, and then, according to the
IOU, determine whether the two boxes match. As shown in Figure 9, the full predictions of
the test set of NPC MR are evaluated, and the four squares are True Positive (TP), False
Positive (FP), False Negative (FN), True Negative (TN). The confusion matrix of object
detection differs from classification in that it focuses primarily on the detection result of
the detection box rather than the entire image. Among them, TP indicates that the model’s
detection result of NPC MR data is cancer, and its true label is also the ratio of cancer. The
ratio of correctly detecting cancer is 0.83. FP indicates that the detection box has positioning
or classification errors, the true label is background, and the ratio of model detection
results to cancer is 1. FN indicates that the model is missed, and the ratio of the model not
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detecting true label cancer is 0.17. Since the detector does not detect a background area, TN
is represented as 0.
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Figure 10 shows the performance of YLCA network model in NPC MR images. The
6 sample images (Figure 10a) were selected randomly from the NPC MR test set. It is
an NPC MR image of different patients at different angles. In Figure 10, (a) was a NPC
image with labeled cancer area, which represented the real lesion area and category, and
(b) was the prediction result of the corresponding image predicted by the detector, which
represented the predicted lesion area, category, and confidence. From the results, by
comparing Figure 10a,b our detector was relatively accurate in detecting the lesion area.
The detector’s prediction of NPC images is close to the true lesion area and has a high
classification confidence. The algorithm in this paper can use image features more efficiently
to detect smaller NPC lesion area. The overall performance shows that the prediction map
of the object detection algorithm embedded in the attention mechanism fusion network
can better approach the truth map.

4.4. Discussions

In this experiment, the performance of the NPC detection process is steadily improved
by multi-window resampling of the NPC data set. Firstly, our resampling method based on
multi-window setting improves the detection mAP (APtest

50 ) of YOLOv7 and YLCA network
by 1.1% and 1.8%, respectively, on the test set, which indicates that our method reduces
the information loss of NPC MR images and improves the data utilization rate, which is
meaningful for medical tumor data that is difficult to obtain in large quantities. Then, we
perform object detection under NPC MR images, introduce the CA attention mechanism
to construct a YLCA network for NPC lesion detection, and in the case of the same NPC
data processed by MWSR for comparative experiments, the mAP of our YLCA network is
1.2% higher than that of YOLOv7, which indicates that our method can make the detection
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attention of the model focus on NPC lesions and surrounding tissues. In general, our
MWSR-YLCA method performs well on the test set, and the performance is 2.3% higher
than the baseline model (APtest

50 ) in the first row and the fourth row of Table 1. This is
an improvement for computer-aided detection algorithm of NPC, which shows that our
algorithm is very effective. Compared with the latest YOLO detector, our algorithm obtains
the highest mAP of 80.1%. Due to the different performance of different models in the data
set, our algorithm is more accurate in the latest NPC detection method.
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images of the labeled cancer area. (b) The prediction result of the corresponding image predicted for
the detector.

In addition, from the practical application, we can directly use the annotated MR data
of clinical imaging experts for NPC detection, and the data processing method is simple
and efficient, and the time and calculation cost are more convenient and faster than the
existing NPC detection methods that are mostly complex modalities. On the dataset, we
use NPC images of 800 patients (4694 annotated slices), which is also abundant in the
existing NPC research and has certain generalization ability. In summary, our algorithm
has superior performance and can achieve high-performance NPC detection.

5. Conclusions

In this paper, we propose a computer-aided detection method (MWSR-YLCA) for
NPC lesion detection in MR images. Specifically, we design two modules, the multi-
window settings resampling (MWSR) module and an improved YOLOv7 with embedded a
coordinate attention mechanism (YLCA) module, to detect NPC lesions more accurately.
Firstly, the NPC MR image is resampled based on the MWSR module. The comparison
experiments show that this method can fuse the feature information of medical MR image
with a deep learning network more effectively and enhance the information utilization.
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On this basis, a detection network YLCA with embedded fusion attention mechanism is
constructed to detect NPC lesions. Qualitative and quantitative comparative analysis and
ablation experiments are carried out with other algorithms. The results show that the CA
module can effectively extract lesion features, and YLCA network has better performance
for lesion detection. In summary, the MWSR-YLCA is capable of performing highly accurate
detection of NPC lesions and has good performance and important applications.
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using deep learning-based Yolo object detection algorithm. Expert Syst. Appl. 2022, 201, 117148. [CrossRef]

18. Sermanet, P.; Eigen, D.; Zhang, X.; Mathieu, M.; Fergus, R.; LeCun, Y. Overfeat: Integrated recognition, localization and detection
using convolutional networks. arXiv 2013, arXiv:1312.6229.

19. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

20. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of
the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Cham, Switzerland,
2016; pp. 21–37.

21. Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. IEEE Trans. Pattern Anal. Mach. Intell.
2018, 42, 318–327. [CrossRef]

22. Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object
detectors. arXiv 2022, arXiv:2207.02696.

23. Hou, Q.; Zhou, D.; Feng, J. Coordinate attention for efficient mobile network design. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 13713–13722.

24. Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J. Recent advances in convolutional
neural networks. Pattern Recognit. 2018, 77, 354–377. [CrossRef]

25. Janiesch, C.; Zschech, P.; Heinrich, K. Machine learning and deep learning. Electron. Mark. 2021, 31, 685–695. [CrossRef]
26. Jie, H.; Li, S.; Gang, S.; Albanie, S. Squeeze-and-Excitation Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 42, 2011–2023.
27. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
28. Wang, X.; Girshick, R.; Gupta, A.; He, K. Non-local neural networks. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7794–7803.
29. Liu, N.; Zhang, N.; Han, J. Learning Selective Self-Mutual Attention for RGB-D Saliency Detection. In Proceedings of the 2020

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020.
30. Han, G.; Liu, X.; Zhang, H.; Zheng, G.; Soomro, N.Q.; Wang, M.; Liu, W. Hybrid resampling and multi-feature fusion for automatic

recognition of cavity imaging sign in lung CT. Future Gener. Comput. Syst. 2019, 99, 558–570. [CrossRef]
31. Jocher, G.; Stoken, A.; Borovec, J.; Chaurasia, A.; Changyu, L.; Laughing, A.; Hogan, A.; Hajek, J.; Diaconu, L.; Kwon, Y.; et al.

ultralytics/yolov5: v5. 0-YOLOv5-P6 1280 models AWS Supervise. ly and YouTube integrations. Zenodo 2021. [CrossRef]
32. Wang, C.Y.; Yeh, I.H.; Liao, H.Y.M. You only learn one representation: Unified network for multiple tasks. arXiv 2021,

arXiv:2105.04206.
33. Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. Yolox: Exceeding yolo series in 2021. arXiv 2021, arXiv:2107.08430.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/s00521-019-04096-x
http://doi.org/10.1002/jmri.27129
http://www.ncbi.nlm.nih.gov/pubmed/32167652
http://doi.org/10.1007/s11042-021-10627-3
http://doi.org/10.1016/j.eswa.2022.117148
http://doi.org/10.1109/TPAMI.2018.2858826
http://doi.org/10.1016/j.patcog.2017.10.013
http://doi.org/10.1007/s12525-021-00475-2
http://doi.org/10.1016/j.future.2019.05.009
http://doi.org/10.5281/zenodo.4679653

	Introduction 
	Method 
	Window Technique 
	YOLOv7 
	Attention Mechanism 
	Resampling Based on Multi-Window Settings 
	YLCA Network 

	Experimental Settings 
	Dataset Description 
	Data Conversion 
	Other Setting 
	Evaluating Metrics 

	Results and Discussions 
	Evaluation of Multi-Window Resampling 
	Ablation Study 
	Algorithm Comparison and Analysis 
	Discussions 

	Conclusions 
	References

