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Abstract: In a capacitive power transfer (CPT) system, the coupling capacitance formed between the
coupling plates is very small only in the pF or nF range, which leads to high voltage stress among
the coupling plates during energy transmission, which increases the risk of an electrical breakdown
between the coupled plates. To solve this problem, a novel dual-frequency CPT system is proposed
in this paper, which uses the “peak clipping” effect caused by the superposition of the fundamental
wave and third harmonic wave to reduce the voltage stress of the coupled plates. Through the
detailed analysis of the working principle of the CPT system, it is shown that the dual-frequency
CPT system can indeed reduce the high voltage stress among the coupled plate to 84.3% of the
equivalent single-frequency system and can also reduce the inverter conduction losses to 90%. A
200 W prototype is designed with the proposed scheme, and the experimental results confirm the
correctness of the theoretical derivation.

Keywords: capacitive power transfer (CPT); dual-frequency system; coupler voltage stress; inverter
conduction losses

1. Introduction

As a new non-contact power supply technology, wireless power transfer (WPT) tech-
nology removes the shackle of power lines and greatly improves the flexibility of power
supply equipment. Meanwhile, this technology can avoid the potential safety problems
while charging caused by traditional contact charging, since it has no contact sparks and is
not affected by rain, snow, or other harsh environmental factors [1]. WPT technology is
widely used because of its power supply safety, flexibility, and reliability [2–6]. At present,
the transmission modes of WPT are mainly divided into inductive power transfer (IPT)
and capacitive power transfer (CPT). An IPT system uses a high-frequency magnetic field
generated by coupling coils for power transmission, while CPT technology uses a high-
frequency electric field generated by coupling plates for power transmission [7,8]. IPT has
been proposed for many years and has made good achievements in the field of WPT, with
transmission power up to 1 MW [9], and system optimization can increase the efficiency to
96% [10]. However, an IPT system requires the use of a large number of magnetic cores
and expensive Litz wires to construct a high-frequency magnetic field as a medium for
power transmission, resulting in a high cost and the heavy coupling mechanism of the
IPT system. In addition, the high-frequency magnetic field will cause eddy current loss
in the surrounding metals, which increases the power loss of the system and reduces the
efficiency of the system [11]. Moreover, magnetic field radiation also poses a threat to
the personal safety of organisms [12]. In contrast, a CPT system uses a high-frequency
electric field to transmit power without magnetic field radiation, so it can be applied to the
wireless charging of implantable biomedical devices. A CPT system is proposed that uses a
displacement current to realize the wireless charging of the subcutaneous sensors in [13].
With the human tissue layer as the transmission medium, the corresponding CPT system’s
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coupling mechanism model is established, which realizes the research and development
of a wireless power supply system suitable for the human implantable medical devices
in [14–16]. In addition, the CPT system uses lower-cost and lighter-weight aluminum plates
as the coupling mechanism, so it is suitable for electric locomotive charging, with its strict
cost and weight restrictions. Refs. [17–19] show that a lot of research has been accomplished
on the coupling mechanism model and compensation topology of the static-charging CPT
systems of electric vehicles. In [20], the coupling capacitance is formed by transforming
the tire and the ground to realize a dynamic wireless power supply for electric vehicles.
Ref. [21] proposes a coupling mechanism model suitable for rail transit, which can provide
electric energy for moving locomotives. In addition, a CPT system is not sensitive to
metals and has good environmental compatibility. In [22], a wireless power supply for
refrigerated containers made of metal is realized. In [23], a CPT system is proposed for the
internal winding of a motor. Therefore, CPT has been widely studies by scholars in China
and around the globe because of its lower cost, better environmental compatibility, and
negligible eddy current loss.

However, CPT systems usually have very high voltage stresses between their coupled
plates due to the very small coupling capacitance that is only in the pF or nF range. The
high voltage at both ends of the coupled plate lead to the emission of a strong electric
field and even the risk of dielectric breakdown [10]. Therefore, reducing the voltage
stress on the coupled plate is a key problem. The voltage on the coupling plate can be
reduced by increasing the switching frequency of the inverter (that is, adopting a larger
system frequency), but the system efficiency is reduced due to the increase in switching
loss [24], and the higher frequency requires the higher performance of the device itself. In
addition, in [25], the coupling voltage stress can also be reduced by increasing the coupling
capacitance formed between the coupling plates. However, in some specific scenarios,
due to the limitations of the external environment, the capacitance value formed by the
coupling plates has already been determined, or it is difficult to increase the rating value
required by the system. In [21], the voltage on both sides of the coupling plate is changed by
adjusting the resonant network and the isolation transformer to reduce the voltage between
the coupling plates. Ref. [10] proposes a parameter design method for a two-sided LCLC
compensation CPT system based on the pre-designed voltage limit of the coupled plate.
Ref. [26] redistributes the voltage stress on all the compensation components and coupling
plates through a mathematical calculation based on a double-sided LC compensation
circuit and reduces the voltage stress of the coupling plate by optimizing the compensation
network and system parameters in a single-frequency system.

In this paper, a novel voltage stress optimization approach is proposed to reduce
the voltage stress of the coupled plate by introducing the voltage component of the third
harmonic frequency. As shown in Figure 1, the superposition of the primary and tertiary
frequency voltages can produce an obvious “peak clipping” effect. A multi-frequency
system has been studied for IPT. Ref. [27] makes a detailed performance analysis of a
multi-frequency power transmission system for IPT. Refs. [28–30] realizes multi-channel
and multi-load energy transmission by using a multi-frequency IPT system. However,
compared with IPT, CPT has a different coupling structure and compensation topology, so
the analysis of a multi-frequency power transmission system in an IPT system cannot be
directly applied to a CPT system.

In this paper, a new dual-frequency CPT system is proposed. Due to its special
compensation network design, both the primary and tertiary frequency voltage components
of the inverter output voltage can be utilized to transmit energy at two frequencies. In
addition, the voltage stress of the coupling plate can be reduced by controlling the ratio
of the transmitted energy of the two frequencies, while the conduction loss of the inverter
can be reduced. The contributions of this paper are as follows. (a) A CPT system capable
of dual-frequency power transmission is proposed. Compared with the equivalent single-
frequency system, a dual-frequency system can reduce the voltage stress amplitude on
the coupled plate and also reduce the conduction loss of the inverter. (b) The working
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principle of the dual-frequency CPT system is analyzed in detail, and the control strategy
of the energy transmission ratio between the primary and tertiary frequency channels is
proposed. (c) According to the theoretical derivation scheme, a test prototype is designed
to verify the correctness of the proposed theory.
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Figure 1. The fundamental and third harmonic frequencies’ superimposed wave cluster.

The rest of this paper is organized as follows. In the Section 2, the proposed circuit
model is introduced systematically, including the dual-power equivalent model and the
resonant unit module equivalent model. Then, the circuit analysis of the proposed dual-
frequency system is carried out to obtain the control method of the power transmission
ratio at different frequencies. In the Section 3, the equivalent fundamental single-frequency
circuit is introduced, and the single-frequency circuit and the dual-frequency circuit are
compared and analyzed. The influence of the introduction of the third harmonic frequency
voltage component on the voltage stress among the coupled plates and the inverter conduc-
tion losses is explained in detail. Then, the system parameter design process is given. In
Section 4, the correctness of the proposed theory is verified by simulation and experiment.
The Section 5 summarizes the full text.

2. System Description and Working Principle
2.1. System Description

The dual-frequency CPT system is shown in Figure 2a. The system has two power
sources that provide power at two frequencies from the fundamental and third harmonic
frequency voltage components of the full-bridge inverter output voltage. Assuming that
the duty ratio of the full-bridge inverter is 50%, the rectangular wave voltage vin(t) on the
AC side can be decomposed into a Fourier series composed of odd harmonics.

vin(t) =
4Vdc

π

∞
∑

n=1

sin((2n−1)ωt)
2n−1 , n = 1, 2, 3, · · · (1)

For different frequencies, we can define each parameter separately and express it with
corresponding subscripts (i.e., 1 represents the fundamental wave, and 3 represents the
third harmonic wave). The root mean square value of the fundamental and third harmonic
voltage can be expressed as

Vin,1 = 2
√

2Vdc
π , Vin,3 = 2

√
2Vdc

3π
(2)
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Figure 2. (a) Dual-frequency CPT system schematic. (b) Compensation unit model [27]. (c) Dual-
frequency CPT system Π-type equivalent circuit model. (d) Dual-frequency CPT system T-type 
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The resonant compensation structure adopts a topological structure similar to that of
a double-sided LC, though different from the general double-sided LC compensation. Due
to the need to make the system reach the resonant condition at the same time under the
dual frequencies of the fundamental and third harmonic, we need to specifically design
the resonant compensation module. In Figure 2b, the original single impedance element
is replaced by a combination of Li and Ci connected in parallel in series C′i (or Lj and Cj
connected in parallel in series L′j) [30], so the equivalent impedance is represented by Zi or
Zj; then,

Zi =
jωLi

1−ω2LiCi
+

1
jωC′i

i = 1, 4Zj =
jωLj

1−ω2LjCj
+ jωL′j j = 2, 3 (3)

The two capacitors formed by the coupled plates are a series structure. The equivalent
capacitance can be represented by CX , and the equivalent impedance can be represented by
ZX , namely,

CX = Cm
2 , ZX = 1

jωCX
= 2

jωCm
(4)

The equivalent Π-type circuit model of the dual-frequency CPT system is shown in
Figure 2c. The full-bridge inverter generates high-frequency AC voltage to supply power
to the primary side resonant network. The high voltage of the fundamental and third
harmonic frequency voltages, Vin,1 and Vin,3, respectively, raised by the resonant network
generates a displacement current between the coupling plate and then supplies power to
the load end after the secondary resonant network depressurizes. The key condition for the
normal operation of the dual-frequency system is that the input impedance of the system is
very low at both frequencies to realize the dual-frequency wireless power transmission.

2.2. Working Principle

Figure 2d shows the equivalent T-type circuit model transformed from the Π-type
circuit model of the dual-frequency CPT system. So

Z2X = Z2ZX
Z2+Z3+ZX

, Z3X = Z3ZX
Z2+Z3+ZX

, Z23 = Z2Z3
Z2+Z3+ZX

(5)
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The relation between the input current Iin, output current Iout, and input voltage Vin
can be expressed as[

Vin
0

]
=

[
Z1 + Z2X + Z23 −Z23

−Z23 Z23 + Z3X + Z4 + RL

]
·
[

Iin
Iout

]
(6)

In order to achieve the resonant state of the system to achieve the zero phase angle
(ZPA) characteristic,

Z1 + Z2X + Z23 = 0, Z23 + Z3X + Z4 = 0 (7)

According to Equations (6) and (7), Iin and Iout can be expressed as

Iin = −VinRL
Z2

23
, Iout = − Vin

Z23 (8)

According to Formula (6), Z23 determines the values of the input current Iin and output
current Iout when Vin and RL are constant. Therefore, we can control the power transmission
ratio at different frequencies by controlling the value of Z23 at different frequencies.

3. System Design Considering Coupler Voltage Stress and Inverter Conduction Losses

A constant, k, is used to represent the ratio of power transmission at different frequen-
cies. Pout is the total transmission power; Pout,1 and Pout,3 represent the transmission power
under the fundamental and third harmonic frequencies, respectively.

Pout,1 = kPout, Pout,3 = (1− k)Pout (9)

In the ideal state without considering the system loss, the transmission power of the
system can be expressed as

Pout,1 = I2
out,1RL =

(
Vin,1
Z23,1

)2
RL, Pout,3 = I2

out,3RL =
(

Vin,3
Z23,3

)2
RL (10)

Here, we assume an equivalent fundamental single-frequency system that transmits
the same amount of power as the dual-frequency system. In the following derivation, we
define the single-frequency system and the dual-frequency system with the subscripts s
and d, respectively, so

Pout,s = I2
out,sRL =

(
Vin,1
Z23,s

)2
RL (11)

By combining Equations (9)–(11), Equation (12) can be obtained.

1
Z2

23,1
= k

Z2
23,s

, 1
Z2

23,3
= 9(1−k)

Z2
23,s

(12)

We take Z23,s as the base value, so the unit values Z∗23,1 and Z∗23,3 can be expressed as

Z∗23,1 =
√

1
k , Z∗23,3 =

√
1

9(1−k) (13)

3.1. Analysis of Coupler Voltage Stress

According to Figure 2c, the equations of KVL areVin
0
0

 =

Z1 + Z2 −Z2 0
−Z2 Z2 + ZX + Z3 −Z3

0 −Z3 Z2 + Z4 + RL

·
 Iin

Im
Iout

 (14)
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By combining Equations (5), (7), (8) and (14), Equation (15) can be obtained.

Im =
−Vin[(Z2+ZX+Z3)RL+Z2

3 ]
Z2Z2

3
(15)

Then, the coupler voltage Vm can be represented as

Vm =
−VinZm[(Z2+ZX+Z3)RL+Z2

3 ]
Z2Z2

3
= −VinZm

Z2
·
[

1 + (Z2+ZX+Z3)RL
Z2

3

]
(16)

Although dual-frequency power transmission results in the existence of two power
transmission “channels” that can themselves be controlled independently by the corre-
sponding parameters at their respective frequencies, the relative positioning of the voltage
components at the two frequencies is still very important, especially when considering the
voltage stress of the coupled plate. Since the relative positioning between two signals at
different frequencies cannot be defined by using the phase shift angle, we select a special
position: inverter output terminal voltage vin(t). Here, there is no phase shift when the
fundamental and third harmonic voltage components refer to a common origin, namely,

vin(t) =
√

2Vin,1 sin(ωt) +
√

2Vin,3 sin(3ωt). (17)

As shown in Figure 1, the voltage components vm,1(t) = Vm,1 sin(ωt + θ1) and
vm,3(t) = Vm,3 sin(3ωt + θ3) of the coupled plate voltage vm(t) at the two frequencies
need to meet the following conditions in order to achieve the desired “peak clipping” effect.

θ3 − 3θ1 = 2nπ, n = 0,±1,±2 · · · (18)

When Equation (19) is true, Equation (18) is satisfied.∣∣Z2
3

∣∣� |(Z2 + ZX + Z3)RL| (19)

Equation (20) can be obtained by simplifying Equation (16).

Vm = −VinZm
Z2

(20)

Equation (19) is not difficult to realize, so take one of the cases, Equation (21), to
simplify the operation.

Z23 = Z2Z3
Z2+ZX+Z3

= −Z2 (21)

So
ZX + Z2 + 2Z3 = 0 (22)

Vm = VinZm
Z23

(23)

It should be noted that Equation (19) should still be met in the subsequent parameter
design. With Vm,s as the basic value, the normalized value of the fundamental and the third
harmonic frequency components (V∗m,1 and V∗m,3) in the plate voltage of the dual-frequency
system can be expressed as

V∗m,1 =
Z∗m,1
Z∗23,1

=
√

k, V∗m,3 =
Z∗m,3

3Z∗23,3
=
√

1−k
3 (24)

Then, the voltage vm,d(t) on the coupled plate of the dual-frequency system can be
expressed as

vm,d(t) =
√

2Vm,s

[
√

k sin(ωt) +
√

1− k
3

sin(3ωt)

]
(25)
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Taking the voltage amplitude Vm,s,max =
√

2Vm,s as the basic value, the normalized
coupler voltage amplitude V∗m,d,max of the dual-frequency system can be expressed as

V∗m,d,max = max
[√

k sin(ωt) +
√

1−k
3 sin(3ωt)

]
(26)

According to Equation (26), the relationship between the normalized coupler voltage
amplitude V∗m,d,max and power-sharing ratio k in the dual-frequency system can be obtained,
as shown in Figure 3. The higher the proportion of energy transmitted through the third
harmonic frequency “channel” is, the lower the voltage stress among the coupled plates
is. When the energy is transmitted only through the third harmonic frequency “channel”,
the voltage stress on the coupled plate is 33.3% of the equivalent single-frequency system.
This shows that it is viable to reduce the voltage stress among the coupled plates by
simultaneously transmitting energy at the fundamental and third harmonic frequencies.
Of course, the power-sharing ratio k value should also pay attention to the influence of
other factors.
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3.2. Analysis of Inverter Conduction Losses

According to Equation (8), the inverter currents of the equivalent single-frequency
system and the dual-frequency system can be expressed as

Iin,s = −
Vin,1RL

Z2
23,s

, Iin,1 = −Vin,1RL
Z2

23,1
, Iin,3 = −Vin,3RL

Z2
23,3

(27)

Further, it can be concluded that when compared with the equivalent single-frequency
system, the normalized inverter conduction losses P∗inloss,d of the dual-frequency system
can be expressed as

P∗inloss,d =
Pinloss,d
Pinloss,s

=
I2
in,1+I2

in,3
I2
in,s

= k2 + 9(1− k)2 (28)

According to Equation (28), the relationship between the normalized inverter conduc-
tion losses P∗inloss,d and power-sharing ratio k in the dual-frequency system can be obtained,
as shown in Figure 4. When the energy is transmitted only through the third harmonic
frequency “channel”, the inverter conduction losses are nine times that of the equivalent
single-frequency system. When k = 0.9, the inverter conduction losses Pinloss,d of the
dual-frequency system are the smallest: 90% of the equivalent single-frequency system
with the same transmission power.
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3.3. System Parameter Design

The coupler voltage amplitude Vm,d,max and inverter conduction losses Pinloss,d of the
system under different conditions can be obtained, as shown in Table 1. By controlling the
power-sharing ratio k = 0.9, the voltage stress among the coupled plates and inverter conduction
losses of the dual-frequency system are better than those of the single-frequency system.

Table 1. Vm,d,max and Pinloss,d of the system under different conditions.

k Vm,d,max Pinloss,d

0 0.333·
√

2Vm,s 9Pinloss,s
0.2 0.594·

√
2Vm,s 5.8Pinloss,s

0.4 0.632·
√

2Vm,s 3.4Pinloss,s
0.6 0.7·

√
2Vm,s 1.8Pinloss,s

0.8 0.775·
√

2Vm,s Pinloss,s
0.9 0.843·

√
2Vm,s 0.9Pinloss,s

1
√

2Vm,s Pinloss,s

To reduce the voltage stress among the coupled plates, a parameter design method
based on the dual-frequency CPT system is proposed as follows.

First, determine the pre-designed system parameters Vin, f , and Cm and total output
power PL, where Cm is directly measured by measuring equipment. Then, the appropriate
power-sharing ratio k is selected. In this paper, k = 0.9 is finally selected through the
analysis of the system. Second, based on the selected system parameters, the appropriate
Z23 (Z23,1 and Z23,3) is selected according to Equation (13). To obtain the value of each
element, we must calculate the different values of each compensation block Zi (i = 1, 4)
and Zj (j = 2, 3) at two frequencies. Based on the existing analytical derivation, Z2
and Z3 can be obtained from Equations (21) and (22), respectively. Third, based on the
Π-type to T-type transformation relationship, Z2X and Z3X can be obtained according
to Equations (5) and (7), respectively. To realize the load-independent constant current
(CC) output and input zero phase angle (ZPA), we can obtain Z1 and Z4 according to
Equation (7). Finally, based on the different values of Z1, Z2, Z3, and Z4 at both frequencies,
the parameter values of each inductor and capacitor element can be flexibly designed
according to Equation (3). The system design process of the proposed dual-frequency CPT
system is shown in Figure 5.
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4. Experimental Verification

To verify the above derivation, a test prototype was designed, as shown in Figure 6.
The parameters of each component of the system were designed according to Figure 5
and recorded in Table 2. In the actual experimental operation, we used the precision LCR
meter in the laboratory to ensure that the actual value of each parameter is as close to the
expected value as possible. Coupled plates adopted PCB board design, and Cm = 1.28 nF.
The switching frequency of the inverter was selected as 500 kHz. To reduce the influence
of the skin effect, a Litz wire containing 1200 strands with a diameter of 0.05 mm was
selected. WIMA high-frequency thin-film capacitors were selected to reduce power losses.
The inverter was made of CREE silicon carbide (SiC) MOSFETs, and the rectifier was made
of Infineon’s SiC diodes.
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Table 2. Parameters of the experimental setup.

Parameter Value Parameter Value

Input DC Voltage 50 V Cm 1.28 nF
Switching Frequency 500 kHz L3 21.6 µH

L1 3 µH C3 787 pF
C1 11.64 nF L′3 50 µH
C′1 8.8 nF L4 29.15 µH
L2 2.1 µH C4 7.12 nF
C2 18.19 nF C′4 816 pF
L′2 3 µH RL 40 Ω

Figure 7 shows the bode plots of system input admittance. It can be seen that the
CPT system can realize the input ZPA characteristics at the two frequencies, 500 kHz
and 1500 kHz, and the input admittance is about 0.1 s, meeting the requirements for
dual-frequency power transmission.
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Figure 7. Experimental prototype of the proposed CPT system.

Figure 8 shows the timing diagram of the system input voltage vin, input current iin,
coupler voltage vm, and output current iout, where (a) is for the simulation test, and (b) is
for the experimental test. The waveforms of the input current iin and coupler voltage vm all
show the “peak clipping” effect, which is consistent with the previous theoretical proof and
proves the feasibility of using additional third harmonic frequency transmission “channel”
to reduce the voltage stress among the coupled plates and the inverter conduction losses.
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Figure 8. Waveforms of input voltage vin, input current iin, coupler voltage vm, and output current
iout for the dual-frequency CPT system in the (a) simulation test and (b) experimental test.
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Figure 9 shows the simulation waveforms of (a) the coupler voltage vm and (b) inverter
output current iin between the proposed dual-frequency system and the equivalent single-
frequency system. By comparison, we can see the feasibility of using a dual-frequency system
to reduce the voltage stress among the coupled plates and the inverter conduction losses.
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the resonant state. 
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Figure 10 shows the output power and efficiency under different inverter input voltages.
When the output power is higher than 200 W, the efficiency of the CPT system reaches 83.71%.
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Figure 11 shows the waveforms after adding the rectifier structure. We found that the
inverter output current waveform appeared distorted, and the system deviated from the
resonant state.
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Figure 11. Waveforms of input voltage vin, input current iin, coupler voltage vm, and output current
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As shown in Figure 12, enhanced multiple harmonic analysis (eMHA), a load equiva-
lent method where ZLeq,n = RLeq,n + jXLeq,n, is proposed in [31]. The rectified CPT system
is converted into a series of linear systems with complex load impedance, which explains
the waveform distortion. In addition, it can be seen from Equation (23) that the voltage
stress among the coupled plates of the dual-frequency CPT system is load-independent, so
the voltage waveform of the plate is not affected before or after the addition of the rectifier
bridge. Therefore, we just need to modify the parameters of Z4 to bring the system back to
the resonant state. Table 3 shows the corrected parameter values.
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Table 3. Parameters of the corrected system.

Parameter L4 C4 C
′
4

Original Value 29.15 µH 7.12 nF 816 pF
Corrected Value 3.3 µH 12.7 nF 626 pF

5. Conclusions

A novel dual-frequency CPT system is proposed in this paper. The goal of reducing
the voltage stress among the coupler plates is realized by introducing additional third
harmonic voltage components. By controlling the energy transfer ratio of 9:1 (k = 0.9) at the
fundamental and third harmonic frequencies, the coupler voltage stress is reduced to 84.3%,
and the inverter conduction losses are reduced to 90% of the equivalent single-frequency
system. An experimental prototype with a transmission power of 200 W is designed to
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verify the effectiveness of the proposed dual-frequency CPT system at a system frequency
of 500 kHz. The results of the simulation and experiment verify the correctness of the
theoretical derivation. In addition, we correct the parameters of Z4 to make the system
return to the resonant state according to eMHA.
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