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Abstract: In this paper, a current sensor fault detection mechanism based on multilayer perceptron
(MLP) in a permanent magnet synchronous motor (PMSM) drive system is presented. The solution for
the PMSM was previously described and tested only in simulation studies. The described application
allows the detection of basic faults (lack of signal, gain error, signal noise) in current sensors and the
indication of the phase (A or B) in which the fault occurred. The work is focused on the analysis of
the fault detector but also presents the possibilities of their classification. The work mainly presents
experimental research for different values of speed during the load and regenerative mode. In
addition to the study of various operating conditions of the drive system, the detector efficiency was
also verified for three neural structures with a different number of neurons in the hidden layers. The
work also presents simulation tests (in Matlab Simulink software) for the additional conditions of
the drive system for the same neural structures as in the experimental studies. The results obtained
during offline and online faults detection with the use of the DS1103 controller are presented.

Keywords: current sensors; fault detection; neural detector; PMSM

1. Introduction

Fault detection in electric motor drive systems is becoming an increasingly popular
research topic due to the use of electric motors in advanced systems that require an increased
level of safety. Scientists use modern signal processing methods or artificial intelligence
to detect as many failures as possible in the shortest possible time—at an early stage of
damage [1–3].

Damage in drive systems is divided into three basic groups: motor damage, frequency
converter damage, and measuring sensor damage [4]. In the literature, most works present
the detection of electrical and mechanical faults in the electric motor itself [5–8]. The
works present advanced detection methods based on artificial intelligence [9,10], object
models [11–13], and measurement signals [14,15]; most of them use signals from measure-
ment sensors. Despite the use of measuring sensors in the detection of other types of
damage, there are fewer works dealing with their fault detection. In addition, the diagnos-
tics of damage to measuring sensors offer great compensation opportunities (in respect of
hardware and software), where so-called fault-tolerant control systems (FTCS) are applied
there. In the case of other damage (e.g., to motor components) it is necessary to stop the
system and replace the damaged component.

In drive systems, Hall-effect sensors are usually used to measure the current. The
main advantage of this type of sensor is its non-invasive measurement. Damage in such
a sensor may be caused by the corrosion of the core, changes in the magnetic properties
of the ferrite core due to temperature, or, for example, changes in the orientation of the
magnetic field induced in the sensor [16]. These damages can lead to a complete break
of the sensor and loss of measurement signal or less significant failures (e.g., phase shift,
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signal noise, and gain changes). Depending on the type of failure, as a result, the operating
properties of the drive system may deteriorate, or the control stability may be completely
lost. Therefore, fault detection of current sensors is an important issue.

In the literature, two types of methods for detecting faults in current sensors are mainly
found; methods based on measurement signals and the object model. An example of work
based on measurement signals may be the article [17], in which the authors presented
the detection and location of faults in current sensors. The detector compared average
normalized values of the phase currents in three phases. Damage detection was similarly
described in [18], which detected two types of failures: signal loss and current abrupt.
These are failures in which the current value significantly differs from the expected one.
Paper [4] describes the application of a current tracking algorithm for the detection of signal
loss of one or two sensors based on three-phase current and speed measurements. The
algorithm presented in the work also allowed for detecting minor failures such as offset and
gain errors. Each type of failure required a separate algorithm to recognize it. Detection
was also carried out separately for each sensor, and appropriate indicators were determined
for each sensor and failure type. Exceeding the threshold of 0.3 indicates a failure. The
work of the drive system in the article was shown for less than 2000 rpm speed value,
and some of the indicators almost reached the threshold value in a non-damaged state;
detection for low-speed and dynamic states was not shown. The detection time varied
between 0.02–0.03 s, and the use of neural networks allowed the shortening of this time.

Apart from using current measurement, there are also several papers in the literature
where the detection of current sensor faults is performed by measuring and estimating the
dc-link current in the intermediate circuit [14,19,20]; however, these articles only presented
simulation results. The operation of the detector under variable operating conditions of the
drive system or various types of failures was also not shown.

Current sensor fault detection applications are mainly based on state variable ob-
servers. For this purpose, different types of observers are used– SMO (sliding mode
observer) [11,21], EKF (extended Kalman filter) [22], nonlinear observer [23], and LO (Lu-
enberger observer) [24]. Detection is carried out by comparing the observed value with
a measured value of current. When the difference between them exceeds a certain value,
the detector indicates that a fault has occurred. Algorithms of this type make it possible
to indicate a damaged phase, but they are strongly dependent on motor parameters. The
quality of the estimation is also influenced by the speed and load of the motor.

Several works have presented the detection of current sensor damage using methods
based on artificial intelligence (AI). Those papers describe the detection of an induction
motor [25–27]; such a solution for PMSM has been described only in simulation studies by
the authors of this work [28].

In the case of articles [25,26], only the detection and location of faults without their
classification were presented. In this case, signal loss detection times were below 1 ms, but
for other types of failures, even several seconds. However, in [27], the neural network (NN)
was used only for fault classification, and the current estimator was responsible for the
detection. The presented solution correctly classifies the failure only after its compensation.
This application is not resistant to errors resulting from the impact of sensor failure on the
entire control structure. The results were also shown only for stable operating conditions,
and the operation of the network in the regenerative mode was not shown. Classification
time also varied between 0.02–0.05 s and the paper showed only simulation results.

These are the basic elements that distinguish existing works in the literature from the
presented solution. This article presents both the detection and classification of faults in
simulation and experimental studies. Besides, the proposed application does not require
additional current estimators for detection. In addition, the neural networks described in
previous works have different structures and input and output vectors.

The advantage of the presented work on methods based on the object model is that
using a neural network does not require prior knowledge of the research object. There is no
need to know the motor parameters, which can be difficult to determine with high precision.
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Additional motor parameters may change over time. However, usually, in the case of signal
methods, only fault detection is presented without their classification. Individual works,
which show the determination of the type of failure using signal methods, require separate
algorithms for each type of failure and each of the sensors. Works based on signal methods
show the detection of signal loss, offset, and variable gain. Each of these failures gives
effects that can be described by appropriate equations. There is no distinction between
measurement noise and variable gain, which show similar symptoms and require analysis
of the signal image in several samples.

This paper presents an analysis of the fault detection system based on neural networks
in a vector-controlled permanent magnet synchronous motor (PMSM). So far, neural
networks have found many applications in drive systems with electric motors (motor
damage detection [29], neural controllers [30], motor parameters identification [31], and
estimation of state variables [32]) and have allowed for high efficiency. However, the
solution presented in this article has not yet been described in the literature for the PMSM
drive system. The article presents simulation and experimental results and is an extension
of the author’s work [28], which presented only simulation studies. A special difference
between the previous paper is the expansion of the input vector with the value of the stator
current from the previous samples. The input vector from simulation studies turned out
to be insufficient in experimental tests. In the presented work, it was possible to obtain
enough high efficiency for the same neural structure and training method as in previous
simulation studies.

The neural detector described in the paper indicates three main types of faults: signal
loss, gain error, and measurement noise. The detector efficiency was verified for different
values of speed, motor load, regenerative mode, and three neural network structures.
In addition to detection, the failure is also localized (the detector indicates a damaged
phase), which makes it possible to compensate for it. In this paper, fault detection during
operation in regenerative mode was also taken into account, which is usually omitted in
papers presenting fault detection of current sensors. Detection is based on the multilayer
perceptron (MLP) and raw signals without the use of advanced signal processing methods,
which results in a low computational complexity of the solution. It was decided to use
MLP due to its high efficiency in relevant problems of damage classification [29,33–35]. In
addition, the implementation possibilities of the perceptron or similar neural structures
on microcontrollers have been repeatedly presented in the literature, which shows the
possibilities of using the detector in industrial practice [36–38]. The paper also presents
the possibilities of damage classification (indication of one of the three analyzed failure
types) with the use of MLP; fault classification is based on the same input vector as the fault
detector, excluding the regenerative mode, and the classifier recognizes the same three types
of damage. The research was carried out in Matlab/Simulink and dSpace environments
with the use of a DS1103 controller. In the research, the location and classification of
damage are shown without fault compensation. The lack of compensation affects the
entire control structure, which makes the correct location and classification of failures more
complicated. However, such an approach means that additional tools, such as estimators
sensitive to changes in motor parameters, are not required to perform correct detection.
The work is supplemented by simulation studies conducted for the same neural structures
in Matlab/Simulink. It is also worth emphasizing that only two current sensors were used
in the presented solution, which is in line with industrial solutions.

The work is divided into five parts. The first part presents the motivation to under-
take research and its innovativeness, followed by the theoretical basis of the developed
neural detector based on the MLP NN. The third part shows the control structure used
in the research in simulation and experimental tests and the significance of the research
undertaken. Simulation results for fault detection are described in the fourth chapter. The
fifth chapter contains experimental results and verification of the effectiveness of the fault
detector and fault classifier. Both in simulation and experimental studies, the results for
offline and online detection are presented. The last part presents a summary of the work.



Electronics 2023, 12, 1170 4 of 22

2. Neural Detector—Structure Features

The fault detection mechanism presented in this paper is based on a multilayer per-
ceptron. The perceptron is a feedforward neural network consisting of an input layer, n-
hidden layers, and an output layer. Each neuron in each layer is connected to a neuron in
the next layer; there are no connections between the neurons of the same layer [39,40].

The operation of this type of Neural Network can be written simply by the equa-
tion [29]:

yk = f3

(
f2

(
M

∑
i=1

w(2)
ki × f1

(
N

∑
j=1

w(1)
ij × xj + w(1)

0

)
+ w(2)

0

)
+ w(3)

0

)
(1)

where
yk—k-th output of the network,
xj—j-th input of the network,

w(1)
ij , w(2)

ki —weights of the first and second hidden layers, respectively,

w(1)
0 , w(2)

0 , w(3)
0 —biases in the first and second hidden layers, and output layer, respectively,

f1, f2, f3—activation functions of the first hidden layer, second hidden layer, and
output layer, respectively.

MLP performs global approximation, i.e., individual elements of the input vector are
processed by many neurons simultaneously. The training process consists in modifying the
network weights in such a way as to minimize the mean square error (MSE)—the objective
function of the output and expected values. The Levenberg–Marquardt training method
with Bayesian regularization, was used in the study. Regularization introduces a change to
the objective function. Not only is the aim to minimize the mean square error but also to
achieve it with the lowest possible weights [41].

The paper presents a study of a fault detector, which indicates faulty phase (A or B),
and a fault classifier, which also defines the type of failure. Three types of neural structures,
with a different number of neurons in hidden layers for fault detectors, are tested. In the
case of the classifier, the results are presented only for one neural structure. The Levenberg–
Marquardt training method with Bayesian regularization, logistic function as activation
functions in hidden layers, and linear function as an output layer activation function were
chosen as constant parameters.

The main part of designing a neural detector is the selection of the input vector. The
most important elements of the input vector are the currents in phases A and B, from the
current and previous samples. Using samples from previous measurements allows to create
a more complete picture of the signal for the neural detector and the recognition of faults
that do not directly indicate faults in every measured sample. Another important signal is
the 0–1 ∆isαβ result of comparing the values of the stator current components α-β determine
based on measurements from sensors in different phases.

In the field-oriented control structure, the measured currents in the ABC frame are
converted to the stationary α-β frame. Measurement in three phases or two can be used
for this transformation. This gives three possibilities to determine isα and isβ, using the
following equations:

isα1 =
2
3
(isA −

1
2
(isB + isC)), isβ1 =

√
3

3
(isB − isC), (2)

isα2 = isA, isβ2 =

√
3

3
(isA + 2isB), (3)

isα3 = −(isB + isC), isβ3 = −
√

3
3

(isB − isC), (4)

In the absence of a fault, these currents are almost equal to each other. When a fault
occurs in any of the phases, discrepancies in them appear. Then the 0–1 signal ∆isαβ is set
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to 1. In the control structure, α-β currents are determined on the basis of Equation 3. Due
to only two current sensors in the control structure being used in the work, the value of IsC
was determined on the basis of delivery IsA and IsB by the following equation:

isC = −isA − isB, (5)

As the correct current values are dependent on the speed value, the reference speed
ωref is also supplied to the detector input. Currents in the d-q axis in the rotor system and
the space vector module |IS| were used as auxiliary symptoms. The full input vector is
presented below:isA(k), isA(k− 1), isA(k− 3), isA(k− 5), isA(k− 7),

isB(k), isB(k− 1), isB(k− 3), isB(k− 5), isB(k− 7),
ωre f , ∆isαβ, | IS |, isd, isq

T

, (6)

A description of individual input vector signals is shown in Table 1.

Table 1. Individual inputs of the neural detector.

Input Value

is A(k), is A(k− 1), is A(k− 3), is A(k− 5), is A(k− 7) is A—phase A current

isB(k), isB(k− 1), isB(k− 3), isB(k− 5), isB(k− 7) isB—phase B current

ωre f ωre f ωre f —reference value of speed

| Is | | Is | =
√

isα
2 + isβ

2 isα, isβ—stator current components

∆isαβ [0 1] isα1 = isα2 = isα3 ∧ isβ1 = isβ2 = isβ3 ∆isαβ = [0 1]

isq isq
isq—a calculated value of stator current component q axis in

rotor frame

isd isd
isd—a calculated value of stator current component d axis in

rotor frame

The fault detector and the fault classifier are presented as two separate neural struc-
tures. The fault detector output is one element that can take the following values:

• 0—no fault,
• 1—faulty sensor in phase A,
• 2—faulty sensor on phase B.

The design of the fault classifier is carried out in the same way; the fundamental
difference is the number of outputs. The first output of the fault classifier defines phase A,
the second defines phase B. For both outputs, the values represent the following faults:

• 0—no fault,
• 1—signal loss,
• 2—signal noise,
• 3—gain error.

In addition, the classifier required more neurons in the first hidden layer. The same
neural structures were used in both experimental and simulation studies.

3. Control Basics in Simulation and Experimental Studies

This chapter describes the control algorithm used in the research and sample transients
of current and speed. In the paper, the field-oriented control (FOC) structure was used for
both simulation and experimental research. A current sensors fault detector, based on the
neural network, has been added to the standard control structure. The complete control
diagram is shown in Figure 1.
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Figure 1. Diagram of control structure with neural detector used in simulation and
experimental research.

Experimental tests were carried out on a 0.894 kW PMSM motor from Moog (G403-
2007A). The essential parameters of the motor are presented in Table 2. The dSpace DS1103
controller with Control Desk software was used in the tests, the position of the shaft was
measured with an incremental encoder (36,000 imp./rev), and the current measurement
was carried out using LEM-type current transducers. Another Moog PMSM motor (G404-
2009A—0.89 kW) controlled by a Moog servo drive was used as the load. Photos of the
laboratory set-up are shown in Figure 2. A frequency converter with a switching frequency
of 15 kHz was used to supply the tested motor. The sampling frequency in the studies was
1 × 10−4 s. The faults were simulated in a software manner. Table 3 shows the equations
that were used to simulate the individual failures.

Table 2. Parameters of the tested motor in simulation and experimental research.

PN [kW] Pp [-] nN [rpm] TN [Nm] IN [A] J [kg·m2] RS [Ω]

0.894 4 6200 1.4 1.9 0.000039 4.6615
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Table 3. Considered fault types of current sensors.

Type of Fault Current Value

Variable gain im
s = (1− γ)ia

Noise im
s = ia + n(t)

Lack of signal im
s = 0

Intermittent signal im
s = [0, 1]ia

where ism—measured current, ia—real current, n(t)—white noise, γ—constant value from the range <−1, 1>.

Firstly, the operation of the PMSM drive during the failure of the stator current
sensor was presented. The purpose of these studies is to show the impact of failure
on the transients. Figure 3 shows the currents and speed error transients in normal
operation—without damage and during damage to the current sensors in phase A and
phase B in experimental tests.
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of signal in phase A (b), and signal noise in phase B (c) in experimental studies.

The impact of damage was visible primarily in the current transients. The speed error
did not change much. Peaks in speed occured at the early stage of damage appearance.
Incorrect current measurement resulted in increased total harmonic distortion (THD) in the
current transients, which is presented in Table 4. This confirms the impact of even small
faults on the operation of the drive system and the importance of their detection.

Table 4. Total Harmonic Distortion.

Fault THD(IA) THD(IB)

No fault 1.12% 1.25%
Lack of signal in phase A - 4.46%
Signal noise in phase B 1.9% 3.54%
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Adequate transients for simulation tests are shown in Figure 4. In the simulation
tests, a PMSM with the same parameters as in the experimental tests was used (Table 2).
The model of the control structure was made in the Matlab Simulink (Sim Power System
toolbox) [42] with a 15 kHz switching frequency; the neural network was designed using
the Neural Network Toolbox [43]. In this research, the Euler method with a fixed step size
equal to 1 × 10−5 s was used. The comparison of THD values is presented in Table 5. The
simulation results, except for signal loss, were consistent with the experimental tests.
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of signal in phase A (b), and signal loss in phase B (c) in simulation studies.

Table 5. Total Harmonic Distortion.

Fault THD(IA) THD(IB)

No fault 1.13% 1.27%
Lack of signal in phase A - 56.88%
Signal noise in phase B 1.99% 2.51%

4. Fault Detection—Simulation Results

This chapter presents the simulation verification of the tested neural detector and
classifier. Preparation of the neural detector and classifier in simulation studies is based on
the following stages:

(1) generating training data using Simulink;
(2) training process using Neural Network Toolbox, selection of the neural structure and

input signals in Matlab;
(3) implementation of the neural structure along with the parameters obtained in the

training process in the motor control algorithm in Simulink;
(4) conducting online detection on the motor model in Simulink.
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Statistical data are presented for neural detector performance analysis obtained by
offline detection with raw signals. The exact parameters of the training and testing vectors
are presented in Table 6.

Table 6. Parameters of training and testing vectors in simulation studies.

Feature Training Data Testing Data

Number of samples 1,560,002 1,560,002

Speed values +/−0.2ωref, +/−0.5ωref,
+/−0.8ωref

+/−0.3ωref, +/−0.6ωref,
+/−0.9ωref

The damage detection results are presented for three neural structures using confusion
matrixes in Figure 5. The results are obtained for the operation of the drive system during
failures without their compensation.
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The obtained results indicate the lack of false alarms during fault detection, which
is the essence of detection and developed systems.; errors are made only in indicating a
damaged phase. Another element of the system is the classification of failures. The results
for the classifier are also presented using the confusion matrixes (Figure 6). Both detection
and classification systems can operate in parallel. This ensures the absence of false alarms
by using a fault detector and determining the type of damage by using a classifier. Fault
classification allows for determining fault severity.
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In addition to the effectiveness, the influence of individual inputs of the neural detector
on its output was also analyzed. For this purpose, Figure 7 shows the correlation of
individual inputs with the output of the detector. The 0–1 ∆αβ signal and the B-phase
current measurement have the greatest impact on the detector output.

Not all relevant aspects of the detector can be shown by percentage results. Sample
transients for the operation of the detector and classifier during faults in phases A and
B are shown in Figure 8. These results represent online detection after neural network
implementation in Simulink. Ten samples of the output of the neural network were rounded
and this was the response of the detector. The number of rounded samples results from the
high sampling frequency. The online verification is presented for the detector structure,
which achieved the highest efficiency—15-10-1 and 30-10-2 for the classifier.
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Based on the presented results, it can be concluded that signal noise is the most difficult
failure to detect. The raw output of the network has the most oscillations. Significantly more
oscillations also appear with failures in phase A. The most potential errors in classification
may appear in the distinction between signal noise and gain error. Symptoms in many
samples may be the same. In Figure 8a, the raw output of the phase A classifier shows the
oscillation between these faults. For all cases, only classification errors appear, and damage
detection is correct, which is consistent with the presented percentage results.

5. Fault Detection—Experimental Results

This chapter presents the experimental studies of the detector and the fault classifier.
Preparation of the neural detector and classifier in experimental studies was based on the
following stages:

(1) carrying out measurements on experimental set-up with the use of Matlab/Simulink
and dSpace software, and DS1103 controller, used as offline training and testing data;

(2) the training process with the selection of the neural structure and input signals in
Matlab with the use of Neural Network Toolbox;

(3) implementation of the neural structure along with the parameters obtained in the
learning process in the motor control algorithm in Simulink and dSpace software;

(4) conducting online detection on a real-time DS1103 controller.

The full research process is shown in Figure 9.
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To carry out online detection, a neural detector with parameters obtained in offline
training was implemented in Simulink at the laboratory set-up.

Statistical data is presented for neural detector performance analysis obtained by
offline detection. The exact parameters of the training and testing vectors are presented
in Table 7.

Table 7. Parameters of training and testing vectors in experimental studies.

Feature Training Data Testing Data

Number of samples 380,010 228,006

Speed values +/−0.1ωref, +/−0.2ωref, +/−0.3ωref +/−0.075ωref, +/−0.15ωref, +/−0.225ωref

Load Values 0.1 TN, 0.3 TN 0.2 TN

Regenerative mode 0.1 TN, 0.3 TN 0.2 TN

For all presented neural structures, the training process was carried out for 550 epochs.
A detailed verification of effectiveness is presented based on the confusion matrixes
(Figure 10). The results are presented for both the training and testing data. Detection
efficiency is presented as the ratio of samples of correct responses of the neural network
to all measurement samples in the percentage form. In each case, the efficiency of failure
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location is about 99%. In addition, these results show that failure detection is 100% for
every structure, and this is the most important element of the developed solution.
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Based on Figure 10, it can be concluded that the 15-10-1 structure is the most effective
of the studied structures. This is consistent with simulation studies.

The presented detector has an extended input vector (15 elements). However, these are
signals readily available in the control structure. To prove that each of them is significant,
the correlation values of individual inputs with the output vector for the tested detector are
presented in Figure 11. The 0–1 ∆isαβ signal shows the greatest connection with the output
vector, while the others have a similar to each other effect. From the presented graph, it
can also be concluded that the values of the samples from the current measurements in
phase B are slightly more important in the detection of faults. Moreover, in the confusion
matrixes, it can be seen that slightly more errors are made during the damage in phase A.
The significance of the inputs in the detection is consistent with the simulation results.
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Figure 11. Correlation values between input vector elements and output vector.

The progress of a training process for individual neural structures is shown in Figure 12.
To better illustrate the course of training errors, the results are presented on a logarithmic
scale. The structure with the highest efficiency (15-10-1) obtained the smallest mean squared
error (mse). The mse declined almost until about 500 epochs. The remaining structures have
not improved their parameters since about 150 epochs of the training process. An increase
in the number of neurons in the first hidden layer decreased the fit of the neural network.
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Online detection results are presented only for the NN structure that achieved the
highest efficiency in offline detection analysis—10-15-1. The averaged and rounded value
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from the current sample and the two previous samples are taken as the detector response
(NNDetector), which increases the detector’s resistance to making errors by single incorrect
results of the neural network. The figure shows both the response of the raw neural network
(NNOutput) and the response of the detector. Online detection was performed for the same
range of speed and load values as listed in Table 7 for the test data. First, the results are
presented for the detection of signal loss in the case of no-load operation (Figure 13).
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Figure 13 shows the detector’s immunity to false alarms. The failure is correctly
detected in the dynamic state, and the values even at the raw output of the network, are
close to the expected result. As in the simulation results, the raw network output during a
fault in phase B is closer to the expected value than during a fault in phase A.

Figure 14 shows the operation of the detector in load and regenerative mode in both
directions. The detector showed high efficiency in both cases. However, during motor
operation with a load, the raw signal from the neural network deviated more from the
correct value than in no-load conditions. On the transients, it can also be observed that the
detection proceeded correctly both during stable operation and dynamic states. Switching
on the load or the regenerative mode during the failure also did not disturb the detection.
The faulty phase was indicated correctly.

Signal loss is the easiest failure to detect because it most significantly affects the control
structure. Other failures—gain error and measurement noise has little impact on it. Despite
this, the detector detected and located failures with high efficiency. The results are shown
in Figure 15 under load conditions. Based on Figure 15, it can be concluded that the
detection of measurement noise caused the most errors in the neural detector response.
However, these errors concern the determination of the damaged phase, and not the failure
detection itself.
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In the case of damage detection, time is of the essence. Therefore, the average detection
times (time from failure occurrence to its detection) of individual failures in phases A and
B, obtained based on the online detection data for the 15-10-1 structure, are presented in
Table 8. The raw signal of the neural network detected the failure in the same sample in
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which it occurred. The detector response had a delay due to the use of the average of the
current sample and the two previous samples. For this reason, the lowest detection time
was the duration of two samples—2 ms. In addition, every 10th sample was recorded
during the measurements.

Table 8. Detection times.

Type of Fault Phase A Phase B

Signal loss 2 ms 4 ms
Gain error 2 ms 4 ms
Signal noise 2 ms 4 ms

The transients showing the detection times for phase A and phase B for various faults
are shown in Figure 16. The figure also shows the transients of the fault trigger signal. All
signals are presented as a stairstep graph. Therefore, in this paper the detection time was
shorter than in the papers presented in the introduction.
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The basis of the FTC system is fault detection and location. Classification of damage is
a secondary matter, but it allows to determine how significant the impact on the control
structure may fault have. The next part of the work shows the possibilities of using MLP in
the classification of damage to current sensors in the PMSM drive system. The classifier
has two outputs. The first determines the damage in phase A, and the second in phase B. In
this case, it was necessary to use the structure of a neural network with a larger number of
neurons in the first hidden layer. The principle of neural network theory was applied here,
stating that the number of neurons in the first hidden layer should be twice the number of
inputs. Training and testing for the classifier were performed on the same data as for the
fault detector, excluding the regenerative mode. Therefore, in the case of the classifier, the
results for the 30-10-2 structure are presented. The efficiency of the classifier is shown in
Figure 17. The results for both inputs are presented separately.
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The transients during online detection, as in the case of the fault detector for the
classifier, are shown in Figure 18. The sample transients show the operation of the classifier
during signal loss and signal noise in phase A and phase B. The presented results confirmed
the efficiency of the classifier in the no-load and the load mode. In this case, also switching
on failures in dynamic states did not interfere with the correct classification. In the case of
the classifier, both during no-load and load mode, oscillations appeared on the raw network
output, even during signal loss. As in any of the previous cases, most errors occur during
measurement noise.
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6. Conclusions

The article presents a neural fault detector of current sensors in the PMSM control
system in simulation and experimental studies. Simulation and experimental results are
similar. The obtained experimental results testify to the effectiveness of the proposed
solution. The presented analysis confirms the following advantages of the application:

- high detection efficiency (100%) and failure location (>99%);
- short detection time, compared to existing solutions, 2–4 ms;
- correct operation in no-load, loaded, and regenerative mode;
- effective detection in stable and dynamic states;
- effective detection, location, and classification of damage without the necessity

of compensation;
- the use of raw signals easily available in the control structure as inputs of the

neural network;
- low complexity of the implemented network in the control structure;
- the possibility of using it in a system with damage compensation (failure location);
- the use of only two current sensors in the control structure.
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In addition to damage detection, the article also presents the possibility of their
classification using MLP. The obtained results show that the network correctly recognizes
faults. The classification efficiency reaches about 98%. Damage classification may provide
additional data for the FTC system. The article presents a detector that can be successfully
used in FTC systems; this will be the next step for the authors of the publication.
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