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Abstract: Traditional audio steganography by cover modification causes changes to the cover features
during the embedding of a secret, which is easy to detect with emerging neural-network steganalysis
tools. To address the problem, this paper proposes a coverless audio-steganography model to conceal
a secret audio. In this method, the stego-audio is directly synthesized by our model, which is based
on the WaveGAN framework. An extractor is meticulously designed to reconstruct the secret audio,
and it contains resolution blocks to learn the different resolution features. The method does not
perform any modification to an existing or generated cover, and as far as we know, this is the first
directly generated stego-audio. The experimental results also show that it is difficult for the current
steganalysis methods to detect the existence of a secret in the stego-audio generated by our method
because there is no cover audio. The MOS metric indicates that the generated stego-audio has high
audio quality. The steganography capacity can be measured from two perspectives, one is that it
can reach 50% of the stego-audio from the simple size perspective, the other is that 22–37 bits can
be hidden in a two-second stego-audio from the semantic. In addition, we prove using spectrum
diagrams in different forms that the extractor can reconstruct the secret audio successfully on hearing,
which guarantees complete semantic transmission. Finally, the experiment of noise impacts on the
stego-audio transmission shows that the extractor can still completely reconstruct the semantics of
the secret audios, which indicates that the proposed method has good robustness.

Keywords: audio steganography; coverless steganography; GAN; covert communication; informa-
tion hiding

1. Introduction

The many rapidly developed internet technologies make our lives more convenient.
However, in some cases, there is a strong demand for a private secure transmission that can
prevent a message from being disclosed. Information hiding is an important technology to
protect private information. Currently, information hiding technology has been developed
into two branches: digital steganography and digital watermarking technology [1]. The
former is mainly used for covert communication, and the latter is mainly used for copyright
protection. Steganography is an art and science that hides a secret in one or more covers
and then the stego-objects are transmitted in public channels without being noticed.

At present, the digital covers for steganography include texts, images, audios, videos,
and network traffic. With the prevalence of social networks supporting short audio files [2]
and the popularization of VoIP services [3], audio has become a popular media. This
prevalence is one feature of the best covers. Our hearing system is not very sensitive, and
audio files have large redundancy. Therefore, audio has become a main cover for digital
steganography. Traditional audio steganography mainly utilizes the redundancy of audio
to embed a secret [4]. This kind of embedding generally performs some modifications to
the cover, which, in turn, leads to changes to the cover features.

A third party can detect the existence of a secret in such a stego-audio by analyzing
the changes to the statistical features. More importantly, with the emergence of various
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new detection tools, especially those based on the neural networks and deep-learning
technologies, the detection accuracy has become very high [5]. Table 1 shows the detection
accuracy of different steganalysis methods based on deep-learning technologies for the
traditional steganography methods by cover modification with the difference embedding
rates. The high detection accuracy shows that the traditional audio steganography by
cover modification has lost its utility. Compared to steganography by cover modification,
steganography by cover generation aims to generate a natural cover to cope with the
detection issues caused by cover modification.

Generative Adversarial Networks (GANs) [6] are an important technology to realize
steganography by cover generation, and they have been applied in audio covers. Ref. [7]
first proposed audio steganography based on adversarial examples to modify an existing
audio cover. Ref. [8] encoded the cover audio and the secret audio to generate a stego-audio
automatically based on a GAN. Ref. [9] proposed a framework based on a GAN to achieve
optimal embedding for audio steganography in the temporal domain. Ref. [10] employed
LSBM steganography to embed a secret into a generated cover with high security.

In [11], the secret audio and cover audio were preprocessed using the time-domain
zero-padding method and then input into the encoder to generate the stego-audio, which
improved the security greatly. Ref. [12] proposed end-to-end audio steganography, and the
encoder encoded the secret message into the audio cover. However, the encoder generated
a modified vector of the audio sample value instead of stego-audio, which greatly reduced
the distortion caused by message embedding.

Although these previous works utilized GANs for audio steganography, they per-
formed modifications on an existing or generated cover, and a third party can still detect the
existence of a secret in the stego-audio by analyzing the changes to the statistical features
of the generated cover. As far as we know, there are currently no steganography methods
that directly generate a stego-audio without a cover-audio.

Table 1. The detection accuracy of different steganalysis methods based on deep learning under the
different embedding rates.

Steganalysis Methods Steganography Methods Embedding Rates Accuracy

Spec-ResNet [13] LSB-EE [4]

0.1 0.9151
0.2 0.946
0.3 0.9608
0.5 0.9724

LARxNet [5] SIGN [14]

0.1 0.9427
0.2 0.9665
0.3 0.9854
0.5 0.9912

WASDN [15] MIN [16]

0.1 0.9357
0.2 0.9572
0.3 0.9643
0.5 0.9881

MultiSpecNet [17] LSB-EE [4]

0.1 0.9433
0.2 0.957
0.3 0.9675
0.5 0.9796

In this paper, a coverless audio steganography that does not perform any modification
to an existing or generated cover is proposed. Herein, being coverless does not mean
that there is no media to carry a secret, instead, it means that there is not any embedding
operation on the existing or generated cover [18].
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Consequently, the stego-audio is directly generated without a cover in this work.
Therefore, the proposed method only needs to transmit the stego-audio. For attackers, there
is no cover to refer to. This application scenario has better security than the traditional
audio steganography by cover modification. The main contributions of this paper are
summarized as follows:

(1) A coverless audio-steganography model is proposed based on the general audio
synthesis framework WaveGAN [19] to directly synthesize a stego-audio instead of
modifying an existing or generated audio to generate a stego-audio. A post-processing
layer is replenished in the original WaveGAN generator to improve the quality of
the generated stego-audio. The loss metrics indicate that the improved model has
good convergence performance. Furthermore, extensive experiments show that this
steganography method has high security and undetectability. Some previous works
have utilized GAN for audio steganography; however, those works either modified
an existing audio or perform certain changes on a generated one. As far as we know,
our method is the first directly generated stego-audio.

(2) As an essential part of a steganography method, an extractor is carefully designed
to reconstruct the secret audio from the stego-audio. This consists of five resolution
blocks, which are composed with a residual network structure to learn the acoustic
features of different frequency bands on the audio spectrum, and this can effectively
reduce feature loss. The experimental results show that this extractor can guarantee
the complete transmission of a secret audio in both auditory and semantic aspects.

(3) The proposed method does not perform any embedding operation on the existing
or generated audio cover, and the distributions of the sample value of the stego-
audio and real audio are the same, which can fundamentally resist detection from
steganalysis tools.

The rest of this paper is organized as follows. The relevant literature is summarized
and analyzed in Section 2. Section 3 describes the details of the proposed method. Our
experiments and analyses are presented in Section 4 to verify the performance. Finally, our
conclusions are given in Section 5.

2. Related Work

Traditional audio steganography can be implemented in three domains: the time
domain, transform domain, and compression domain [20]. In the time domain, the most
common is Least Significant Bit (LSB) steganography [21], whose basic idea is to replace
the least significant bit in audio sample values with a secret bit. Other typical audio
steganography methods in this domain include echo steganography [22], which utilizes
the masking effect of the human auditory system; spread spectrum steganography [23], in
which, a narrow band information signal is expanded over a wide frequency range; and
Quantized Index Modulation steganography (QIM), which treats a secret message as a
quantization index [24].

The transform domains used for audio steganography methods include discrete
Fourier transform (DFT) [25], discrete cosine transform (DCT) [26] and discrete wavelet
transform (DWT) [27]. With the development of audio compression technologies, au-
dio encoded in a compressed way has become popular and, thus, has become a suitable
cover option. Furthermore, this kind of steganography can be categorized into three ap-
proaches [28]: one is to embed a secret into an audio cover to obtain a stego-audio and then
compress it, another is to directly embed a secret into a compressed audio cover, and the
last is to decompress the compressed cover and embed a secret and then recompress it to
obtain a stego-audio.

GANs [6] were, first, applied to natural language processing [29], computer vision [30],
and other fields and are gradually being employed in the information hiding field. Until
now, most steganography methods based on GANs took images as covers. Furthermore,
coverless image steganography based on GANs is becoming a research hotspot and has
also achieved some fruitful research findings. In 2017, Volkhonskiy et al. [31] opened up a
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new space for a GAN in information hiding fields and proposed a DCGAN based image
steganography model, which consists of three parts: a generator (G), a discriminator (D),
and a steganalyzer (S).

Ref. [32] proposed an adaptive steganography method based on a GAN by learning the
embedding cost for image steganography, and this outperformed hand-crafted steganogra-
phy algorithms for the first time in all kinds of steganographic performance. Furthermore,
ref. [18] encoded a secret into a cover image using GAN to generate a stego-image. The
stego-image is visually indistinguishable from its corresponding cover image. Although
a stego-image is generated in this method, the cover is modified. Furthermore, the ste-
ganalysis methods can still detect the existence of a secret in the generated stego-image by
analyzing the changes to the statistical features.

Ref. [33] first realized coverless information hiding based on a GAN, where the stego-
image was directly generated by replacing the class labels of the input data with a secret as a
driver, and then the secret was extracted from the stego-image by the discriminator. Herein,
as mentioned above, ’coverless’ does not mean that there is no media to carry a secret;
instead, it means that it does not perform any embedding operation on an existing cover.

Ref. [34] also proposed a coverless image information hiding method, which employed
the Wasserstein Generative Adversarial Network (WGAN) and was driven by a secret
image to generate a stego-image directly without performing any modification to either the
existing cover or a generated cover. In 2021, a cryptographic coverless information hiding
method [35] was proposed, which utilized a generative model to transmit a secret image
between two different image domains. Aiming at the problem of face privacy leakage in
social robots, ref. [36] proposed a visual face privacy protection method. Based on the
above knowledge, it can be seen that GANs have been well applied in image covers.

Due to the great achievements of GANs regarding images, they have been gradu-
ally applied to audio media, such as audio synthesis [37], speech enhancement [38], and
speech emotion [39]. In 2019, a general audio synthesis framework based on DCGAN,
named WaveGAN [19], was proposed. WaveGAN is the first attempt to employ a GAN
to synthesize raw waveform audio in an unsupervised way. Its main work is to flatten a
two-dimensional DCGAN into a one-dimensional model due to the different structures of
images and audios.

This contribution provided a new idea for generative audio steganography. In addition,
the existing generative audio steganography still needs a cover, which might be an existing
cover or a generated cover, and this still relies on the security and robustness of the
algorithm as in the traditional methods. Therefore, in order to fundamentally resist the
detection of the steganography analysis tools, this paper proposes audio steganography
based on WaveGAN that directly generates a stego-audio driven by a secret audio without
any modification.

3. The Coverless Audio Steganography Framework

In this section, a coverless audio steganography method is proposed based on Wave-
GAN, which directly generates a stego-audio when a secret audio is input. In addition, the
reconstruction module is designed to reconstruct the secret message from the stego-audio.
In order to describe the proposed method more clearly, the relevant symbols in this paper
are summarized in Table 2.
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Table 2. The meanings of the main symbols used in this paper.

Symbol The Meaning

R, S Real dataset, Secret dataset
θ Network parameters
r, s Real audio, Secret audio
D, G, E Discriminator, Generator, Extractor
B Batch size
M, N The number of rows and columns in an audio 2-D array
MD The matrix of the MFCC distance
C The number of correctly recognized audios
T Total number of tested audios

Xspec, Yspec
The matrix obtained by short-time Fourier transform of the secret audio and the
reconstructed secret audio

X, Y The norm matrixes, representing the norms of each elements in Xspec and Yspec,
respectively.

D f ake
The probability of misattribution that the discriminator regards the input
stego-audio from the generator as a real audio

Dreal
The probability that the discriminator regards the input real audio from the real
dataset as a real audio

Dvalid
f ake

The probability of misattribution that the discriminator regards the input
stego-audio from the generator as a real audio in the validation procedure

Dvalid
real

The probability that the discriminator regards the input real audio from the
validation dataset as a real audio

gp The clipped gradient norm in the training dataset
gpvalid The clipped gradient norm in the validation dataset

3.1. The Proposed Method

A complete steganography algorithm includes the process of hiding a secret and
extracting a secret. Similarly, a complete coverless steganography algorithm also includes
the generation module of the stego-audio and the extraction module of the secret messages.
Therefore, the proposed model is divided into two subsections: the generation module
and the reconstruction module. The entire model is illustrated in Figure 1. Furthermore,
each module is introduced in detail from two perspectives: the function perspective and its
network architecture perspective.

Secret audio Generator

Stego-audio Discriminator Score

Audio samples 

in real dataset
Input

Output

Input

Extractor
Reconstructed 

secret audio

Input

Output

The reconstruction module

The generation module

Input

Figure 1. The model of the proposed steganography.



Electronics 2023, 12, 1253 6 of 22

3.1.1. The Generation Module

In this paper, the stego-audios are expected to be generated directly. Therefore, the
audio synthesis model WaveGAN is applied to the generation module, which consists of
a generator and a discriminator, to generate stego-audios. However, it was improved as
follows: First, instead of a noise being fed into the WaveGAN, a secret audio is input into
the generator. Second, a post-processing layer is added after the generator. Consequently,
the secret audio will be transformed into a stego-audio in our model.

At the same time, for the sake of security, an essential demand is that the feature distri-
bution and the auditory characteristics of the stego-audio should be the same as the audios
in the real dataset. In order to meet the above security requirements, the discriminator is
used to guide the training of the generator to generate a more authentic stego-audio. When
the stego-audio or real audio is input to the discriminator, the discriminant score will be
obtained. Specifically, the stego-audio is input to the discriminator to output the probability
D f ake, and the real audio is input to output the probability Dreal . These two probabilities
will be used to calculate the loss functions to optimize this model.

The design principle of the generation module is essentially audio generation, and
the audio synthesis model WaveGAN is employed as the basis of the generation module
to realize the generative steganography. The generator is composed of two parts: the
core part and the post-processing part. The core part and the discriminator are based on
the WaveGAN as shown in Figure 2. Since the audio signal is sequential, the WaveGAN
model employs 1D convolution (Conv1d) to extract sequential features. The core part of
the generator consists of a linear layer, five groups of transposed convolutions and their
activation functions.

After the secret audio is input to the generator, the secret audio will be input to
the post-processing part after passing through the core part to obtain the final stego-
audio. The structure of the discriminator is in the opposite state to the core part of the
generator. The discriminator is composed of five groups of Conv1d, a linear layer and
the activation function between them. The discriminator introduces the phase shuffle
operation after each activation function. The reason why phase shuffle is introduced is that
the transposed convolution in the generator gives the generated stego-audio strong periodic
information. Furthermore, the kind of periodic information makes the discriminator judge
the authenticity of the stego-audio only through periodicity.

Consequently, the discriminator will not work well, and the generator cannot generate
high-quality stego-audio. In order to solve the above problem, a phase-shuffling operation
is added between each Conv1d to randomly change the phase of the audio, which can
remove the periodic noise effect. Consequently, the discriminator can judge more accurately,
and the audio generated by the generator sounds more realistic.

In this work, WaveGAN is used to directly generate stego-audio and realize coverless
audio steganography. However, for the security of the steganography algorithm, it is
necessary to guarantee the audio quality of the stego-audio first. Therefore, on the basis of
using WaveGAN as the generation module, a post-processing layer is replenished to reduce
the noise and improve the quality of the generated stego-audio. The post-processing part is
supplied after the core part of the network structure in the generation module. Furthermore,
it is composed of a Conv1d layer. Subsequent ablation experiment in Section 4.4 show
that the post-processing layer effectively improves the audio quality of the generated
stego-audio.
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Figure 2. The generator and discriminator structure.

3.1.2. The Reconstruction Module

The reconstruction module is carefully designed as an extractor denoted as E. Its
design principle is that the receiver directly inputs the stego-audios into the extractor to
reconstruct the secret audios. In the scenario considered in this work, the receiver does
not have prior knowledge of the original secret audio. Therefore, in the beginning, the
reconstruction module should be trained until the reconstruction module can effectively
reconstruct the complete secret audio. The sender and receiver share the trained model.
After receiving the stego-audio, the receiver inputs it into the trained reconstruction module
to obtain the secret audio. Therefore, unlike the traditional steganography, the proposed
method does not need an extra secret key. In other words, for the steganography framework
proposed in this paper, the received stego-audio itself is the key.

Its network structure is illustrated in Figure 3. The generated stego-audios are input
into the extractor. This network includes five groups of convolution neural networks and a
full connection layer. Each group consists of a Conv1d operation and a resolution block.
The resolution block is a residual network structure consisting of four Dilated Conv1d
layers and four Conv1d layers. The Dilated Conv1d in the resolution block can provide the
different receptive fields. In addition, a residual network structure is used in the resolution
block to learn the acoustic features of different frequency bands on the audio spectrum,
which effectively reduces feature loss during training. Finally, a feature transformation is
performed through the fully connected layer to obtain the final reconstructed secret audio.
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Figure 3. The extractor structure.

3.2. The Loss Function

In this paper, two types of loss functions are defined. One is only involved in back-
propagation to guide the training; and the other is used to verify the results without
participating in the backpropagation. Among them, four loss functions are defined to guide
the model training, including Ltrain

D , Dtrain
wass , LG, and Larray.

The first two loss functions (namely, Ltrain
D and Dtrain

wass ) improve the discriminator to
judge accurately; LG guides the generator to generate more realistic stego-audios; and
Larray ensures that the reconstructed secret audios by the extractor are less loss and more
sound. At the same time, four loss functions are defined to verify the results—namely,
Lvalid

D , Dvalid
wass , Lmag, and Lsc. Lvalid

D and Dvalid
wass are used to verify the distinctive ability of the

discriminator, and Lmag and Lsc are employed to verify the reconstruction ability of the
extractor. The above loss functions are described as follows in the module that they are
located in.

In the generation module, the generator and the discriminator are trained iteratively.
The generator is optimized by minimizing D f ake to make the generated stego-audio increas-
ingly realistic, and its loss function is shown below:

LG = −
(

D f ake

)
(1)

For the discriminator, the generated stego-audio and the audio samples from the real
dataset are fed at the same time. The same loss indicators as used in the WaveGAN are
employed to optimize the discriminator, including Dtrain

wass and Ltrain
D , and they are calculated

as follows:

Ltrain
D = D f ake − Dreal + gp (2)

Dtrain
wass = Dreal − D f ake (3)

The former minimizes the distribution difference between the generated stego-audio
and the samples from the real dataset by minimizing the Wasserstein distance; the latter
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replaces the weight clipping in [40] and adds the gradient penalty [41] to strengthen the
constraints to successfully train the model.

At the same time, the discriminator, as a steganalyzer, determines whether the input
data is real audio or stego-audio, that is to say, the discriminator is used to determine
whether the input data contains the secret or not. After the continuous optimization on the
generator and the discriminator, the statistic features of the generated stego-audio are near
to the real ones to such an extent that the steganalyzer cannot determine whether the input
audio contains a secret.

In order to prevent the overfitting phenomenon, the following loss function is given
to verify the distinctive ability of the discriminator

Lvalid
D = Dvalid

f ake − Dvalid
real + gpvalid (4)

Dvalid
wass = Dvalid

real − Dvalid
f ake (5)

During the training, after a batch of secret audios are fed into the generator, stego-
audios are synthesized. In the reconstruction module, the stego-audios are fed into the
extractor to reconstruct the secret audios. Every original secret audio has one corresponding
reconstructed secret audio. Herein, the first extractor loss Larray is defined as the function
(6), and it is used to optimize the extractor in the gradient back propagation.

Larray =
1

B×M× N

B

∑
b=1

M

∑
i=1

N

∑
j=1
|sij − Eij(G(s))| (6)

Herein, the secret audio and the reconstructed secret audio are represented in the form
of multi-dimension arrays, and M and N represent the number of rows and columns of
the array, respectively. M is the frame of the audio, N is the channel of the audio, and B is
the batch size. sij represents the sampling value of the jth channel in the ith frame in the
original secret audio; Eij(G(s)) represents the element in the reconstructed secret audio
extracted by the extractor E.

To further verify the integrity of the reconstructed secret audio, the following two loss
indicators are defined, namely, Lmag and Lsc. The former is to evaluate the differences in
amplitude, and the latter is to evaluate the differences in the frequency domain. In addition,
they are only verification indicators and do not participate in the gradient back propagation.

X = ||Xspec|| (7)

Y = ||Yspec|| (8)

Lmag =
1
B

B

∑
b=1

∣∣∣logYb
e − logXb

e

∣∣∣ (9)

where Xspec and Yspec represent the matrix obtained by short-time Fourier transform of the
secret audio and the reconstructed secret audio, respectively. X and Y are the norm matrix,
whose values are the norms of the corresponding elements in Xspec and Yspec, respectively.

Lsc =
B

∑
b=1

√
∑i ∑j

(
Yb,i,j − Xb,i,j

)2

√
∑i ∑j

(
Yb,i,j

)2
(10)

where Xb,i,j is the element in X. Concretely, Xb,i,j represents the value of the element whose
time is i and frequency is j in the bth audio. Similarly, Yb,i,j represents an element in Y.

The whole training process is shown in the following pseudocode marked as Algorithm 1.
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Algorithm 1 The training process of the proposed model.

1: Initialize the real dataset R and the secret dataset S, Batch size B;
2: Initialize the generator net G with random θg;
3: Initialize the discriminator net D with random θd;
4: Initialize the extractor net E with random θe;
5: for each training iteration do
6: Sample a batch of real data (denoted as r) from R;
7: Sample a batch of secret data (denoted as sd) from S;
8: Obtain fake audio G(sd) by inputting sd to Generator;
9: Obtain D f ake by inputting fake audio G(sd) to Discriminator;

10: Update Discriminator parameters θd by minimizing:
11: Ṽ = 1

B ∑B
i=1 log D(ri) + 1

B ∑B
i=1 log(1− D( f akei)),

12: θd ← θd + η∇Ṽ(θd)
13: Sample another batch of secret data (denoted as sg) from S;
14: Update Generator parameters θg by minimizing:

15: Ṽ = 1
B ∑B

i=1 log
(

1− D
(

G
(

sg
i

)))
,

16: θg ← θg + η∇Ṽ
(
θg
)

17: Freeze Generator parameters θg and Discriminator parameters θd;
18: Sample another batch of secret data (denoted as sc) from S;
19: Update extractor parameters θe by minimizing:

20: Larray = 1
B×M×N

B
∑

b=1

M
∑

i=1

N
∑

j=1
|se

ij − Eij(G(se))|

21: θe ← θe + η∇Larray(θe)
22: end for

4. The Experiments and Analysis

In this section, extensive experiments are presented to verify the effectiveness of our
method. The proposed method was implemented using PyTorch1.18.0 and trained on
NVIDIA RTX2080 Ti GPUs, with a total of 500 training epochs. The parameter settings of
the proposed method is shown in Table 3.

Table 3. Parameter settings.

Generator Value Discriminator Value Extractor Value

TransposeConv1d Layer 5 Conv1d Layer 5 Conv1d Layer 5

Upsample Factor 4 PhaseShuffle Layer 4 Resolution Block 5

Stride 1 PhaseShuffle Factor 0.2 Dilated Conv1d Layer 4

Learning Rate 1 × 10−4 Learning Rate 1 × 10−4 Learning Rate 1 × 10−4

Two kinds of datasets are required to train our model: the secret audios and the real
dataset. The SC09 dataset was taken as the secret audios. The SC09 dataset is a subset of
the Speech Commands Dataset [42], which contains 0∼9 monophonic voice commands of
various male and female voices, and the duration of each voice command is one second.
The sampling rate of the SC09 dataset was degraded from 16,000 to 8000.

A subset [43] of the Xeno Canto [44] bird sound dataset was modified as the real
dataset, which contains 88 kinds of bird songs. In order to save computing resources, the
modifications were performed as follows: (1) convert the original flac files into wav files;
(2) crop them into two-second bird sound audios and filter out the cropped blank audios;
and (3) modify the original sampling rate from 44,100 to 8000.

A total of 800 secret audios and 1600 real audios were randomly chosen for training
in the whole experiment. Additionally, the training dataset, test dataset, and validation
dataset are split into an 80:10:10 ratio.
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4.1. Model Performance

The loss function used in the training process of the model is mentioned above, and
the experimental results are shown in Figures 4 and 5. Figure 4 shows the changes in
various loss indicators for the generator and the discriminator. Figure 5 displays the
changes in various loss indicators for the extractor. It can be seen from the above two
figures that, with the increase of the training epochs, the values of each loss indicator
tend to be stable. This shows that the model can converge well. On the premise of the
convergence performance, analysis was performed on the steganography performance and
the reconstructed secret audios.

Figure 4. The changes of the loss indicators for the generator and discriminator.

Figure 5. The changes of the loss indicators for the extractor.

4.2. Analysis on the Steganography Performance
4.2.1. The Steganographic Capacity

Steganographic capacity refers to the maximum number of bits that can hide secret
messages in a digital cover under the precondition that it cannot be detected. In the pro-
posed coverless steganography method, a two-second stego-audio is generated by the
generator driven by a one-second secret audio. Furthermore, different from the previous
steganography, the form of the secret in the proposed method is audio. In this section,
the steganographic capacity of this method is calculated from the following two perspec-
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tives: one is a general method from the size perspective; the other is calculated from the
semantic perspective.

From the first perspective, two-second stego-audio is generated directly driven by
one-second secret audio, and the ratio of their time lengths between the secret audio and
the generated stego-audio can be used to calculate the steganographic capacity. In the
proposed method, the read secret audio is fed into the generator in the form of an array,
and the stego-audio is also generated in the form of an array.

The ratio between the length of the secret audio array and the length of the generated
stego-audio array can also be used to indirectly measure its steganographic capacity. After
experimental measurement, the length of the secret audio array to be hidden is 8192, and
the length of the generated stego-audio array is 16,384. Consequently, from this perspective,
the ratio of the above two methods is 50%. As a result, the proposed method has a high
capacity according to this measure indicator.

Although the secret message is transmitted in the form of audio, what is transmitted
in essence is the semantic content in the secret audio. From the second perspective, the
semantic content in the secret audio should be extracted, and its bit-length is calculated
as its steganographic capacity. In this experiment, the duration of each secret audio is
one-second, and the semantic content is the speech command of 0∼9. The semantic content
that needs to be transmitted is uncertain. Thus, we need to calculate the semantic content
that can be generally transmitted in one second. This is expressed in letters in English and
similar languages or in alternate characters or digits in other languages.

The following takes secret messages in English as an example. The number of letters
can be an indicator of the steganography capacity. It is found that the average speaking
speed of British English reaches 198 words per minute [45]. Average word lengths were
computed in the range of 6.665∼11.14 [46]. According to ASCII or UTF-8 encoding rules,
an English letter is equal to 8 bits. Therefore, it can be concluded that the words that can
be speech per minute occupy an average of about 1320∼2206 bits. As a result, it can be
calculated that 22∼37 bits of semantic content can be transmitted in a one-second audio.

4.2.2. The Audio Quality

In the proposed method, the stego-audio is generated directly. It must be ensured
that the generated stego-audios are acoustically indistinguishable from the natural audios.
Therefore, a subjective indicator, MOS (Mean Opinion Score) [47], was chosen to measure
the quality of the generated stego-audio. It adopts five levels to evaluate the quality of the
tested speech. Thirty listeners were selected to rate the generated stego-audio. Before that,
each listener was required to listen to a series of audio samples from the real dataset to
ensure that they have the same standard as much as possible.

Ten stego-audios were selected randomly for the experiment. Each listener listened to
the ten audios and gave a score. Thus, each stego-audio received 30 scores from 30 different
listeners. Finally, the average score of each stego-audio was calculated in turn, and these
are listed in Table 4. This shows that the generated stego-audio had high quality and low
distortion. The average MOS of the above stego-audios was further calculated as 4.15,
indicating that it is not easy for third parties to detect the existence of the secret message.

Table 4. The average MOS of ten randomly selected stego-audios generated by this model with a
post-processing layer.

The Stego-Audios 1 2 3 4 5 6 7 8 9 10

The average MOS 4.13 4.09 4.17 4.09 4.21 4.12 4.25 4.14 4.01 4.30

4.2.3. The Authenticity in Statistical Characteristics

In order to prevent third parties from detecting the presence of the secret message, it
is necessary to ensure not only the speech quality of the generated stego-audio but also its
authenticity compared with the real audio. Therefore, in this section, two different methods
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were meticulously designed to verify the authenticity of the generated stego-audio in terms
of the statistical characteristics.

Kernel Density Estimation

The GAN makes it impossible to find the real audio in the real dataset corresponding
to a given stego-audio. That is to say, there is no one-to-one relationship between a stego-
audio and a real audio. Kernel Density Estimation (KDE) is usually used to estimate
the unknown density function in the probability theory, which is one nonparametric test
method. The distribution of the sample data itself can be seen intuitively through the kernel
density estimation diagram. Therefore, KDE is employed to calculate the distribution of
the generated stego-audios and real audios.

To calculate their sample value distribution, ten audios were randomly selected from
the generated stego-audios and real audios, respectively. The statistical results are shown
in Figures 6 and 7. It can be seen in the figures that the generated stego-audios and real
audios have very similar distributions. Therefore, the conclusion can be drawn that the
generated stego-audios and the real audios have the same statistical distribution.

Figure 6. The sample value distribution comparison. On the left is the distribution curve and
histogram of the sample values in the real audios, where the x-axis represents random variables, the
left y-axis represents the frequency, and the right y-axis represents the density which is calculated as
multiplying the frequency by the group distance. The same is true on the right for the stego-audios.

Figure 7. The distributions of the stego-audios and real audio samples.

The Euclidean Distances between the MFCCs

The human auditory system is a special nonlinear system, and its sensitivity to differ-
ent frequency signals is different from these. The nonlinear representation of the MFCC
(Mel Frequency Cepstrum Coefficient) can well reflect the specific features of audio. The
Euclidean distance between the MFCCs of the two audios can reflect the difference be-
tween them.
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Furthermore, the Euclidean distance between the MFCCs of the generated stego-audio
and its most similar audio in the real dataset can reflect the authenticity of the generated
stego-audio. Therefore, the nearest neighbor in the training dataset for each generated
stego-audio was found, and the Euclidean distances between the MFCCs were calculated.
In order to verify the effectiveness of the nearest neighbor in the training dataset, the
nearest neighbor in the test dataset for each generated stego-audio was found again, and
the Euclidean distances between the MFCCs were calculated.

Then, we compared the Euclidean distances between the MFCCs of each generated
stego-audio with its nearest neighbors in the training dataset and test dataset to verify the
authenticity of the generated stego-audios. The experimental steps are briefly described
as follows:

(1) Calculate the Euclidean distances between the MFCCs of each stego-audio and all
real audio samples in the training dataset in turn, denoted as MDtrain, which is a matrix
of size m ∗ n. m and n denote the number of stego-audios and real audio samples in the
training dataset, respectively. Each element MDtrain

ij (i ∈ {1, ..., m}, j ∈ {1, ..., n}) of the
matrix represents the Euclidean distance between the MFCCs of the ith stego-audio and the
jth real audio sample in the training dataset. Find the minimum value of each row in the
matrix MDtrain, denoted as MDtrain

min , which is a matrix of size m ∗ 1. This step is illustrated
in Figure 8. Consequently, we find the most similar audio samples for each stego-audio
from the training dataset. In other words, the nearest neighbors from the training dataset
for each stego-audio are found.

(2) Calculate the Euclidean distances between the MFCCs of each stego-audio and all
real audio samples in the test dataset, denoted as MDtest, which is a matrix of size m ∗ t. t
is the number of audio samples in the test dataset. Each element MDtest

ij (i ∈ {1, . . . , m}, j ∈
{1, . . . , t}) of the matrix represents the Euclidean distance between the MFCCs of the ith
stego-audio and the jth real audio sample in the test dataset. Find the minimum value
of each row in the matrix MDtest, marked as MDtest

min, which is a matrix of size m ∗ 1. This
step is illustrated in Figure 9. Therefore, we find the most similar audio samples for each
stego-audio from the test dataset. In other words, the nearest neighbors from the test
dataset for each stego-audio are found.

(3) Compare the values of the corresponding elements in the MDtrain
min and MDtest

min.

Stego-audios

Real audios in the 

training dataset

1,1
train

MD
1, 2
train

MD
1, 1
train

MD
n - 1,

train
MD

n

train
MD

min_
1
train

MD

min_ train
MD
m

min_ train
MD

Find the min value of 
each row

Figure 8. Illustration of Step (1).



Electronics 2023, 12, 1253 15 of 22

Stego-audios

Real audios in the 

test dataset

1,1
test

MD
1, 2
test

MD
1, 1
test

MD
t - 1,

test
MD

t

test
MD

min_
1
test

MD

min_ test
MD
m

min_ test
MD

Find the min value of 
each row

Figure 9. Illustration of Step (2).

As shown in Figure 10, the green and red curves represent the MDtrain
min and MDtest

min,
respectively. Furthermore, the different values between their corresponding elements
in MDtrain

min and MDtest
min are shown in the blue curve of Figure 10. It can be seen from

Figure 10 that the Euclidean distances between the MFCCs of each stego-audio and its
nearest neighbor in the training dataset are basically the same as the Euclidean distances
between the MFCCs of its nearest neighbor in the test dataset. The different values of their
Euclidean distances between the MFCCs are very small.

This shows that the generated stego-audios have great similarity with the real audios.
Consequently, the generated stego-audio is very real, and it is not easy for a third party to
detect the existence of a secret by detecting the particularity of the generated stego-audio.
In addition, the similarity of the distances between the MFCCs of the stego-audio and the
nearest neighbors in the training dataset and test dataset can also indicate that there is no
overfitting in this model.

Figure 10. The Euclidean distances between the MFCCs of each stego-audio and the nearest neighbor
in the training dataset as well as its nearest neighbor in the test dataset.

4.2.4. Steganalysis

To verify that the proposed method is fundamentally resistant to detection by exist-
ing steganalysis methods, we used the trained steganalysis methods Chen-Net [48] and
Lin-Net [49] to directly detect the generated stego-audios. Furthermore, we compared
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the accuracy with three different audio steganographies: The traditional steganography
method [50] refers to a modified audio steganography that embeds a secret in the cover.

The method based on generating a cover [10] refers to audio steganography that
embeds a secret in the generated cover. The proposed method refers to audio steganography
that directly generates the stego-audio. As shown in Table 5, the accuracy of the method
based on generating the cover is significantly lower than the traditional method, and the
trained steganalysis methods fail to detect this proposed method. Therefore, our method is
fundamentally resistant to detection by steganalysis methods.

Table 5. The accuracy of steganalysis detection with the different steganography algorithms under
different embedding rates.

Steganography Methods Steganalysis Methods
Embedding Rates

0.1 0.2 0.3 0.5

Traditional method
Chen-Net 50.00 56.95 63.28 69.77

Lin-Net 57.34 64.06 67.93 74.13

Based on generating a cover
Chen-Net 48.14 51.29 57.34 61.25

Lin-Net 49.03 52.33 59.43 64.39

The proposed method
Chen-Net 50.00 50.00 50.00 50.00

Lin-Net 50.00 50.00 50.00 50.00

4.3. Analysis on the Reconstructed Secret Audio
4.3.1. On the Auditory

In the proposed algorithm, the type of secret messages is audio, and the secret is
reconstructed by neural networks, which might make the reconstructed secret audios dis-
torted. This distortion may affect the transmission of secret audios on the audio. Therefore,
this distortion can be measured by comparing the difference between the secret audios to
be hidden and the reconstructed secret audios. In this section, two methods are used to
compare the differences between them. One is to employ the various loss indicators of the
extractor. The other is to use various spectrograms to visually compare differences.

In the process of model training, the secret audio to be hidden and the reconstructed se-
cret audio were guaranteed to have a one-to-one correspondence. Therefore, the differences
between them are compared by calculating the Larray, which can reflect the distortion de-
gree of the reconstructed secret audios in the time domain. In addition, based on the above
information, Lmag can reflect the differences between the secret audio and the reconstructed
secret audio in amplitude, and Lsc can reflect their differences in the frequency spectrum.
Figure 5 shows that, with the increase of training epochs, these three loss values are all
close to 0. This indicates that the difference between them becomes very little. It can be
stated that the extractor successfully reconstructs the secret audio with little distortion. Due
to the large redundancy of the audio, it is verified that the secret audios can be transmitted
completely through audio.

In order to further observe the differences between them, different forms of spectro-
grams are used for comparison. Figures 11–13 show the comparison results of two groups
of secret audio and reconstructed secret audio, respectively. Furthermore, in Figures 11–13,
the upper and lower lines are a group of secret audios and the reconstructed secret audios,
respectively. It can be seen from Figures 11–13 that there is a small gap between them.
Furthermore, this gap is caused by the subtle noise of the reconstructed secret audios. As
audios have some redundancy, the secret audios can still be transmitted integrally on audio.
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Figure 11. The time-domain waveform. The left column is the time-domain waveform of the secret
audios, and the right column is the time-domain waveform of the reconstructed secret audios.

Figure 12. The frequency-domain waveform. The left column is the frequency-domain waveform
of the secret audios, and the right column is the frequency-domain waveform of the reconstructed
secret audios.
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Figure 13. The log spectrogram. The left column is the log spectrogram of the secret audios, and the
right column is log spectrogram of the reconstructed secret audios.

4.3.2. On the Semantics

In essence, the ultimate goal of reconstructing the secret audios is to recover their
complete secret semantics. As mentioned above, the reconstructed secret audios have some
slight distortion, which likely affects the complete semantic transmission of a secret. In
this section, we verify that this method guarantees the semantic transmission of the secret
audios. These experiments are conducted from the following two perspectives: One is
to use the STOI (Short-Time Objective Intelligibility) indicator to test the degree that the
reconstructed secret audios can be fully understood. Another is to use speech recognition
methods to test the probability that the semantics in the reconstructed secret audios can be
correctly recognized.

STOI is one of the important indicators to measure speech intelligibility. A word in a
speech signal can only be understood or not. From this perspective, it can be considered
that the intelligibility is binary; thus, the value range of STOI is quantified between 0 and 1.
STOI represents whether a word can be understood correctly, and a value of 1 indicates
that the speech can be fully understood [51].

Since the audios have some redundancy, the reconstructed secret audios are allowed
to be distorted; however, it is necessary to ensure that the receivers can understand them.
Accordingly, the STOI indicator was chosen to verify the integrity of the reconstructed
secret audios. In this experiment, twenty-four reconstructed secret audios were randomly
selected to detect their STOI values, and the results are shown in Table 6. The calculations
show that the average STOI was 0.9887, indicating that the reconstructed secret audios can
be understood well and completely transmitted with semantics.
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Table 6. The STOI values of the reconstructed secret audios.

Number 1 2 3 4 5 6 7 8
STOI 0.9993 0.9495 0.9990 0.9885 0.9860 0.9948 0.9972 0.9554

Number 9 10 11 12 13 14 15 16
STOI 0.9642 0.9745 0.9990 0.9981 0.9999 0.9991 0.9994 0.9983

Number 17 18 19 20 21 22 23 24
STOI 0.9998 0.9841 0.9457 0.9996 0.9995 0.9992 0.9999 0.9979

From the second perspective, the speech recognition method was used to detect
the specific semantic information of the reconstructed secret audios. In this experiment,
sixty-four reconstructed secret audios were randomly selected, and speech recognition
was performed on them. Two speech recognition tools were chosen: Speech Recognition-
PocketSphinx [52] and Google Cloud Speech API [53]. The speech recognition accuracy
rate is defined as the following formula. Table 7 shows the accuracy rate of the secret audio
using the above speech recognition tools. Table 7 explains that the semantic information
of all the reconstructed secret audios was correctly identified. As a result, the proposed
method realized the complete semantic transmission of the secret messages.

Accuracy =
C
T
× 100% (11)

where C is the number of correctly recognized audios and T is the total number of
detected audios.

Table 7. The speech recognition accuracy under different speech recognition APIs.

Speech Recognition Tools Accuracy

Speech Recognition-PocketSphinx 100%
Google Cloud Speech API 100%

4.4. Ablation Experiment

A post-processing layer was added to solve the noise problem in the generated stego-
audios in this model. Therefore, it was necessary that ablation experiments were conducted
to demonstrate the effectiveness. The speech quality of the generated stego-audio was
tested using the same method as in Section 4.2.2 when the post-processing layer was
not added. The ten stego-audios generated by this model without the post-processing
layer were selected randomly for the experiment. The average MOS values of these ten
stego-audios are listed in Table 8.

Compared with Table 4, it can be seen that the average MOS of the generated stego-
audios with a post-processing layer had better voice quality. In addition, the average MOS
of all the stego-audios without a post-processing layer was calculated as 3.52, and the
average MOS of all the stego-audios with a post-processing layer was calculated as 4.15
as shown in Table 9. Apparently, the post-processing layer effectively solved the noise
problem and improved the speech quality.

Table 8. The average MOS of ten randomly selected stego-audios generated by this model without a
post-processing layer.

The Stego-Audios 1 2 3 4 5 6 7 8 9 10

Their average MOS 3.70 3.51 3.65 3.54 3.38 3.49 3.47 3.42 3.43 3.56
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Table 9. The MOS ablation experiment for a post-processing layer.

The Post-Processing Layer Yes No

MOS 4.15 3.52

4.5. Robustness Experiment

The stego-audio may be jammed during transmission in the public channel; thus, the
received audio may contain some extra noises, which might lead to the reconstruction
failure of a secret audio. Therefore, it is necessary to evaluate the robustness of the proposed
model. The experimental settings were as follows. Thirty-two stego-audios were randomly
selected for the robustness testing. Every stego-audio with superposed noises of 5, 10, 15,
and 20 db was sent to the extractor, respectively, and 128 audios were reconstructed.

We performed speech recognition on these 128 reconstructed secret audios using the
same speech recognition methods as in Section 4.3.2. The speech recognition accuracy rate
defined in Equation (11) was also employed here. The experimental results are shown
in Table 10. It can be seen in the table that additional noises added to stego-audios did
not affect the reconstruction of the secret audios. In other words, even if a stego-audio is
jammed to some extent, the receiver can still completely recover the meaning of the secret
audio. Thus, the result states that the proposed method has good robustness.

Table 10. The speech recognition accuracy.

Speech Recognition Method
Accuracy

0 db 5 db 10 db 15 db 20 db

Speech Recognition-PocketSphinx 100% 100% 100% 100% 100%

Google Cloud Speech API 100% 100% 100% 100% 100%

5. Summary

In this paper, we proposed a new coverless audio steganography method. This is the
first work that directly generates stego-audio in audio steganography. The covert commu-
nication of the proposed method demonstrated good reliability and security. Experimental
and theoretical analysis shows that this proposed method not only has high security and
undetectability but also guarantees the complete semantic transmission of secret audio
even in the case of distortion.

However, there are still some shortcomings. First, this work considered an idealized
scenario in which the sender shares the network model with the receiver, and this premise
is a great challenge in reality. In addition, the generation module and the reconstruction
module need prior knowledge of the secret audio. If a new secret audio is given, the
proposed method needs be further trained on the original basis. Therefore, in future work,
we plan to propose a model-free audio steganography framework that can achieve audio
steganography from both the time and frequency domains.
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