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Abstract: Deep learning-based anomaly detection (DAD) has been a hot topic of research in various
domains. Despite being the most common data type, DAD for tabular data remains under-explored.
Due to the scarcity of anomalies in real-world scenarios, deep semi-supervised learning methods
have come to dominate, which build deep learning models and leverage a limited number of labeled
anomalies and large-scale unlabeled data to improve their detection capabilities. However, existing
works share two drawbacks. (1) Most of them simply treat the unlabeled samples as normal ones,
ignoring the problem of label contamination, which is very common in real-world datasets. (2) Only
very few works have designed models specifically for tabular data instead of migrating models from
other domains to tabular data. Both of them will limit the model’s performance. In this work, we
propose a feature interaction-based reinforcement learning for tabular anomaly detection, FIRTAD.
FIRTAD incorporates a feature interaction module into a deep reinforcement learning framework;
the former can model tabular data by learning a relationship among features, while the latter can
effectively exploit available information and fully explore suspicious anomalies from the unlabeled
samples. Extensive experiments on three datasets not only demonstrate its superiority over the
state-of-art methods but also confirm its robustness to anomaly rarity, label contamination and
unknown anomalies.

Keywords: deep reinforcement learning; anomaly detection; semi-supervised learning; feature
interaction; tabular data

1. Introduction

Tabular data refers to data that are arranged in the form of a table, in which each row
represents a sample, and each column represents a feature. As the most common type of
data in real-world applications, tabular data are widely used in many domains, such as
network security [1,2], financial transaction [3,4], industrial manufacturing [5,6], marine
traffic-cite [7,8], etc. Anomalies (also called outlier or novelty), which exist in almost all
domain applications, often indicate malfunctions or malicious behavior and may result in
property damage or even casualties. Anomaly detection (AD) for tabular data has been a
lasting yet active topic in the last few decades, and dozens of methods have been proposed
for different tasks.

Due to the rarity of anomalies, most real-world datasets are severely imbalanced,
i.e., negative instances (normal samples) account for the vast majority, while positive
instances (anomalous samples) account for only a small minority. Therefore, many re-
searchers consider anomaly detection as an unsupervised learning problem, such as
proximity-based methods [9–11], ensemble-based methods [12–14], and neural network-
based methods [15–17]. In the last decade, a few studies [18–20] have pointed out the
availability of labeled anomalies in some real-world scenarios. A limited number of posi-
tive samples that come from the identification of experts or the accumulation of the system
are usually available with trivial cost. In recent years, more and more works have con-
sidered anomaly detection as a semi-supervised or weakly-supervised learning problem,

Electronics 2023, 12, 1313. https://doi.org/10.3390/electronics12061313 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12061313
https://doi.org/10.3390/electronics12061313
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics12061313
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12061313?type=check_update&version=2


Electronics 2023, 12, 1313 2 of 18

leveraging a small set of labeled anomalies and a large-scale unlabeled dataset to train
AD models. Unfortunately, most existing works [18–22] treat all the samples from the
unlabeled dataset as normal for convenience and overlook possible anomalies (also called
anomalous contamination). Considering the very large data size, even if the proportion of
anomaly samples is extremely low, there would exist quite a few anomalies in the unlabeled
dataset. Ignoring these samples may result in a loss of information and then limitations in
a model’s performance.

Additionally, most existing deep models for tabular data anomaly detection
(TAD) [18–20,22,23] try to transfer AD approaches from other domains, such as computer
vision (CV) or natural language processing (NLP), instead of modeling the characteristics
of tabular data. Studies [24,25] indicate that deep models that excel in CV or NLP can-
not achieve the desired performance on tabular data due to its characteristics, including
lack of locality, data sparsity and mixed feature of types. The most notable difference be-
tween tabular data and other types of data is the associative relationship between columns.
Practices [26–29] in Click-Through prediction (CTR) demonstrate that feature interactions,
especially high-order feature interactions, are crucial to modeling tabular data. However,
to the best of our knowledge, no paper has yet worked on how to apply feature interaction
to TAD.

To cope with the problem of anomalous contamination in an unlabeled dataset, we
propose a novel method based on deep reinforcement learning (DRL). As can be seen from
the name, DRL combines the expression ability of deep learning and the decision-making
ability of reinforcement learning (RL). Different from unsupervised learning and semi-
supervised learning methods, RL updates parameters by interacting with the environment
without requiring data to be given in advance. In this work, we leverage the DRL algorithm
to train an anomaly detector that can not only fit the labeled anomalies but also detect
possible anomalies from the unlabeled dataset.

To settle the problem that deep models do not model tabular data well, we intro-
duce a tabular data modeling approach named gated adaptive feature interaction network
(GAIN) [29]. GAIN exploits multiple parallel interaction units to learn useful high-order fea-
ture interactions. The parallel design guarantees a high-efficiency model, as works [30,31]
have experimentally demonstrated that parallel architectures can dramatically reduce the
processing time of models both on CPUs and on GPUs. GAIN works as a middleware,
which can transform raw features into informative representations and can replace the
deep module in DRL.

We further instantiate the proposed approach into a model called feature interaction-
based reinforcement learning for tabular data anomaly detection (FIRTAD), and the ar-
chitecture is shown in Figure 1. We choose the soft Actor–Critic (SAC) [32] as the main
framework of the FIRTAD. The policy network and the Q-network share the same deep
module, which is implemented with GAIN. We create a simulation environment to interact
with the SAC, which includes labeled anomalies and an unlabeled dataset. To ensure the
exploitation of all samples, we propose a novel sampling strategy that prevents repeated
sampling from a densely distributed region. To encourage the agent to explore samples,
which can bring more novelty, we extend the reward function with an intrinsic reward.
More details are discussed in Section 3.

We summarize the main contributions of this work as follows:

1. We propose a novel DRL-based anomaly detection approach specifically for tabular
data and deliberately devise a simulation environment that allows all samples to be
fully explored.

2. We introduce a feature interaction module (GAIN) into our approach, which can
model the characteristics of tabular data by learning interactions between features.
To the best of our knowledge, it is the first effort to apply feature interactions to
anomaly detection.

3. We instantiate the proposed approach into a model called FIRTAD and extensively
evaluate the model, comparing six baselines on three benchmark datasets. The
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experimental results demonstrate that our model performs better than state-of-the-art
models and exhibits better robustness to class imbalance, label contamination and
unknown anomalies.

Figure 1. Architecture of FIRTAD. FIRTAD, which is based on a deep reinforcement learning frame-
work, consists of two parts, the agent and the environment. The agent is implemented by an SAC
algorithm, in which the Actor and the Critic share the same feature interaction module GAIN as their
deep modules. The environment is implemented with a sampling function and a reward function.

2. Related Works
2.1. Anomaly Detection Methods

From the perspective of the availability of supervision information (labels), most exist-
ing AD methods can be divided into three categories: unsupervised learning, supervised
learning and semi-supervised (weakly supervised) learning methods. Due to the high cost
of data-labeling processes in real-world scenarios, supervised learning methods are often
impractical, and the other two are much more popular.

2.1.1. Unsupervised Anomaly Detection

Unsupervised AD methods are almost based on the assumption that normal sam-
ples have different distributions from anomalous samples. Normal samples are densely
distributed, while anomalous samples are sparsely distributed and far from normal ones.
Some works [9,10,33] treat samples as data points and detect anomalies by calculating the
distance or density; Other works [11–13] judge the degree of abnormality through compre-
hensive analysis of the distribution of every single dimension. Ref. [34] obtains the anomaly
scores of samples by calculating the joint distribution of all dimensions. Conventional
machine learning methods fail to work effectively when dealing with high-dimensional
samples due to the curse of dimensionality. To tackle this problem, deep learning meth-
ods are introduced to anomaly detection; the common practice is to exploit deep neural
networks (e.g., multi-layer perception (MLP), autoencoder (AE) or generative adversarial
network (GAN)) to project samples into a low-dimensional representation space, and then
distinguish anomalies from normal samples [15,35,36]. Due to the lack of supervised
information, almost all unsupervised methods detect anomalies by modeling normality.
Although the unsupervised AD methods have achieved decent results, their performances
are still limited because anomalies that can be easily obtained have not been utilized.

2.1.2. Supervised Anomaly Detection

Although supervised AD methods are not as popular as unsupervised and semi-
supervised ones, they still attract the attention of many researchers. Traditional supervised
methods treat AD as a binary classification problem, and commonly used methods include
Naive Bayesian, Support Vector Machine (SVM) and Gradient Boosting Decision Tree
(GBDT). Deep learning-based methods train a classifier to detect anomalies on the basis of
representation learning; well-known works include MLP, ResNet and FTTransformer [24].
Both traditional and deep methods have their own drawbacks. Traditional methods do not



Electronics 2023, 12, 1313 4 of 18

perform well when processing high-dimensional, heterogeneous or non-independent data.
In contrast, the deep methods, although they can handle these problems well, require a
large number of labeled samples for training.

2.1.3. Semi-Supervised Anomaly Detection

Semi-supervised AD methods utilize limited supervised information to improve the
ability to identify anomalies. Some works leverage labeled anomalies to enhance exist-
ing unsupervised AD models. Ref. [18] uses supervised information to push anomalies
away from the center of a compact hypersphere, which is built using an unsupervised
method [35]. Ref. [22] introduces anomalous samples to a distance-based method (e.g.,
K-nearest neighbors [10]) and identifies anomalies by calculating the knn-distance between
the query sample and a random unlabeled subset. Other works introduce labeled anomalies
into supervised AD models, and solve the problem of class imbalance through data aug-
mentation, downsampling, etc. Ref. [37] proposes two strategies to enrich the anomalous
samples and distinguishes anomalies using a contrastive learning method. Ref. [19] builds
instance pairs to make the proportion of instance pairs containing anomalies reach 50%.
Refs. [20,21] train their models on datasets that are equally sampled from both labeled
anomalies and unlabeled samples. Ref. [38] leverages anomalies to obtain a prior anomaly
score for each sample and uses the score as supervised information to optimize the AD
model. Due to the exploitation of labeled anomalies, semi-supervised methods significantly
improve the performance of AD models. However, almost all semi-supervised AD models
are based on the assumption that the unlabeled subset contains normal samples only or do
not consider the impact of possible anomalies in it.

2.2. Feature Interaction of Tabular Data

Due to the lack of locality and the complexity of features, tabular data cannot be
modeled well with prevailing deep models, such as MLP, convolutional neural network
(CNN), recurrent neural network (RNN), etc. Most deep anomaly detection approaches
project high-dimensional tabular data into a low-dimensional space using MLP, ResNet,
AE or GAN. However, these architectures cannot guarantee the preservation of discrimina-
tive information because they overlook feature interaction, which is the most prominent
difference between tabular data and other data types.

Feature interaction, especially high-order feature interaction, has been proven to be
crucial in improving the model’s expressiveness in CTR prediction tasks [26–28,39]. In [40],
Rendle argues that a second-order feature interaction can be represented with the inner
product of two latent vectors, each of which represents a single feature, and propose factor-
ization machine (FM) to automatically learn all possible second-order feature interactions.
Many works [26–28] extend FM to learn higher-order feature interactions. However, these
works brutely enumerate all possible feature interactions without differentiating their
importance, and the introduction of useless interactions not only increases the computa-
tional complexity but also downgrades the model’s performance. Xue et al. [41] propose
AutoHash to adaptively learn useful high-order interactions. In AutoHash, all features
are put into k buckets with randomly initialized probabilities (features can be reused),
and every bucket represents a feature interaction. The probabilities are learnable variables
that help the buckets preserve useful interactions through training. Liu et al. [42] propose a
two-stage algorithm called automatic feature interaction selection (AutoFIS). In the first
stage, the model is trained to drop interactions that contribute little to the final prediction; in
the second stage, the model is re-trained to learn the importance pf the retained interactions.
Chen et al. [43] propose a bayesian higher-order feature interaction selection (BH-FIS).
BH-FIS implements the enumeration of all feature interactions by using outer-product
and masking techniques and employs spike-and-slab priors to distinguish useful feature
interactions from useless ones. Liu et al. [29] propose a gated adaptive feature interaction
network (GAIN) that can adaptively learn high-order feature interactions. GAIN consists
of a cross-module and a deep module; the former exploits multiple parallel interaction
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units to explicitly model feature interactions, while the latter leverages an MLP to model
feature interactions in an implicit way.

Although the effectiveness of feature interactions has been proven in modeling tab-
ular data, surprisingly, we can hardly find a work that incorporates it into tabular data
anomaly detection.

2.3. Deep Reinforcement Learning for Tabular Anomaly Detection

The vanilla DRL algorithm is suitable for time series data due to its dependence
on a live environment. Lopez-Martin et al. [44] make a conceptual modification of the
vanilla DRL algorithm to make it feasible for tabular data, replacing the environment
with a sampling function and designing a reward function based on the detection error.
In addition, the authors make a comparison of several DRL algorithms on network intrusion
detection datasets. Vimal et al. [3] exploit a DQN to tackle the payment fraud detection
problem and use the technology of experience replay to improve the efficiency of sampling.

To solve the AD problem with a small set of labeled anomalies and a large-scale
unlabeled dataset, Pang et al. [45] propose an approach called Deep Q-learning with
Partially Labeled ANomalies (DPLAN). DPLAN creates an anomaly-biased simulation
environment that continuously samples anomalies or suspected anomalies from the whole
dataset. Separate sampling functions are designed for the labeled anomaly set and the
unlabelled dataset, denoted as ga and gu, respectively. ga selects samples uniformly from
the labeled anomaly set, while gu selects samples that are likely to be anomalous from the
unlabeled dataset. gu is defined as

gu(st+1|st, at) =


argmin

s∈Su
d(st, s) i f at = 1

argmax
s∈Su

d(st, s) i f at = 0,
(1)

where Su denotes a random subset of the unlabeled dataset, d denotes a function of Eu-
clidean distance and at denotes the agent’s judgment on st. at = 1 means the agent
identifies st as an anomaly, the sample nearest to st is considered most likely to be anoma-
lous, and is selected as st+1. In contrast, at = 0 means st is identified as a normal sample,
and the sample farthest from st is returned to the agent.

DPLAN also designs a combined reward function rt = re
t + ri

t. The external reward re
t

is defined based on the prediction error. re
t will return a positive reward if an anomalous

sample is correctly recognized by the agent, no reward will be returned if a normal sample
is correctly identified, and a negative reward will be returned if the agent makes a mistake.
The external reward function is defined as

re
t =


1 i f at = 1 and st ∈ Da

0 i f at = 0 and st ∈ Du

−1 otherwise,

(2)

where Da and Du denote the labeled set and the unlabeled dataset, respectively.
The intrinsic reward ri

t is devised to encourage the agent to explore novel anomalies.
Hence, samples from lower-density regions receive higher intrinsic rewards as DPLAN as-
sumes that anomalous samples are sparsely distributed and far from normal ones. The iFor-
est [12] algorithm can indicate the degree of abnormality of a sample and is, therefore, used
to calculate the intrinsic reward. The intrinsic reward function is defined as ri

t = iForest(st).
Due to the special design of the anomaly-biased sampling function and the combined

reward, the agent of DPLAN is encouraged to explore the unlabeled dataset for possible
anomalies. However, the DPLAN still has three main drawbacks. First, the discrete action
space, i.e., A = {0, 1}, severely limits the model’s performance. The identification ability of
the agent is gradually improved through training. Before the model converges, the agent’s
actions are usually undetermined. However, the discrete action space cannot express the
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uncertainty accurately, and the step changes between 0 and 1 would hinder the model from
learning useful information. Secondly, the external rewards are designed to be too coarse-
grained to cover all situations, e.g., when the agent takes an ambiguous action. Thirdly,
the anomaly-biased sampling function may result in excessive exploration of anomalies
and insufficient exploration of normal samples, which will be sub-optimal.

3. Our Proposed Method
3.1. Problem Definition

Given a training dataset D = Da ∪ Du, where Da and Du denote a small labeled
anomalous subset and a large-scale unlabeled subset, respectively. The size of Da is much
smaller than that of Du, and the ratio of their sizes usually does not exceed 10%. The vast
majority of the samples in Du are normal, and only a very small number of samples are
anomalous, part of which may come from unknown classes (i.e., classes that have not
appeared in Da). We aim to find out hidden anomalies from Du by taking full advantage of
the whole dataset D. Note that D is a tabular dataset in which all samples are independent
of each other, and there is no temporal relationship between samples.

To apply a DRL algorithm to anomaly detection, we formulate the binary classification
problem as a sequential decision-making problem. The agent receives a sample st from the
environment at time t, and takes an action at. The environment gives a reward rt and a new
sample st+1 to the agent according to st and at. The interaction between the agent and the
environment can be represented with a Markov Decision Process (MDP), which is defined
as below:

• State space. The whole dataset D (including unlabeled dataset Du and labeled anoma-
lies Da) is defined as the state space. Each st ∈ D denotes the state received from the
environment at time t.

• Action space. Different from the existing works, we define a continuous action space
A = [0, 1]. Therefore, the action at can also be regarded as the anomaly probability of
st. The closer at is to 1, the more likely st is an anomaly and vice versa.

• State transition. After the agent takes an action at, the environment renders a new
state st+1 to the agent. Different from the anomaly-biased strategy used by DPLAN,
which is dedicated to sampling anomalous states, we propose a novel sampling
strategy that fully explores the entire data space.

• Reward. Similar to DPLAN, our proposed method leverages a combined reward
function. We design a continuous extrinsic reward function to be compatible with
the continuous action space. When st comes from Da, the agent will obtain a large
penalty if it fails to recognize st. When st comes from Du, identifying st as an anomaly
should not be given a large penalty as anomalies may be hidden in Du. In addition, we
design a curiosity-driven intrinsic reward function to encourage the agent to explore
the entire state space. The reward function is defined as rt = re

t + λri
t, where λ is a

scalar weighting the relevance of the intrinsic reward, and it takes a value from [0, 1].

3.2. Agent
3.2.1. Foundation of the Proposed Approach

The agent of our proposed model is implemented with a SAC, which is a stochastic
policy algorithm that can deal with continuous action space. Different from other DRL
algorithms that aim to learn a policy to maximize the cumulative rewards, the SAC aug-
ments the objective with an entropy regularization term to concurrently maximize the
entropy of the agent’s action. The introduction of the maximum entropy can not only
promote the exploration but also prevent premature convergence. The objective of the SAC
is represented as

π∗ = argmax
π

E
at∼π

[
∞

∑
t=0

γt
(

r(st, at, st+1) + αH(π(·|st))
)]

, (3)
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where π represents the policy network, γ represents the discounting factor, H(·) represents
the entropy function, and α is the trade off coefficient.

To improve the utilization of data, the SAC maintains an experience replay buffer D
to store historical transitions (i.e., (s, a, r, s′)) so that the minibatch can be sampled from
the buffer during training. The SAC incorporates an Actor–Critic architecture, in which
the Q-network and the policy network can be updated by temporal difference and policy
gradient, respectively. To tackle the problem of overestimation brought by bootstrapping,
the SAC adopts the technique of target network. For faster and more stable training,
the SAC exploits two Q-networks and chooses the minimum Q-value. The loss function for
the Q-networks is represented as

L(φi,D) = E
(s,a,r,s′)∼D

(Qφi − y(r, s′)

)2
, (4)

where φ represents the parameters of the Q-network. The target y is represented as

y(r, s′) = r + γ
(

min
j=1,2

Qφtarg,j(s
′, ã′)− α log πθ(ã′|s′)

)
, ã′ ∼ πθ(·|s′), (5)

where θ represents the parameters of the policy network, and ã′ represents the next action
sampled by updated policy. The loss function of the policy network is represented as

L(θ,D) = E
s∼D
ε∼N

[
α log πθ(ãθ(s, ε)|s)−min

j=1,2
Qj(s, ãθ(s, ε))

]
, (6)

where ε represents a random number sampled from the standard normal distribution. In
addition, the target networks of SAC conduct a soft update, i.e., update slowly toward the
main networks in each step rather than updating periodically.

3.2.2. Feature Interaction-Based Policy Network and Q-Network

Feature interactions, especially high-order feature interactions, have been proven
effective and efficient in modeling tabular data by many studies. In this work, we introduce
a feature interaction module to extract expressive vectors from tabular data. Among dozens
of feature interaction models that have emerged in recent years, GAIN is chosen by our work
due to its effectiveness in learning high-order interactions and computational efficiency.

The structure of a GAIN is shown in Figure 2. GAIN takes raw features of samples
as input and outputs a low-dimensional representation vector. GAIN is composed of
two main modules: a cross-module and a deep module. The cross-module consists of
multiple interaction units, each of which maintains a gate for every feature, and each gate
only has two statuses, closed or open. Whether a feature can participate in an interaction
is determined by the status of its corresponding gate. Each unit represents a feature
interaction, and the interaction order is the number of gates that are open. The statuses of
the gates are randomly initialized and dynamically adjusted. Through training, the statuses
are gradually stabilizing, and meaningful feature interactions will be preserved. The deep
module is implemented with an MLP. The outputs of the two modules concatenate to form
the output of the GAIN. In our proposed model, GAIN is used as a middleware learning
useful high-order feature interactions. To improve the training efficiency and reduce the
parameters, the GAIN is shared by both the policy network and the Q-network.

In addition to learning higher-order feature interactions, the GAIN can also be seen
as a transformer that projects the original features into a low-dimensional representation
space. The benefits are twofold. On the one hand, the dimensionality reduction can avoid
the curse of dimensionality. On the other hand, low-dimensional vectors facilitate the
consequent distance calculation of states. In this work, the low-dimensional representation
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of the state s is called the abstract state, and it is denoted as ŝ. For the sake of brevity, we
will not distinguish the two terms of state and abstract state in this paper unless necessary.

Figure 2. Structure of GAIN. The cross-module is composed of multiple interaction units, each of
which can learn a high-order feature interaction using Hadamard product. The output of all units is
concatenated with the output of the deep module to obtain the final output of the GAIN.

3.3. Knight Sampling Strategy

With respect to the distribution of samples, AD models typically make the following
assumptions. Normal samples are large in number, and most of them are densely dis-
tributed, while anomalous samples are relatively scarce and are distributed far away from
normal ones.

During the interaction between the environment and the agent, states need to be
continuously sampled from the environment. The selection of a state is determined by
the sampling strategy, which may affect the training efficiency. A suitable strategy could
significantly improve the convergence speed of the model, while an inappropriate strat-
egy would extend the training time or make the model converge to a local optimum.
The random strategy adopted by [44] uniformly samples states from the entire state space,
in which the probability of a class being selected is proportional to the proportion of states
of that class in all states. Considering the severe class imbalance in the state space, normal
states have much higher probabilities of being selected, and it will take more steps for the
agent to encounter all anomalous states, which might result in much longer training times.
To tackle the inefficient sampling of anomalous states, [45] proposes an anomaly-biased
strategy, where states that are more likely to be anomalous have higher priorities to be
selected. However, repeated exploitation of anomalous states would lead to overfitting of
the model. Meanwhile, insufficient exploration of normal samples would also limit the
model’s performance.

Therefore, a novel sampling strategy needs to be devised so that all regions of the
state space can be explored fully and evenly. Inspired by the Knight’s Tour problem [46],
we propose a novel sampling strategy. A knight-like sampler is devised that can leap to a
distant state. Leaping not only make the sampler visit every part of the state space but also
help the sampler escape from a cluster. An intuitive idea is to choose the farthest state
from the k-nearest neighbors. However, considering the high computational consumption
of the KNN algorithm, we take a subset instead. First, a subset D′ ⊂ D is randomly
sampled; Secondly, a Euclidean distance is calculated between st and each state in D′;
Thirdly, the state that is farthest from st is selected to be st+1. Selecting the furthest state
from a random subset ensures that the entire state space can be explored and prevents the
sampler from being trapped in a certain region. We name the proposed strategy as Knight
Sampling Strategy.

3.4. Combined Reward Function

To make a trade-off between exploration and exploitation, we design a combined
reward, rt = re

t + λri
t, where re

t and ri
t represent extrinsic and intrinsic reward, respectively.
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The former encourages the agent to exploit known information, while the latter stimulates
the agent to explore novelty in the environment. λ is the trade-off coefficient.

3.4.1. Extrinsic Reward Function

Extrinsic reward is an immediate reward given by the simulation environment accord-
ing to the state-action pair. Since st may come from either Da or Du, the extrinsic reward
function should be designed separately according to the different sources of st. If st comes
from Da, a large at should be given a positive reward. In contrast, a small at should be
given a negative reward as a penalty. Hence, re

t should be proportional to at (the anomaly
probability) when st is sampled from Du. If st comes from Du, re

t is inversely proportional
to at. Considering the possible anomalies in Du, to prevent the agent from easily identifying
a sample from Du as normal, we should give a minor reward if at → 0. Similarly, if at → 1,
a minor penalty is more feasible since a large penalty would discourage the agent from
detecting hidden anomalies. A coefficient, τ, is utilized to scale the reward, and the value
of τ is usually specified as the ratio of the sizes of Da and Du. To be compatible with
the continuous action space, a continuous extrinsic reward function is required, which is
defined below.

re
t (st, yt, at) =

{
2at − 1 if yt = 1,
−τ · (2at − 1) if yt = 0

(7)

3.4.2. Intrinsic Reward Function

Inspired by human experiences in playing games that the highest score can only be
obtained if the environment is fully explored, we design a curiosity-driven intrinsic reward
function to encourage the agent to explore states with high novelty. Intuitively, the novelty
of a state will decrease if it is sampled several times. In addition, the same happens
with repeated sampling of nearby states. Therefore, the intrinsic reward of a state-action
pair is inversely proportional to the visits to the region where the state is located. We
exploit a Gaussian kernel function to approximately calculate the number of visits, which
is represented as

κ(x, y) = exp−‖x− y‖2

2σ2 , (8)

where ‖ · ‖ returns a Euclidean distance, and σ is a hyper-parameter, which is discussed in
Section 5.6. If two states are close to each other, κ tends to be 1. In contrast, if two states are
far away from each other, κ tends to be 0.

We define an episodic memory M = [ŝ1, ŝ2, · · · , ŝt−1] to store the states before time
step t. Since the kernel function can convert the distance of two states between 0 and 1, we
calculate κ of ŝt and each state in M and take the reduction sum as the approximate counts.
The intrinsic reward function is represented as:

ri
t =

1√
∑n−1

i=1 κ(ŝt, ŝi) + 1
. (9)

4. Model Analysis
4.1. Analysis of the Agent

Our proposed model exploits a DRL framework to solve the TAD problem. We make
some adaptations to the vanilla SAC by replacing the MLP in the Actor and the Critic with
a GAIN that can generate more expressive representations. The output of the Actor can be
used to express the uncertainty of the agent’s judgment, i.e., a→ 0 or a→ 1 indicates that
the agent is quite confident in its judgment, while a → 0.5 indicates the opposite. In the
early stages of training, the model has not learned enough information to make the best
decision. Hence the uncertainty should be preserved to avoid premature convergence.
The entropy regularization term aims to enhance the exploration of actions, and a coefficient
α is used to make a trade-off between expected rewards and entropy. As training continues,
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the uncertainty will decrease. To accelerate the convergence of the model, the value of α
gradually reduces.

4.2. Explanation of the Knight Sampling Strategy

Because there is no environment that can automatically generate a new state according
to the agent’s action, we create a simulation environment that returns a state and a reward
to the agent at each time step. There exist two basic facts about the anomaly detection task.
First, the number of normal states in the training set far exceeds the number of anomalous
ones. Secondly, normal states are relatively densely distributed, while anomalous states
are sparsely distributed and far from normal ones. Based on the facts above, we propose
a knight sampling strategy to sample evenly from both categories of states. The knight
sampling strategy, which can be understood as dividing the state space into a chessboard
with a grid, will alleviate the problem of severe category imbalance. The distribution of
100 states is shown in Figure 3; normal and anomalous states are indicated by a blue dot and
red cross, respectively. The ratio of anomalous states to normal ones is 1/9. After dividing
the state space with a grid, the ratio of anomalous squares to the normal ones increases
to 9/17. Guided by this strategy, the sampler leaps around the data space like a knight,
and each move returns a state from the current square.

Figure 3. Explanation of Knight Sampling Strategy. Our proposed strategy gives the sampler the
leaping capability of a knight and divides the entire data space into grids. The leap capability allows
the sampler to fully and uniformly sample from the data space by traversing all the squares.

4.3. Combined Reward

In addition, we deliberately design a combined reward function to make a trade-off
between exploitation and exploration of the data space. The extrinsic reward function lever-
ages the continuous reward function to return a reward for each action to settle the sparsity
of the rewards. The continuous reward function can be regarded as a generalization of
the discrete reward function over the continuous action space. From the perspective of
Information Theory, the intrinsic reward aims to encourage the agent to explore the states
that are expected to bring high information gains. Although all states contain information,
the information gain will decrease when a state is sampled repeatedly. The Gaussian kernel
function, which is exploited to approximately count the times of sampling, returns the
similarity of the current state and the previous ones. Due to the nature of the exponential
function, a few states that are quite similar to the current state will be counted. To cope
with this problem, we can adjust the hyper-parameter σ to control the counting radius.
The similarities between all points and the center in a square are calculated using Equa-
tion (8), and the results are shown in Figure 4. The four subgraphs represent the influence
of σ on the distribution of similarities.

We can tell from Figure 4 that if σ is assigned a small value, the similarity decreases
sharply with the increase in distance from the center. Hence most neighbors of the center
are omitted as they share a similarity close to 0. Therefore, only a few historical states
that are very close to the center will be counted. On the contrary, if σ is assigned a
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larger value, the similarity decreases slowly. Hence more states make contributions to
Equation (9), which indicates that more historical states will be counted. Consequently,
the hyper-parameter σ can be approximated as the counting radius.

Figure 4. Effect of σ on similarity. The four subplots represent the Gaussian kernel function surfaces
of the surrounding points and the center point for different values of the σ. The closer the color is
to red, the closer the similarity is to 1. The closer the color is to blue, the closer the similarity is to 0.
As the σ increases, the steep surface gradually becomes flatter, and the red area gradually increases,
which means that the number of points similar to the center gradually increases.

5. Experiments
5.1. Datasets

To verify the validity of our proposed model, three datasets from different application
scenarios are selected for our experiments. NSL-KDD is a dataset from the domain of web
security, and each sample in it represents a network traffic record that consists of 40 features.
The value of normal in feature attack_type indicates benign connections, while other values
indicate malicious ones. Credit card is a dataset from the domain of finance, which contains
credit card transactions conducted by cardholders in Europe over two days in September
2013. Each sample in the dataset represents a transaction record, which consists of 30
features. The value of 1 in Class indicates an anomalous transaction, while the value of 0
indicates the opposite. Census is a dataset from the domain of sociology, which contains
weighted data extracted from the 1994 and 1995 current population surveys conducted
by the U.S. Census Bureau. The dataset contains 40 features, including demographic and
employment information, in which the record with income “50,000+.” are regarded as
anomalies. The details of the three datasets are listed in Table 1.

Table 1. Datasets Details. “num.” and “cat.” denote numerical features and categorical features,
respectively.

Dataset # Samples # Features % Anomaly

NLS-KDD 148,517 7 cat. + 33 num. 48.12
Credit Card 284,807 30 num. 0.17

Census 299,285 33 cat. + 7 num. 6.20

The three datasets are very representative for their different composition of features,
i.e., NSL-KDD contains 7 categorical features and 33 numerical features, census contains
33 categorical features and 7 numerical features, and credit card only contains numerical
features. Recall the assumptions in Section 3.1 that a dataset for AD task consists of a small
labeled subset of anomalies and a large-scale unlabeled subset. To make the dataset of NSL-
KDD fit our assumption, a downsampling technique is employed to reduce the anomaly
ratio. NSL-KDD contains four types of anomalies, each with a large variation in sample
size, i.e., dos: 45927, r2l: 11656, probe: 995, u2r: 52. Considering the severe intra-imbalance
of anomalies, we keep all samples from probe and u2r, and retain only 11–12% samples
from dos and r2l. The downsampling operation reduces the anomaly ratio from 48.12% to
10.06%.

We select six competing methods to perform a performance comparison with our
proposed model. In their official implementations, raw features are not preprocessed in
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the same manner, e.g., iForest directly removes all categorical features, CatBoost converts
categorical features to continuous values, Deep SAD transforms all features to a low-
dimensional vector, FT-Transformer transforms all features to embedding vectors with the
same length, etc. To reduce the impact of different preprocessing methods on performance,
we use the same data preprocessing for all models. First, numerical features are discretized
into categorical features; Secondly, all categorical features are embedded into a vector with
the same length.

5.2. Competing Methods

Dozens of methods have been proposed to tackle the TAD problems in recent years.
According to the difference in the leveraging of supervisory information, those methods can
be divided into four categories, such as unsupervised learning methods (UN), supervised
learning methods (SU), semi-supervised learning methods (SS) and reinforcement learning
methods. In this work, two state-of-the-art methods from each category are selected as
the baselines.

• iForest [12]. iForest (UN) determines a sample’s anomaly degree based on the distri-
bution of each feature value in its feature field. It assumes that the feature values of
anomalies are sparsely distributed and, therefore, can be easily distinguished from
that of normal samples. A split tree is built for each feature field, and the depth of
the feature value represents the anomaly score of a single feature. By combining the
anomaly scores of multiple features, the anomaly score of a sample can be obtained.

• CBLOF [47]. CBLOF (UN) is a cluster-based anomaly detection method that assumes
that anomalies count for a small proportion of the total size and that the samples far
away from the large cluster can be considered anomalies. First, a clustering method
(e.g., K-Means clustering) is used to cluster samples; Secondly, large clusters are
distinguished from small ones; Lastly, distances between samples and large clusters
are calculated as anomaly scores.

• CatBoost [48]. CatBoost (SU) uses gradient boosting on decision trees. It is an ensem-
ble algorithm that creates a strong learner from an ensemble of multiple weak learners.
As its name suggests, CatBoost is capable of handling categorical data. In addition, it
solves the problems of gradient bias and prediction shift.

• FT-Transformer [24]. FT-Transformer (SU) is a deep model that adapts transformer
architecture to tabular data. All features are first transformed to an embedding vector
and then passed to a stack of transformer layers to get the prediction.

• Deep SAD [18]. Deep SAD (SS) tries to learn a neural network that maps samples to a
low-dimensional space in which normal samples cluster in a compact hypersphere
while anomalous ones are located outside the hypersphere. A few labeled anomalies
can be used in Deep SAD to improve the model’s predictive accuracy.

• DevNet [20]. DevNet (SS) is an end-to-end semi-supervised method that leverages a
limited number of labeled anomalies as prior knowledge to predict anomaly scores. It
is based on the assumption that there exists significant statistical deviation between
normal samples and anomalous ones.

5.3. Evaluation Metrics

Two popular and complementary metrics, AUC-ROC (Area Under Receiver Operating
Characteristic Curve) and AUC-PR (Area Under Precision-Recall Curve), are chosen as the
evaluation metrics in this work. AUC-ROC, which summarizes the ROC curve of true posi-
tives against false positives, is used to evaluate the classification performance of a model.
However, AUC-ROC cannot truly reflect the classification performance when the classes of
samples are severely imbalanced. Whereas AUC-PR, which summarizes the ROC curve
of precision against the recall and focuses on the performance of anomaly class, is more
suitable for this work. A larger AUC-ROC or AUC-PR value reflects better performance.
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5.4. Performance Comparison with Competing Models

To verify the effectiveness of our proposed model, comparative experiments are
conducted on the three datasets, and the results are presented in Table 2. Our proposed
FIR-TAD performs consistently better than its competitors no matter in datasets with
more categorical features or in the dataset with more numerical features. In addition,
several observations can be obtained from the results. First, unsupervised methods cannot
outperform supervised or semi-supervised methods. On the one hand, the absence of labels
reduces the information available. On the other hand, unsupervised methods are usually
based on the assumption that anomalous samples are significantly different from normal
ones in distribution, which may not provide sufficient accuracy. Secondly, semi-supervised
methods perform slightly better than supervised methods due to the exploitation of labeled
anomalies. Thirdly, the DRL methods show strong competitiveness compared with other
deep methods, especially FIR-TAD achieves substantially better performance. We attribute
this to the introduction of feature interactions and the exploration ability of SAC.

Table 2. Performance comparison.

Model
NSL-KDD Credit Card Census

AUC_ROC AUC_PR AUC_ROC AUC_PR AUC_ROC AUC_PR

iForest 0.8359 0.8483 0.9469 0.1412 0.5956 0.0781
CBLOF 0.8213 0.5307 0.8772 0.2451 0.5938 0.0742

CatBoost 0.9208 0.9012 0.8446 0.4867 0.8815 0.3510
FT-Transformer 0.9278 0.8530 0.8275 0.4499 0.8376 0.2335

DeepSAD 0.9391 0.9037 0.8902 0.2577 0.7232 0.1855
DevNet 0.9410 0.9278 0.9520 0.5109 0.8354 0.3211

FIRTAD(ours) 0.9457 0.9362 0.9583 0.5870 0.8952 0.3670

5.5. Test on Robustness

Robustness with regard to anomaly ratio. To study the robustness of all models on
datasets containing different numbers of anomalies, we create five datasets with different
proportions (10%, 5%, 1%, 0.5%, 0.1%) of anomalies based on the NSL-KDD. Comparative
experiments are performed on the five datasets, and the results are shown in Figure 5a.
We choose AUC-PR as the only evaluation metric in the following because the results
of AUC-ROC are often over-optimistic in the case of imbalanced classes. As shown in
Figure 5a, the performance of all models degrades with the decrease in the proportion of
anomalies, and the unsupervised methods are less affected as they distinguish anomalies
based on differences in the distribution of normal samples and are not sensitive to the
number of anomalous samples. With the reduction in supervised information, the super-
vised methods experience significant performance degradation due to their reliance on
supervisory information. Although the semi-supervised methods are less affected by the
decrease in the ratio of anomalies, we note that the performance of the semi-supervised
methods is significantly weaker than that of the unsupervised method when the ratio drops
below 0.5%. In contrast, our proposed method shows better robustness in all cases.

Robustness with regard to label contamination. To test the robustness of all models
under label-contaminated conditions, which is very common in real-world scenarios, we
define five datasets by sampling incremental numbers of labeled anomalies, removing
their labels and blending them into the unlabeled samples. The contamination rates of
the five datasets are 0%, 2%, 5%, 10% and 20%, respectively. All models are evaluated on
these five datasets, and the experimental results in Figure 5b show that the increase in label
contamination rate has almost no impact on the unsupervised method. The supervised
methods suffer the most due to the decrease in data quality. The semi-supervised methods
consistently perform better than the unsupervised methods, proving their good robustness
to label contamination. Our proposed model exhibits the best robustness, and we attribute
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it to the design of the extrinsic reward function, which encourages the exploration of
anomalies in normal samples.

Robustness with regard to unknown anomalies.For some online anomaly detection
systems, the training and test sets usually have inconsistent sample distributions, i.e., the
test set may contain anomalies that never appear in the training set. To compare the
robustness of different methods in the face of unknown anomalies, we define a dataset in
which the training and test set contains only one type of anomaly and four additional test
sets by adding new anomaly types to the test set in turn. We evaluate the trained model
on the five test sets and present the results in Figure 5c. The performance of all models
decreases with the increase in anomaly types, with the unsupervised methods being the
least affected and the supervised methods being the most affected. The semi-supervised
methods still exhibit good robustness. Our proposed model performs significantly better
than its competitors. The introduction of feature interaction allows our model to learn
useful discriminative information, and the exploitation of the DRL algorithm gives our
model the ability to explore the unknown. These two factors give our model very good
robustness to unknown anomalies.

(a) (b) (c)

Figure 5. Test on Robustness. (a) Robustness with regard to anomaly ratio; (b) Robustness with regard
to label contamination; (c) Robustness with regard to unknown anomalies. We find that although the
unsupervised models exhibit the best robustness, their performance is limited. The supervised models
suffer most from the decrease in supervised information and label quality; they perform even worse
than unsupervised models. The semi-supervised models show good robustness against the anomaly
ratio. However, the performance degrades significantly with respect to label contamination and
unknown anomalies. Our proposed FIRTAD shows better robustness and consistently outperforms
the other models.

5.6. Impacts of Hyperparameters

In this section, we mainly focus on the impacts of the hyperparameters using the
NSL-KDD dataset.

• Impacts of representation dimensionality of each feature (d). In a deep model, the
representation vector with a longer length carries more information; hence, it is
common to improve the expressiveness of a model by increasing the representation
dimensionality of the input. Nevertheless, it is a double-edged sword, as an increase
in the dimension of the representation vector would lead to an increase in memory
consumption and a decrease in model efficiency. We choose d = 4, 8, 16, 32 and plot
the AUC-PR in Figure 6a. Apparently, the performance improves as the length of the
vector increases. Concretely, when d changes from 8 to 16, the AUC-PR improves
from 0.9175 to 0.9437, with an improvement of 2.86%. However, as the length of the
vector continues to increase, the improvement in model performance becomes very
limited. The AUC-PR improves from 0.9437 to 0.9439 when d increases from 16 to
32. Considering the consequent doubling of memory consumption and computation
time, d = 16 seems to be a more reasonable option, which creates a balance between
effectiveness and efficiency.

• Impacts of coefficient of intrinsic reward (λ). As discussed in Section 3.4, λ is leveraged
to provide a tradeoff between exploitation and exploration, which represents the
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weight factor corresponding to the intrinsic reward. We choose λ from 0, 0.3, 0.5, 0.8, 1,
in which different values correspond to different extensions of exploration, e.g., λ = 0
represents a deprecation of exploration, while λ = 1 represents the opposite. The
experimental results are plotted in Figure 6b. We can tell from the results that the
introduction of intrinsic rewards does improve the model’s performance, while a
high weight may cause the model to converge prematurely to suboptimal solutions.
As shown in Figure 6b, λ = 0.5 is the most suitable option.

• Impacts of counting radius (σ). To encourage the agent to explore unknown regions in
the environment, we designed the intrinsic reward to score the novelty of a region.
The number of samplings from a region is approximately counted by a Gaussian
kernel function, in which σ can be regarded as the counting radius. For a specific
region that has been visited a certain number of times, increasing the radius will lead
to an increase in novelty and vice versa. We choose the value of σ from 0.1, 0.5, 1, 2, 5
and plot the results in Figure 6c. Intrinsically, a small radius would result in large
intrinsic rewards for new samples, even if similar ones have been sampled many times,
which might hinder the agent from exploring unknown regions. Moreover, a large
radius would result in small intrinsic rewards for samples from sparse regions, which
might result in insufficient exploration of known regions. Both of the above conditions
would reduce convergence speed or make the model converge to a suboptimum,
and this intuition is verified by the experimental results. As shown in Figure 6c, σ = 1
is the most reasonable option.

(a) (b) (c)

Figure 6. Impacts of Hyperparameters. (a) The contribution of representation dimensionality to
model performance improvement decreases with the increase in dimension; (b) The introduction of
intrinsic reward improves the model’s performance, but a high weight would be counterproductive;
(c) A small counting radius will increase the intrinsic reward and thus lower the agent’s desire to
explore the state space, while a large counting radius will render a small intrinsic reward and hence
lead to insufficient exploration of states.

5.7. Ablation Study

To investigate the effects of different components in our proposed model, we propose
several variants based on FIRTAD and conduct ablation experiments on all three datasets.

1. MLP-SAC. MLP-SAC replaces the feature interaction module (GAIN) with an MLP.
To reduce the number of parameters and accelerate model convergence, the MLP is
shared by the Actor and Critic.

2. FIR-DDPG. FIR-DDPG replaces the SAC with the Deep Deterministic Policy Gradient
(DDPG), which is an Actor–Critic, model-free algorithm based on the deterministic
policy gradient that can operate over continuous action spaces.

3. FIR-AB. FIR-AB replaces the knight sampling strategy with the anomaly-biased strat-
egy used in [45].

Table 3 shows the results of our original model, FIRTAD, and its variants. In the
following, we analyze the effects of components in our model. First, compared to the
original model, MLP-SAC shows a significant drop in performance on NSL-KDD and
census. This implies that the feature interaction module indeed enhances our model’s
ability for anomaly detection. Further, we note that MLP-SAC achieves comparable results
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to the original model on credit card, suggesting that GAIN has no advantage in dealing with
data consisting entirely of numerical features. Secondly, although both SAC and DDPG are
off-policy algorithms for continuous action space, SAC has a stronger exploratory capability
than DDPG due to its exploitation of stochastic policy. The comparison result between
FIR-DDPG and FIRTAD validates this view and prove the effectiveness of the SAC module.
Thirdly, the performance gaps between FIR-AB and FIRTAD in the three datasets indicate
that the knight sampling strategy may outperform the anomaly-biased sampling strategy.

Table 3. AUC-PR Performance of FIRTAD and its Three Ablated Variants.

Datasets FIRTAD MLP-SAC FIR-DDPG FIR-AB

NLS-KDD 0.9362 0.6874 0.9012 0.8829
Credit Card 0.5870 0.5798 0.5022 0.3681

Census 0.3670 0.1453 0.3124 0.2445

6. Conclusions

In this paper, we propose a novel anomaly detection method for tabular data called
FIRTAD, which incorporates feature interaction techniques into a deep reinforcement learning
framework. The innovative aspects of this article are manifested in the following dimensions: (1)
It is an anomaly detection system specifically designed for tabular data; (2) It employs the SAC
algorithm to generalize the discrete action space into a continuous space, thereby enhancing
the model’s expressive power; (3) It creates a simulation environment by devising a novel
sampling strategy and a combined reward function; (4) As far as we know, it is the first effort to
apply feature interaction to anomaly detection tasks. The experiments demonstrate that our
proposed model not only outperforms state-of-the-art models in terms of performance but also
exhibits good robustness in situations involving varying anomaly ratios, label contamination
and unknown anomalies. Our model is applicable to real-world anomaly detection scenarios,
particularly in domains that have accumulated some anomalies. This work serves as an
attempt to apply deep reinforcement learning to anomaly detection task and may provide some
inspiration to relevant researchers.

Despite the encouraging results, our proposed FIRTAD still has some limitations. First,
our model relies heavily on large amounts of data for training, so its performance advan-
tages may not be apparent when only dealing with a small dataset. Second, the anomaly
detection capability of our model gradually improves during the interaction between
the agent and the environment, which leads to an increased demand for computational
resources and training time. Third, the experiments demonstrate that the performance
advantages of our model on the balanced dataset are not significant, which limits the
applicability of the model.

Future work will consider using multiprocessing for model training and the study of
anomaly interpretability.
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