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Abstract: Skin cancer is one of the widespread diseases among existing cancer types. More impor-
tantly, the detection of lesions in early diagnosis has tremendously attracted researchers’ attention.
Thus, artificial intelligence (AI)-based techniques have supported the early diagnosis of skin cancer
by investigating deep-learning-based convolutional neural networks (CNN). However, the current
methods remain challenging in detecting melanoma in dermoscopic images. Therefore, in this paper,
we propose an ensemble model that uses the vision of both EfficientNetV2S and Swin-Transformer
models to detect the early focal zone of skin cancer. Hence, we considerthat the former architecture
leads to greater accuracy, while the latter model has the advantage of recognizing dark parts in
an image. We have modified the fifth block of the EfficientNetV2S model and have included the
Swin-Transformer model. Our experiments demonstrate that the constructed ensemble model has
attained a higher level of accuracy over the individual models and has also decreased the losses as
compared to traditional strategies. The proposed model achieved an accuracy score of 99.10%, a
sensitivity of 99.27%, and a specificity score of 99.80%.

Keywords: skin cancer; dermoscopy; Swin-Transformer; EfficientNetV2S; ensemble model; deep
ensemble learning

1. Introduction

As per the World Health Organization (WHO), skin cancer ranks among the most
prevalent forms of cancer [1]. It represents 33% of all identified types of cancer and it is
among the most prominent cancer types during the present decade [2]. The abnormal
growth of skin cells is considered the main cause of skin cancer and it is affected by the
decrease in the ozone layer, which protects people against ultraviolet (UV) radiation [3].
Squamous cell carcinoma (SCC), actinic keratosis (solar keratosis), melanoma (Mel), and
basal cell carcinoma (BCC) are the major types of skin cancer [4]. Seventy-five percent of
fatalities related to skin cancer are attributed to melanoma, which constitutes the most
dangerous form of the disease [5]. People with fair skin, a history of sunburns, those who
overexpose themselves to UV light, and those who use tanning beds are more likely to be
affected by skin cancer [6].

The importance of early and precise identification in the treatment of skin cancer
cannot be overstated. If melanoma is not detected early, it grows and spreads throughout
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the outer layer of the skin, eventually penetrating the deeper layers and connecting with
the blood and lymph vessels. Therefore, it is crucial to detect it early to provide appropriate
medication for the patient. The range of the anticipated five years survival rate for patients
with diagnoses is 15% if caught late to over 97% if caught early [7]. Early detection is
therefore essential for skin cancer treatment [8]. Oncologists frequently utilize the biopsy
method to diagnose skin cancer. To verify if a suspicious skin lesion is malignant or not, a
sample must be taken. However, considerable effort and time are required for the diagnosis.

It is worth mentioning that computer-assisted identification of skin cancer symptoms
is more convenient, inexpensive, and faster. To study the symptoms of skin cancer and
identify whether they are caused by melanoma or not, numerous noninvasive methods
are available such as dataset access, preprocessing of datasets, application of segmentation
after data preprocessing, necessary feature extraction, and classification after the diagnosis
process. Many machine-learning techniques exist for the detection of various kinds of
cancer. In particular, CNNs are frequently employed by researchers to identify skin cancer
and for classification of skin lesions [9].

CNN models have significantly outperformed highly qualified healthcare practition-
ers in the categorization of skin malignancies. Early skin cancer classification derives
characteristics from skin cancer images using manual feature extraction methods such as
shape, texture, geometry, and other factors [10]. Currently, with the emergence of deep
artificial intelligence (DAI), the technology has advanced significantly in learning the study
of imaging in medicine. In the area of identifying medical images, the categorization
of skin cancer successfully uses CNN, which is widely used and has high accuracy [11].
With the advancements in the field of technology, researchers in the field of AI have de-
signed some innovative techniques for the detection of skin cancer with greater accuracy.
Among the latest models, the Shifted Windows (Swin) deep-learning-based model [12] is
the improved form of the Vision Transformer (ViT) [13] model, which has shown efficient
performance with higher accuracy; that is why this model, which generated improved
results, was selected.

Motivated by the synergy of computer vision and natural language processing (NLP),
it is advantageous to use both disciplines since it makes it easier to model visual and
textual signals together and allows for deeper modeling knowledge sharing. The Swin-
Transformer model has impressive results across a variety of vision issues that deepen the
mindset in the community and support integrating the modeling of linguistic and visual
signals. In the presented work, we developed the deep ensemble learning model that uses
both EfficientNetV2 and Swin-transformer models for the classification of the multi-class
skin diseases dataset. We have modified the fifth block of EfficientNetV2 and integrated the
Swin-Transformer model. Then, we merged the outputs of the two modified models. The
results of the proposed strategy have been validated through experiments on a well-known
dataset, namely the HAM-10000 dataset, in terms of improved accuracy score, sensitivity,
and specificity score. In summary, we have performed the following contributions:

• We have designed a novel deep ensemble learning approach to classify multi-skin
disease datasets.

• To improve the efficiency, we combined both the EfficientNetV2S and Swin-
Transformer models.

• To improve the image disease area, we applied multiple data preprocessing techniques.
• We applied a data augmentation technique to balance the skin images which speeds

up the training process of the proposed model.
• We validated the results of our model on a famous dataset, namely HAM-10000.
• The experimentations show increased performance in terms of accuracy score, sensi-

tivity, F1-score, and specificity score.

The subsequent sections of this paper are arranged as follows. In Section 2 (Related
Work), an overview of diverse models and outcomes pertaining to the diagnosis and
classification of skin cancer is presented. Section 3 details the research methodology
employed in this study, along with a thorough discussion of the approach. Subsequently,
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Section 4 presents an evaluation of the outcomes and a comprehensive discussion thereof.
Finally, in Section 5, a succinct conclusion is provided along with a brief outline of the
future research prospects.

2. Related Work

In this section, we discuss the existing work in the field of skin cancer detection to
obtain a deeper understanding of deep learning models and their working with findings.

With a small amount of training data, Yuet al. [14] built a highly deep CNN and a
variety of learning frameworks. Esteva et al. [15] employed a pre-trained CNN approach
to develop and acquire a dermatologist-level diagnosis from more than 120,000 images.
Haenssle et al. [16] presented CNN models that have proven superior to or more reliable
than dermatologists. Deep learning is used to create further techniques, such as the
ensemble model [17], which aggregates the features of numerous models, to identify
skin cancer.

Esteva et al. [18] conducted research on the application of a pre-trained Google
Inception-V3CNN model to improve the categorization of skin cancer. The study em-
ployed a dataset of 129,450 clinical skin cancer images, out of which 3374 were dermoscopic
images. The results reported an accuracy of 72.1 ± 0.9 in skin cancer categorization using
the aforementioned model, which was evaluated on the ISCI 2016 challenge dataset [19].A
CNN with over 50 layers was built in 2016 for the categorization of malignant Mel skin
cancer. In competition, the challenge’s highest categorization accuracy was 85.5 percent.
In [15], the researchers applied a deep CNN for the classification of clinical images related to
12 types of skin abnormalities. Their results showed an accuracy of 96%. This research did
not focus on a detailed review of the classifier. The authors presented a detailed systematic
review of the deep learning (DL) classifiers in [14].

In another study [20], the researchers suggested a deep convolutional neural net-
work (DCNN)-based categorization of skin lesions and an optimized color feature (OCF)
for lesion segmentation. A hybrid strategy is used to get rid of the artifacts and boost
lesion contrast. Then, a color segmentation approach called OCFs was introduced. An
already-existing saliency strategy that is combined with a brand-new pixel-based method
dramatically improved the OCF approach. The proposed models achieved 92.1%, 96.5%,
and 85.1% on each of the three datasets, which demonstrates the provided method’s ex-
cellent performance. In [21], a ResNet model that was previously trained on non-medical
datasets was fine-tuned using a small quantity of a combined dataset from three distinct
sites. The results demonstrated a 20-point improvement in performance on melanoma
(Mela), malignant (skin cancer), and benign mole detection using the previous knowledge
learned from photographs of mundane objects from the Image-Net collection. According
to the results, skin moles can be classified using features from non-medical data, and the
distribution of the data has an impact on how well the model performs.

In [22], the researchers proposed a machine-learning approach for diagnosing der-
matological illnesses using images of lesions as opposed to the traditional method, which
relies on medical professionals. The proposed model was created in three stages, the first
of which involved committing to data collection and augmentation, the second of which
involved model development, and the third of which concerned prediction. In this work,
they used image processing technologies with a variety of AI algorithms, such as the ANN,
to create a better structure and achieved 89% accuracy.

In their study, the authors of [23] proposed a novel technique for the classification of
skin lesions that incorporates the use of deep learning features fusion and machine learning
features. The proposed approach consists of a five-step methodology that involves the
following: contrast amplification, image acquisition, DL feature extraction, feature selection
utilizing a hybrid method that combines WO, and EMI, and the integration of selected
features using a modified canonical correlation-based technique, which is subsequently
followed by extreme-learning-machine-based classification. The feature selection process
has been shown to enhance the precision and computation speed of the system. The
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experimental evaluation of the proposed method was performed using HAM-10000 and
ISIC-2018, two publicly accessible datasets, achieving an accuracy of 93.40% and 94.36%,
respectively, on both datasets.

In the research study of [24], a hybrid technique was proposed to integrate the bi-
nary images produced by the intended 16-layered convolutional neural network (CNN),
resulting in enhanced contrast in high-dimensional data and network model Saliency
segmentation using the high-dimensional cosine transform (HDCT) to make use of a max-
imum amount of information recovered from the binary picture. The maximal mutual
information approach was presented which returned the RGB lesion image with segments.
A pre-trained DenseNet201 model was used in the classification module, which was re-
trained via using transfer on segmented lesion images. Another study [25] classified the
Human Again Machine (HAM-10000) dataset into seven skin cancer categories. The re-
searchers developed a two-tier architecture model, and in the first phase they applied
different data augmentation approaches to enlarge the dataset in the second tier; the re-
searcher applied Medical Vision Transformer for the data analysis and gained better results
from the previously carried out research. However, the proposed model differs from the
existing methods.

In most of the proposed methods, the researchers applied a single CNN model for the
detection of skin cancer. We designed a hybrid approach for skin cancer detection. Some
researchers utilized only color normalization to enhance the dataset’s quality, while others
relied on image segmentation strategies to obtain higher accuracy. However, we applied a
comprehensive image processing strategy to enhance the quality of the dataset. The main
objective of this study is to design a deep ensemble learning model for the diagnosis of skin
cancer with groundbreaking results. We applied EfficientNetV2S and Swin-Transformer
models to build a deep ensemble model for skin cancer diagnosis which benefits from the
diversity of the individual models while still maintaining interpretability. This approach
affirmed the novelty of this research work. Previous research work has mainly focused on
diagnosing two types of skin cancer, i.e., melanoma and non-melanoma, but we classified
seven categories of skin cancer in this proposed work.

3. Methods and Materials

This section provides the overall procedure of our model and the main building block
of our paper.

Figure 1 represents the complete system architecture of the proposed methodology of
the research work.
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Figure 1. System architecture of the proposed methodology.

3.1. Dataset Description

In this manuscript, we employed the HAM-10000 image dataset, which was created
by the International Skin Image Collaboration (ISIC) in 2018 [26] and is publicly accessible.
The HAM-10000 dataset comprises seven types of dermoscopic images of skin cancer,
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which were sourced from diverse populations and acquired by various modalities. The
selected dataset includes multiple images of a similar lesion, collected at different times and
under different lighting conditions, which provides additional variability to the dataset.
This can help to improve the robustness of the ensemble learning model by enabling it to
handle variations in image quality and illumination. The HAM-10000 dataset was primarily
compiled by two organizations from two countries: Cliff Rosendahl’s organization from
Queensland, Australia, and the Dermatology Department of the Medical University of
Vienna, Austria. The assemblage of this dataset was the culmination of two decades of
tireless effort [27]. The weight of each of the seven categories is depicted in Figure 2.
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3.2. Data Preprocessing

For multi-class skin disease problems, we applied different image preprocessing
techniques on the image dataset to improve the image quality and disease area. Firstly, we
applied the color normalization technique by using the gray world algorithm. The latter is
the simplest technique that allows the red, green, and blue channels’ average intensities to
be equal. If P (I,j) is the original RGB image with a size of r × s and R (I,j), B (I,j), and G (I,j)
are the channels in the image, then the green channel is typically kept untouched and red
and blue channels gains are calculated as follows:

Rgain =
µG
µB

(1)

And
Bgain =

µG
µR

(2)

where µR, µB, and µG are the channel’s respective average intensity levels.
Some of the images in the skin cancer dataset have hidden regions due to skin hair.

Consequently, prior to further analysis or processing, it is necessary to perform preprocess-
ing of the skin images with the objective of removing artifacts that are present in the images.
For this purpose, we applied morphological filtering to clean the presence of hair from the
skin images. We also applied the crop function to eliminate the unnecessary part of the
image. All steps of image preprocessing are shown in Figure 3. After that, we reduced the
image size from 450 × 600 to 384 × 384 resolutions.
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3.3. Data Augmentation

Data augmentation is a widely adopted technique in conjunction with convolutional
neural network models, particularly in scenarios where the image dataset is imbalanced.
In this context, we noted that HAM-10000 is a multi-class skin dataset that is modest in
size and also exhibits imbalanced class distribution. Specifically, certain classes possess
fewer images compared to others, creating an imbalance in the dataset. The application of
data augmentation methods effectively addresses both the size and imbalance disparities,
as depicted in Figure 4. It is noteworthy that all image categories carry equal weight,
accounting for 14.3% of the dataset.
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Various augmentation techniques were employed to achieve a balanced distribution
of the skin disease dataset, as depicted in Figure 5. Specifically, the images were randomly
rotated up to 30 degrees and zoomed by 10%. Additionally, both horizontal and vertical
flips were incorporated. A shear range, height shift range, and width shift range of 10%
were applied randomly to the images. To modify the image’s color, a brightness range of
[0.5, 1.2] was applied. Following the augmentation process, the multi-class skin disease
dataset comprised 42,238 images, and all classes exhibited a balanced distribution.
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3.4. Transfer Learning

It is a common practice of using CNN models to train new data by using previous
knowledge. Transfer learning can save a significant amount of time and resources, especially
for complex models that require extensive training. Transfer learning can also improve the
accuracy of new models by leveraging the acquisition of knowledge from a pre-existing
trained model has the potential to yield superior results within a limited timeframe. As
such, we have employed a fine-tuning methodology based on transfer learning, whereby
all the layers of our models have been trained.

3.5. The Swin-Transformer Model

The Swin-Transformer model is built upon two fundamental concepts, namely the-
hierarchical feature map (HFM) and shifted window attention (SWA), which have been
developed to address the major challenges faced by the original vision transformer (ViT).
The Swin-Transformer architecture comprises two core blocks, namely the Patch Merging
Block (PMB) and Swin-Transformer Block (STB). HFMs are intermediate tensors gener-
ated hierarchically that facilitate down-sampling from one layer to the next. The Swin-
Transformer employs a convolution-free down-sampling technique referred to as patch
merging, where a feature map’s smallest element is represented as a “patch”. A 14 × 14
feature map contains 196 patches. Patch merging combines the features of each set of n × n
adjacent patches and assigns them to the down-sampled features, resulting in a reduction
in size by a factor of n. The Swin-Transformer framework employs alternative modules
called Window MSA (W-MSA) and Shifted Window MSA (SW-MSA) modules, in place of
the conventional multi-head self-attention (MSA) modules utilized in the ViT architecture.
The first sub-unit integrates the Window MSA (W-MSA) module, while the second sub-unit
incorporates the Shifted Window MSA (W-MSA) module.

3.6. EfficientNetV2S

EfficentNetV2S is a popular training model recognized for its fast training speed, effi-
cient parameter utilization, and compact size, which is approximately 6.8 times smaller than
other models. With its training approach, EfficientNetV2S demonstrates a strong capability
to process the Image-Net dataset [28]. The depth-wise convolution layer, which is used by
EfficientNetV2S, requires fewer parameters and float-point operations per second (FLOPS)
but is unable to fully utilize contemporary accelerators such as GPU/CPU.EfficientNetV2S
is pre-trained on the large-scale Image-Net dataset, which helps to improve its performance
in a variety of computer vision tasks [29]. EfficientNetV2S is designed to be optimized for
resource-constrained devices, with small model sizes and a low memory footprint. This
makes it well-suited for deployment on mobile phones and embedded systems.
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EfficientNetV2S utilizes the BMConv layer in combination with the fused-MBConv
layers in its initial layer to enhance computational efficiency. In recognition of the reduced
memory access cost associated with smaller expansion ratios, this model implements a
reduced expansion ratio for BMConv. Additionally, EffiecientNetV2S adopts 3 × 3 kernel
sizes that are comparatively smaller and compensate for the smaller receptive field by
incorporating a greater number of layers.

3.7. Ensemble Strategy

EffcientNetV2S was employed as the foundational model, with an input size of 384
for the image. The fifth block of the base model was subsequently adjusted, and the
block_5_02_expand activation layer was utilized as input for the Swin-Transformer model.
We obtained 24 output sizes from the combined output of the adapted model and base
model, and this merged layer was then processed by the final classification layer.

Furthermore, our pipelines utilize the technique of gradient accumulation for model
construction. Transformer-based models are known to be computationally intensive, and as
a result, the batch size may be restricted. To address this issue, we opt to partition the batch
into smaller mini-batches, which are subsequently executed in a sequential manner while
their outcomes are aggregated. As a consequence, this approach can overcome memory
constraints and enable the model to be trained using less memory than it would with a
larger batch size. With execution gradient accumulation with 8 steps and a batch size of
8 images, the proposed model achieved comparable results to a batch size of 64 images.
Figure 6 illustrates the operation of the deep ensemble model.
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4. Results and Discussion:
4.1. Evaluation Methods

The utilization of a confusion matrix is a valuable approach to assess model perfor-
mance, particularly for multi-class problems. The confusion matrix provides a comprehen-
sive representation of the correctly classified TP values, FP values that are categorized in
the wrong class, false negative (FN) values that belong to the incorrect class, and correctly
classified TN values in the other class [30]. To measure the effectiveness of a model, several
commonly used performance metrics are calculated from the confusion matrix, including
ACC, P, Sn, Sp, and F-score [31–33]. These metrics are derived from equations formed using
the confusion matrix, enabling an accurate assessment of the proposed model’s efficiency.

ACC =
TP + TN

TP + FP + TN + FN
(3)

LOSS = 1 − ACC (4)

P =
TP

TP + FP
(5)
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Sn =
TP

TP + FN
(6)

Sp =
TN

TN + FP
(7)

F1 = 2
(P × Sn)
(P + Sn)

(8)

TPR =
TP

TP + FN
(9)

TNR =
FP

FP + TN
(10)

4.2. Experimental Settings

In addressing the multi-class skin disease problem, a systematic approach was taken to
partition the image data into distinct subsets of training, testing, and validation. Specifically,
the test data were comprised of 1002 images, representing 10% of the original dataset, and
were subject to rigorous data processing steps. The training and validationsets, containing
3502 and 6336 images, respectively, were also subjected to similar processing procedures,
including the incorporation of augmented images.

4.3. Model Training and Testing

The main purpose of model training and testing is the minimization of error and to
improve the overall accuracy of the proposed technique. To understand the error function
in the research work, Equation (3) is given below:

E(w) =
1

K × N

K

∑
K = 1

NL

∑
n = 1

(
Y

k
n
− d

k
n

)2

(11)

Equation (11) Y
k
n

represents the actual output images in the model and K denotes the

input images and desired output vectors. Xk is the Kth-trained image and dk is the desired
output vector. With the help of error sensitivities, we measure the error gradient, which is
equal to the partial derivatives of the error function.

We set the learning rate to 0.001 for both models with the Adamax optimizer. The
batch size and epochs were set to 16 and 20, respectively, for training. We set a patience
value of 1 and a stop patience value of 3. For calculating loss, a categorical cross-entropy
function was applied. The model saves the best results for the validation set. All of the
experiments were implemented in the Python 3.7 version and TensorFlow platforms. The
next section includes the experimental part of both models.

4.4. EfficientNetV2S vs. Ensemble Model

We applied CNN EfficientNetV2S and ensemble (EfficientNetV2S + Swin-Transformer)
models to achieve better performance. In this section, we compare the different parameters
of both models and describe the importance of the proposed model for the classification of
a multi-class skin disease problem.

Table 1 provides a comprehensive overview of the training procedure for both models,
including details on every epoch’s training and validation values. The EfficientNetV2S
model is trained for 18 epochs, while the ensemble model is trained for 13 epochs. Our
analysis revealed that the ensemble model learns more efficiently and requires less time
than the single EfficientNetV2S model. While the accuracy of both models is similar, as
depicted in Table 1, the proposed ensemble model outperforms the EfficientNetV2S model
in terms of training and validation loss, demonstrating its superior ability to identify
diseased areas in images. Figure 7 provides a visual representation of the accuracy and
validation curves of both models. The ensemble model’s training is stopped after 13 epochs
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since the validation loss stopped improving after 10 epochs. Similarly, the EfficientNetV2S
model is stopped after 18 epochs. Both models show no signs of over-fitting as the training
loss decreases from the validation loss during the training procedure.
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Table 1. Full training procedure of both models with training and validation values.

EfficientNetV2S Ensemble Method

Epochs Training
Accuracy

Training
Loss

Valid
Accuracy

Valid
Loss Epochs Training

Accuracy
Training

Loss
Valid

Accuracy
Valid
Loss

1 81.096 1.135 92.551 0.402 1 84.903 0.418 94.145 0.158
2 92.468 0.388 95.028 0.285 2 94.307 0.160 96.859 0.088
3 96.039 0.254 96.954 0.206 3 97.048 0.085 97.412 0.071
4 97.229 0.197 97.238 0.193 4 98.036 0.059 97.664 0.065
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Table 1. Cont.

EfficientNetV2S Ensemble Method

Epochs Training
Accuracy

Training
Loss

Valid
Accuracy

Valid
Loss Epochs Training

Accuracy
Training

Loss
Valid

Accuracy
Valid
Loss

5 97.995 0.162 97.491 0.163 5 98.507 0.043 97.901 0.060
6 98.529 0.133 97.364 0.163 6 98.825 0.035 97.932 0.063
7 98.716 0.120 98.074 0.133 7 99.457 0.018 98.390 0.058
8 98.847 0.112 98.074 0.129 8 99.649 0.011 98.438 0.055
9 99.145 0.096 97.459 0.146 9 99.730 0.009 98.722 0.041

10 99.635 0.078 98.532 0.106 10 99.755 0.008 98.816 0.041
11 99.813 0.068 98.453 0.107 11 99.760 0.008 98.595 0.050
12 99.866 0.065 98.848 0.098 12 99.877 0.005 98.879 0.044
13 99.955 0.060 98.832 0.098 13 99.900 0.004 98.832 0.041
14 99.936 0.061 98.927 0.095
15 99.933 0.059 98.990 0.093
16 99.978 0.057 98.769 0.096
17 99.967 0.057 98.690 0.100
18 99.953 0.057 98.911 0.094

4.5. Confusion Matrix Analysis

We defined different confusion matrix equations in the evaluation method and the
results are shown in Table 2. The proposed strategy of the ensemble model achieves
99.10% accuracy on the test set which is 0.40% higher than the baseline EfficientNetV2S.
If we compare other parameters then the ensemble model achieved 99.27%, and 99.80%
sensitivity and specificity scores, respectively, which were also 0.19% and 0.35% higher than
the baseline EfficientNetV2S scores, respectively. The main progress of the ensemble model
has decreased the loss heavily to single efficientNetV2S which shows the better capability
of our ensemble model and also evidence that the strategy of a combination of two models
works well contrary to the traditional strategy.

Table 2. Testing score of the EfficientNetV2S model and the ensemble model.

Classes EfficientNetV2S Ensemble Model

Accuracy
%

Precision
%

Sensitivity
%

Specificity
%

F1-Score
% Loss No. of

Samples
Accuracy
%

Precision
%

Sensitivity
%

Specificity
%

F1-Score
% Loss No. of

Samples

AKIEC - 1.00 1.00 1.00 1.00 - 33 - 1.00 1.00 1.00 1.00 - 33

BCC - 1.00 1.00 1.00 1.00 - 51 - 1.00 1.00 1.00 1.00 - 51

BKL - 97.30 98.18 99.21 97.74 - 110 - 1.00 98.18 1.00 99.08 - 110

DF - 1.00 1.00 1.00 1.00 - 12 - 1.00 1.00 1.00 1.00 - 12

MEL - 96.40 96.40 99.10 96.40 - 111 - 96.43 97.30 1.00 96.86 - 111

NV - 99.10 98.96 97.89 99.03 - 671 - 99.26 99.40 98.78 99.33 - 671

VASC - 1.00 1.00 1.00 1.00 - 14 - 1.00 1.00 1.00 1.00 - 14

Average 98.70 98.97 99.08 99.45 99.02 0.108 - 99.10 99.38 99.27 99.80 99.32 0.037 -

Figure 8 shows the confusion matrices of both models. According to Figure 8, the
ensemble model only misclassified 9 samples and the effcientNetV2S model misclassified
13 samples, which proved the classification capability of our proposed technique. According
to the confusion matrix ensemble model, only 2,3, and 4 images are misclassified as BKL,
melanoma, and Nevus, respectively.

4.6. ROC–AUC Curve Analysis

The relationship between the sensitivity and FP rate for different threshold settings is
known as the receiver operating characteristics (ROC) curve. The ability of a classification
model is tested using the area under the curve (AUC), which is the area under this ROC curve.
The performance improves with area size. The ensemble model achieved a higher ROC–AUC
score than EfficientNetV2S for multi-class skin disease problems as shown in Figure 9.
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In Table 3, we compared the results of accuracy, specificity, and sensitivity with other
research models with the HAM-10000 dataset from the year 2020 to 2022. The results of this
ensemble model are at the highest level with regards to accuracy, specificity, and sensitivity.

Table 3. Comparison of accuracy, specificity, and sensitivity with other research work using the
HAM-10000 dataset.

Ref. Year Research
Method

Accuracy
(%)

Specificity
(%)

Sensitivity
(%)

[34] 2020 CNN + OVA (one-versus-all) 92.90
[35] 2021 MobileNet+LSTM 85.34 92.0 88.24
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Table 3. Cont.

Ref. Year Research
Method

Accuracy
(%)

Specificity
(%)

Sensitivity
(%)

[36] 2022 Modified MobileNetV2 91.86 92.66 91.09
[37] 2022 DenseNet169-two classes 91.10 95.66 82.49
[38] 2022 Cascaded ensemble DL Model 99.00 98.0 98.0

This Paper 2022 EfficientNet-V2 + Swin-Transformer
(Ensemble DL Model) 99.10 99.80 99.27

4.7. Grad-Cam Analysis

Grad-Cam is a well-known visualization technique from which we know that the
convolutional layers of the models focus on which part of the image. In this paper, the main
aim of the Grad-Cam technique is to compare the baseline EfficientNetV2Smodel with the
ensemble model. For this purpose, a visualization technique is applied to test the images.
After the results, it is clearly shown in Figure 10 that the proposed hybrid model more
actively focuses on the target part of the images rather than the baseline EfficientNetV2S
and proved that transformer blocks have a greater capacity to see its decision-making
process. Additionally, we note that CNN’s mid-level feature maps have the propensity to
correct more broadly by the transformer blocks.
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5. Conclusions and Future Work

This paper has presented a deep ensemble learning approach for skin cancer diagnosis
that uses the vision of EfficientNetV2S and the Swin-Transformer model to classify multi-
class skin disease images. With the help of modification in the fifth block of EfficientNetV2S
and with the addition of the Swin-Transformer model, we merged the outputs of both the
modified model and the base model. After experiments, the proposed approach achieved
higher accuracy rather than the individual models and also heavily decreased the loss
which proves that the proposed strategy is more suitable than the traditional strategies. We
used HAM-10000, an image dataset that consists of seven types of skin cancer images. We
included the data preprocessing techniques to improve the image quality and remove the
unwanted part of the image. A data augmentation technique was also utilized to balance
the skin image dataset which is necessary for training and to save the proposed model from
being biased. The proposed deep ensemble model achieved a 99.10% accuracy score on the
test set and, similarly, achieved a 99.27% sensitivity score and a 99.80% specificity score.

Future work for this study could involve the integration of other modalities, such
as macroscopic imaging, and clinical information to further improve the accuracy of the
diagnostic system. In addition, the development of a mobile application that can assist
dermatologists in diagnosing skin cancer using this approach can also be explored. Further
studies could investigate the generalization of the approach to different skin types and
ethnicities to ensure the accuracy of the approach in a diverse population.
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