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Abstract: Falls are one the leading causes of accidental death for all people, but the elderly are at
particularly high risk. Falls are severe issue in the care of those elderly people who live alone and
have limited access to health aides and skilled nursing care. Conventional vision-based systems
for fall detection are prone to failure in conditions with low illumination. Therefore, an automated
system that detects falls in low-light conditions has become an urgent need for protecting vulnerable
people. This paper proposes a novel vision-based fall detection system that uses object tracking and
image enhancement techniques. The proposed approach is divided into two parts. First, the captured
frames are optimized using a dual illumination estimation algorithm. Next, a deep-learning-based
tracking framework that includes detection by YOLOv7 and tracking by the Deep SORT algorithm
is proposed to perform fall detection. On the Le2i fall and UR fall detection (URFD) datasets, we
evaluate the proposed method and demonstrate the effectiveness of fall detection in dark night
environments with obstacles.

Keywords: fall detection; YOLOv7; dual illumination estimation; CNN; Deep SORT

1. Introduction

The World Health Organization states that falling has been ranked as the second
leading cause of accidental death [1]. A fall is described as a rapid change from a normal
state to a reclined or extended position of the whole body. It can be caused by discomfort
or unsteadiness while standing [2]. Recent studies indicate that the death rate among the
elderly due to falls is nearly three times higher than that of younger age groups [3,4]. Most
older people, especially those living independently without a carer, fear severe injuries or
even fatalities from falling because of delayed assistance. This demonstrates the importance
of early warning and convenient management of falls. It is foreseeable that with practical
and timely detection and warning mechanisms, the rate of severe injuries and even fatalities
in falls, especially among the elderly, will be significantly reduced [5,6].

Most of the current fall detection and warning systems employ sensors such as barom-
eters, accelerometers, gyroscopes, and inertial sensors [7,8]. These sensors are usually used
in wearable devices, including a smartwatch, shoes, and necklace, to monitor users’ body
parameters to detect a fall. However, they have the drawback of requiring the devices to be
put on the user’s body, which makes it uncomfortable and infeasible to be worn constantly.
Furthermore, sensor-based fall detection systems are expensive and have data privacy and
security concerns.

With the advent of vision-based systems, computer vision has witnessed a growing
trend in its applications. Notably, significant amounts of research are focused on vision-
based systems to monitor any anomalies in body movement for fall detection [5,9–13]. Such
methods can be divided into two categories based on the data used, namely, (1) RGB-based
detection and (2) depth-based detection [14]. In this paper, we perform fall detection
on an RGB-based dataset using a deep learning framework. Deep learning networks, in
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particular, convolutional neural networks (CNNs), have emerged as a popular computation
framework in computer vision [15–19]. Many deeper and more complicated networks are
being developed to enable CNNs to deliver near-human accuracy in many applications,
such as classification [20,21], detection [22–24], and segmentation [25,26]. A CNN-based
deep learning approach on RGB-based datasets has been established as state-of-the-art for
fall detection [12,13,27,28]. Although these methods enable flexible automatic feature
extraction from images, they use only one keyframe, which may not be sufficient to
adequately classify falls in videos. For example, a fall can be summarized using distinctive
keyframes based on variations in position from standing or sitting to lying down [29].
Specifying the location of such keyframes for falls would be too tedious and prone to errors.
Therefore, there is a need for a frame-to-frame object tracking mechanism to characterize
the current state of the body.

This paper presents a novel deep-learning-based tracking-by-detection approach to
detect falls in videos. Tracking-by-detection methods consist of: (1) an object detection
algorithm that gives the object’s bounding box coordinates for each frame, and (2) a track-
ing algorithm that decides if the newly detected object can be connected to the predicted
position of existing tracks. The quality of both the detection algorithm and the data associa-
tion algorithm heavily influences the effectiveness of object tracking [30]. Specifically, the
proposed method integrates Simple Online and Realtime Tracking with a Deep association
metric (Deep SORT) algorithm [31] with YOLOv7 [32] for fall detection. Performance is
highly dependent on the light in the environment. In the real-world setting, fall detection
can be challenging due to light changes and poor illumination. To improve the overall
efficiency, we combine the deep-learning-based tracking-by-detection with an image en-
hancement algorithm. Our proposed hybrid method significantly reduces the false positive
rates in the fall detection task.

The main contributions of this paper are as follows:

• A novel deep-learning-based approach for vision-based fall detection is proposed,
integrating YOLOv7 for object detection and the Deep SORT algorithm for tracking
and trajectory analysis.

• The proposed method incorporates dual illumination estimation, utilizing a Retinex-
based image enhancement algorithm, to effectively tackle the issue of inconsistent
lighting conditions and exposure levels.

• The effectiveness and superiority of the proposed approach over current state-of-the-
art methods are extensively demonstrated, offering a robust solution for vision-based
fall detection.

2. Related Works

Elderly care requires continuous monitoring by health care staff, which is costly, time-
consuming, and even considered an intrusive process that disrupts individuals’ routines
and privacy [33]. Thus, an automatic fall detection system is required in healthcare services
to provide cost-effective, efficient, and timely care to the person affected. Researchers have
exhaustively explored many methods of fall detection to reduce the number of injuries
caused by falls. These systems are broadly classified based on the device used to detect
the fall, including wearable sensors, environment sensors, and vision-based sensors. In
wearable devices, one or more sensors are put on various body parts of the person to detect
and identify falls from activities of daily living (ADL). It detects any rapid increase in
negative acceleration when the individual suddenly changes its position from standing to
lying down [34,35]. For environment-based sensors, signals from acoustic [36], infrared [37],
vibration [38] and pressure [39] are collected and analyzed to detect falls. These devices
are less intrusive than wearable sensor-based devices and require less interaction with the
individual, which reduces privacy and security concerns. However, environment-based
sensors are prone to false alarms due to changes in the external environment. For example,
different noises or other falling items in the room can impact the sensors’ performance [40].
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In recent years, the development of vision-based sensors has led to several computer
vision-based approaches being proposed for fall detection. Vision-based approaches ex-
tract data from sensors which can be RGB-based, depth-based, thermal-based, or even a
combination of these. The extracted data is then utilized by computer vision algorithms
to detect any unusual changes related to the body trajectories, postures, or shapes to
identify falls. The most common approach in computer vision is based on hand-crafted
feature extraction [9,11]. Sehairi et al. [11] use a finite state machine (FSM) on a human
silhouette extracted by background subtraction technique to determine if a fall happened.
Albawendi et al. [9] perform fall detection based on hand-crafted features extracted from
projection histogram, motion information, and human shape variation. Recently, deep
learning methods have gained popularity over hand-crafted feature-based methods due to
their ability to extract important features in high dimensional data independently.

Deep learning has been successfully applied in fall detection, demonstrating high
performance. Lu et al. [12] incorporate a combination of a three-dimensional convolutional
neural network (3D CNN) and a long short-term memory (LSTM) in their fall prevention
method. Han et al. [13] improve the fall detection speed using a two-stream approach
with the lightweight MobileVGG. Recently, human skeleton joint coordinates extracted
from RGB data have also been used to detect falls [10,28]. The authors [10] propose a
spatiotemporal network based on CNNs, GRUs, and fully connected layers to classify falls
and ADL. The existing methods for fall detection involve either a combination of various
tasks, such as foreground and background separation or human skeleton joint coordinates.
In contrast, our proposed method uses spatio-temporal features from RGB data using a
deep-learning-based tracking-by-detection approach.

A considerable amount of research has been conducted in the field of tracking-by-
detection approach [41–44]. These methods use spatiotemporal data to extract relevant
features and then use them as inputs to distinguish between the identified objects. Fi-
nally, a tracker follows the object during the video flow. Despite the promising results
obtained by tracking-by-detection methods, these methods can still suffer from colour bias
or complex underexposed conditions [45]. Therefore, this paper presents a two-stage fall
detection framework. First, we perform exposure correction of the video frames using
a dual illumination estimation method [46]. The method adaptively corrects the frames
based on exposure conditions, including overexposed, underexposed, and partially over-
and underexposed conditions. Second, we use the YOLOv7 algorithm [26] to detect the
subject’s activity and combine the appearance information from object-detection CNNs
with a fast, improved Deep SORT [25] based multiple object tracking (MOT) method to
extract motion features and compute trajectories.

3. Methodology
3.1. Experimental Data

In this paper, we use two publicly available datasets, i.e., the Le2i Fall Detection
dataset [47] and the UR Fall Detection dataset (URFD) [48]. The Le2i dataset is composed
of falls captured by narrow angle cameras. The dataset includes videos of various actors
falling and not falling in different illumination scenarios. The videos vividly depict real-
world scenes of people falling while performing their daily activities. These scenes are
captured in a variety of environments, including homes, workplaces, and pantries; it makes
for more accurately simulated realistic video sequences of falls during everyday activities,
as shown in Figure 1. The UR Fall Detection dataset [48] contains 60 videos taken by two
cameras placed at different angles. Figure 1a,b shows some example video frames from the
Le2i and URFD dataset, respectively.
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Figure 1. Some example video frames from the publicly available datasets (a) Le2i and
(b) URFD dataset.

3.2. Annotation

Our annotate method detects the person class in each frame using a pre-trained
YOLOv5 model, and then stores the bounding box coordinates in a CSV table. In the
next step, we examine each frame and correct the annotation results for fall and up-
right, as shown in Table 1. Figure 2 shows the detection results of YOLOv5 and Manual
post-correction.

Table 1. Example bounding box coordinates and annotations.

File Name Xmin Ymin Xmax Ymax YOLOv5
Annotations

Manually Corrected
Annotations

000018.jpg 120 101 187 200 person upright

000019.jpg 109 113 194 198 person upright

000020.jpg 108 116 195 197 person fall

000021.jpg 107 125 198 200 person fall

000022.jpg 107 125 198 200 person fall

000023.jpg 107 125 198 200 person fall

3.3. Proposed Framework

The proposed framework is shown in Figure 3, which employs a two-stage framework
to detect falls in low-light indoor environments. The object detection model is used as the
main component of the fall detection system to further elaborate on the proposed technique.
In the first stage, the captured video frames are pre-processed to improve the visual quality
of the footage. This is accomplished using a dual illumination estimation-based exposure
correction technique field [40]. The goal of this step is to adjust the brightness, contrast,
and detail of the video frames so that later stages can detect falls more accurately. On
the enhanced video frames, the second stage implements a deep-learning-based approach
for person tracking and detection. This is accomplished using a technique known as
people tracking by detection, which involves using an object detection model to track the
movements of people in video footage. The algorithm can detect when a person falls by
analysing the motion patterns of the tracked objects. To detect falls in low-light indoor
environments, the proposed fall detection system utilizes a sophisticated combination of
exposure correction and deep-learning-based people tracking by detection algorithms. By
improving the visual quality of the video footage and leveraging advanced object detection
techniques, the system can improve the accuracy and reliability of fall detection.
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3.3.1. Object Detection

RetinaNet was proposed by Lin et al. [49] in 2018, which is based on three parts: the
ResNet backbone, the feature pyramid network (FPN), and the object classification and
bounding box regression subnetwork. Deeper neural networks capture more information,
and the ResNet backbone uses identity mappings to ensure that performance does not
degrade as the network’s depth increases. The FPN brings the benefits of multi-scale fusion
by capturing coarse to fine semantic information, allowing for more feature details to be
obtained for small object detection tasks and thus improving accuracy. The RetinaNet
model runs the classification and regression sub-networks in parallel before attaching them
to the FPN module. A sigmoid activation function is used to predict the classification at
each location by the classification module. The regression sub-network outputs coordinate
values of shape 4 via a fully connected layer. In object detection tasks [50–52], an imbalance
between positive and negative samples is a major cause of classification difficulties. The
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Focal Loss method solves this problem by adjusting the weights of the difficult and easy-to-
classify samples.

Redmon et al. [53] proposed You Only Look Once (YOLO), which combines object
detection and regression into a single task. The input image is segmented into multiple
grid cells to accomplish this. The case where the object’s centre point is located on the grid
is seen as the anchor box responsible for detecting the object class. The YOLOv5 [54] and
YOLOv7 [32] models used in this paper are optimized from YOLOv3 [55]. The reparameter-
ization convolution method is used in YOLOv7. This method fuses the convolutional layers
and batch normalization into a single convolutional module, which greatly improving the
model inference speed.

The main advantage of one-stage models used in the proposed method is the high
computational efficiency and better inference speeds over two-stage models. In real-time,
vision-based systems for fall detection need to be faster and more efficient. Furthermore,
the one-stage models address the class imbalance problem in fall detection to improve the
detection accuracy.

3.3.2. Object Tracking

The Simple Online and Realtime Tracking (SORT) algorithm [30], proposed in 2016, is
a straightforward and quick method for multiple object tracking (MOT). The correlation
between the preceding and following frames is processed using Kalman filtering and
then measured using the Hungarian algorithm [56]. The Deep SORT algorithm is an
extension of the SORT algorithm. The Deep SORT algorithm’s neural network weights
training on the pedestrian dataset as best suited for human fall detection. By matching
the extracted features to the object’s nearest neighbors, it is well adapted for improving
object tracking [57] and detection in obstacle-type environments [31]. The feature extraction
network can significantly improve the Deep SORT algorithm’s robustness to obstacles and
object loss.

Using object-tracking methods in conjunction with fall detection systems is a promis-
ing approach, especially given the limitations of current visual method studies, which
frequently overlook the possibility of increased false-negative detection rates. Deep SORT,
fortunately, can help address this issue by predicting the potential location of the next frame
and calculating correlations, providing an early warning if a person becomes obscured
from view. It is possible to improve the accuracy and reliability of fall detection systems
by incorporating this approach, thereby improving the safety and well-being of individu-
als at risk of falling. It is notable to combine object tracking methods with fall detection
systems. Most current visual method studies do not account for the potential increase in
false-negative detection rates. Deep SORT provides early warning if a person is obscured
by predicting the potential location of the next frame and calculating correlations.

3.3.3. Dual Illumination Estimation (DUAL)

Zhang et al. [40] proposed the dual illumination estimation algorithm for dark light
image enhancement. This method is based on the core concept of Retinex. The colour of
an object is determined by its ability to reflect light of three different wavelengths. The
support for this concept is based on colour constancy. Dual illumination enhancement
demonstrates that uneven lighting conditions do not affect the colour of the object. When
there is underexposure or underexposure, the colour of the object does not change. The
illumination is estimated in both the forward and reverse directions to recover a properly
exposed image.

The objective of this project is to create the image I by using the image light mapping
method L to multiply each pixel value in the existing image I′. When an overexposed image
is reversed, it produces an underexposed image. This can be interpreted as locating the
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overexposed portion of the current image by entering a forward and reverse image. The
generated image I is defined in Equation (1) below,

I = I′ × L (1)

Here, I′ is calculated according to Equation (2), where Iinv = 1 − I is the formula for the
inverted image. At this point, the illuminance map Linv for the current state is estimated.
As a result of calculating the underexposure correction, the image Iinv can be obtained.

I′ = 1−
(

Iinv × I−1
inv.

)
(2)

L′p = maxIc
p, ∀c ∈ {r, g, b} (3)

where c is the colour channel; p is the pixel and Ic
p is expressed as the colour channel c

in pixel point p. Before estimating the illumination of the image, it needs to extract the
maximum channel value for each pixel in the RGB tree-channel image. It is possible to
compose an initialized illuminance L′p by iteratively obtaining each maximum value as
shown in Equation in (3). The desired illumination map L is obtained using the objective
defined in Equation (4).

argmin
L

∑
p

((
Lp − L′p

)2
+ λ

(
wx,y(ϑxL)2

p + wy,p
(
ϑyL

)2
p

))
(4)

In real-world conditions, the performance of deep learning models suffers due to
videos captured under suboptimal lighting conditions caused by dim or uneven light. For
example, in an indoor setting, a video captured at night has dark or under-exposed regions
due to insufficient illumination. This may result in the proposed systems failing to monitor
individuals’ activities, resulting in high false-negative rates. Figure 4 shows the results
from Le2i FDD obtained by using a dual estimation algorithm.
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4. Experimental Evaluation
4.1. Experimental Setup

This paper uses RetinaNet, YOLOv5, and YOLOv7 object detection algorithms based
on a PyTorch framework to evaluate the proposed approach. Experimental results are
conducted on a Tesla P100 GPU with 16,280 Mb video memory. The initial learning rate
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for YOLO series models is set to 0.1, gradually decreasing to 0.01 during training, whereas
RetinaNet uses a learning rate of 0.00025. As shown in Table 2, the batch size for YOLOv7
and RetinaNet is set to 8, and for YOLOv5, the batch size is set to 32. All the models are
trained for 100 epochs each. For the YOLOv7/w DUAL, we use the same model parameters
as YOLOv7. McNemar’s significance test is used to statistically validate the performance
of the object detection models. Next, the Deep SORT tracking algorithm is applied to the
best performing object detection model. Specifically, we use the performance metrics such
as accuracy, 0.5 mAP, and precision score for evaluation.

Table 2. Details of the parameters of the model trained.

Parameters The Proposed
Method YOLOv7 YOLOv5 RetinaNet

Learning Rate 0.01–0.1 0.01–0.1 0.001–0.01 0.00025

Batch Size 8 8 32 8

Epochs 100 100 100 100

Data Enhancement Yes - - -

4.2. Results

Table 3 shows the results of McNemar’s significance test (p values indicate the results
obtained by the best performing model) on the Le2i Fall Detection dataset where YOLOv7
is statistically different than the results by RetinaNet and YOLOv5. Table 4 shows the
results from different object detection algorithms on the Le2i Fall Detection dataset (Le2i
FDD). YOLOv7 outperforms YOLOv5 and the RetinaNet with an accuracy of 90.5%, and
mAP of 0.966. Here, the RetinaNet model performs the worst with an accuracy of 59.02%,
and mAP of 0.842. Then, we apply Deep SORT to the best performing object detection
model, i.e., YOLOv7, which is trained and tested on enhanced video frames obtained by
performing dual illumination estimation. Here, the proposed method (YOLOv7 + Deep
SORT/w DUAL) gives an accuracy of 94.5% and mAP of 0.986, which is a significant
improvement over the object detection methods. Moreover, YOLOv7 + Deep SORT/w
DUAL is compared to the existing state-of-the-art (SOTA) methods on Le2i FDD. Table 4
shows that the proposed approach achieves the highest accuracy, outperforming the SOTA
methods by Poonsri et al. [58] and Chamle et al. [59], which have the fall accuracy of 91.38%
and 79.41%, respectively. Poonsri et al. [58] and Chamle et al. [59] have used background-
based subtraction techniques. However, due to insufficient illumination conditions in
videos of Le2i FDD, background subtraction techniques used in these methods incorrectly
extract other objects as a human silhouette. This results in high false-positive rates for
fall detection. The proposed method is compared to the traditional method proposed by
Poonsri et al. [48] and Chamle et al. [49] based on their annotated images and the result
presented. Furthermore, the visual results using the YOLOv7 and the proposed method are
shown in Figure 5. When the environment light is not insufficiently illuminated, as shown
in the first row of Figure 6, the YOLOv7 + Deep SORT misclassifies the fall as upright.
However, the proposed method correctly classifies it as a fall, as shown in the second row
of Figure 5.

Table 3. p-Values of the McNemar’s significance test on Le2i dataset. Here, p < 0.05 is statistically
significant.

Method RetinaNet YOLOv5 YOLOv7

YOLOv7 <0.001 0.0095 1
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Table 4. Performance of the different state-of-the-art methods on Le2i dataset.

Method Accuracy (%) 0.5 mAP Precision of Fall

Poonsri et al. [58] 91.38 - 0.886

Chamle et al. [59] 79.31 - 0.794

RetinaNet [49] 59.02 0.842 0.775

YOLOv5 [54] 86.0 0.947 0.896

YOLOv7 [32] 90.5 0.966 0.935

The proposed method 94.5 0.986 0.970
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Table 5 shows the results of McNemar’s significance test on UR-Fall dataset where the
performance of YOLOv7 is statistically significant (p < 0.05) over RetinaNet, but it is not
statistically different from that of YOLOv5. Table 6 shows the different object detection
algorithms on the UR Fall detection dataset. YOLO models achieve high results on metrics
such as accuracy and mAP, with YOLOv7 performing the best among all the models.
However, RetinaNet did not perform well on the UR-Fall dataset, reporting the lowest
accuracy of 40.9% as well as the lowest mAP of 0.464. Similarly, to the experiments on Le2i
FDD, YOLOv7 is integrated with the Deep SORT tracking algorithm to report the results
on the UR-Fall dataset. The proposed method outperforms all the methods in terms of
accuracy, mAP, and precision. As shown in the second row of Figure 6, the visual results
on the UR-Fall dataset using the proposed method highlights the improved performance
on the enhanced video frames as compared to the YOLOv7 + Deep SORT.
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Table 5. p-Values of the McNemar’s significance test on UR-Fall dataset.

Method RetinaNet YOLOv5 YOLOv7

YOLOv7 <0.001 0.085 1

Table 6. Testing Performance of different models in UR Fall detection dataset.

Method Accuracy (%) 0.5 mAP Precision of Fall

RetinaNet [49] 40.9 0.464 0.818

YOLOv5 [54] 89.8 0.925 0.881

YOLOv7 [32] 92.4 0.944 0.893

The proposed method 93.2 0.960 0.920

5. Conclusions

This paper proposes a vision-based fall detection system with an improved deep-
learning-based tracking-by-detection method. The proposed method integrates dual il-
lumination estimation to the YOLOv7 + Deep SORT tracking algorithm to enhance fall
detection performance under suboptimal lighting conditions caused by dim or uneven
light. The proposed method also incorporates exposure correction for fall detection in
videos. The performance of the proposed method is validated on two fall detection datasets,
namely, Le2i FDD and UR-Fall datasets. For future experiments, we aim to implement a
self-learning framework that automatically adapts to false alarms and adds correct results
to help the current fall detection systems to improve their performance.
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