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Abstract: Mitochondria are the organelles that generate energy for the cells. Many studies have
suggested that mitochondrial dysfunction or impairment may be related to cancer and other neu-
rodegenerative disorders such as Alzheimer’s and Parkinson’s diseases. Therefore, morphologically
detailed alterations in mitochondria and 3D reconstruction of mitochondria are highly demanded
research problems in the performance of clinical diagnosis. Nevertheless, manual mitochondria seg-
mentation over 3D electron microscopy volumes is not a trivial task. This study proposes a two-stage
cascaded CNN architecture to achieve automated 3D mitochondria segmentation, combining the mer-
its of top-down and bottom-up approaches. For top-down approaches, the segmentation is conducted
on objects’ localization so that the delineations of objects’ contours can be more precise. However, the
combinations of 2D segmentation from the top-down approaches are inadequate to perform proper
3D segmentation without the information on connectivity among frames. On the other hand, the
bottom-up approach finds coherent groups of pixels and takes the information of 3D connectivity into
account in segmentation to avoid the drawbacks of the 2D top-down approach. However, many small
areas that share similar pixel properties with mitochondria become false positives due to insufficient
information on objects’ localization. In the proposed method, the detection of mitochondria is carried
out with multi-slice fusion in the first stage, forming the segmentation cues. Subsequently, the second
stage is to perform 3D CNN segmentation that learns the pixel properties and the information of
3D connectivity under the supervision of cues from the detection stage. Experimental results show
that the proposed structure alleviates the problems in both the top-down and bottom-up approaches,
which significantly accomplishes better performance in segmentation and expedites clinical analysis.

Keywords: mitochondria segmentation; image analysis; electron microscopy; 3D CNN

1. Introduction

Due to the vigorous development of connectomics research, it is possible to produce
high-resolution and high-magnification electronic microscope (Electronic Microscopy, EM)
images, allowing scientists and biologists to perform nanoscale imaging. Subsequently, it is
essential to identify and study cellular organelles, such as vesicles or mitochondria, etc.,
in particular, the observation and analysis of the state and structure of mitochondria. In
definition, the mitochondria are called the power plants of cells. They synthesize adenosine
triphosphate to make cells the primary source of chemical energy for activities. They play a
pivotal role in the cell, and mitochondrial morphology and its malfunction usually lead to
the disorder of their function and distribution [1].

Because the changes in mitochondrial morphology are related to neurodegeneration,
calcium signaling, and cell death, the change and regulation of their shape are significant to
cell physiology. This also proves that relative changes in the morphology of mitochondria
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are also very important in the immune system [2]. In addition, mitochondria are also
closely related to cancer [3-5]. The mitochondria in cancer cells can resist the life cycle
of general apoptosis. These have also led to many related cancer treatment studies that
stimulate the mitochondria of cancer cells. The membrane’s permeability may change the
mitochondrial metabolism of cancer cells to allow cancer cells to die [6]. Mitochondria
are also very important in clinical research. In addition to the cancers mentioned above,
their size, number, and shape are also closely related to other serious diseases, such as
bipolar disorder [7], diabetes [8], Parkinson’s disease [9], and Alzheimer’s disease [10]. The
upper mitochondria are related to other serious diseases, so academic and clinical research
on the mitochondrial shape and state in the cell has received considerable attention. The
above factors make distinguishing and analyzing mitochondria a critical task. However,
the noise on EM images is due to mitochondrial morphology and structure variability.
Other subcellular structures similar to mitochondrial structure exist; thus, cutting and
reconstructing mitochondria on EM images is also challenging.

Because of the recent advancement in electron microscope technology, imaging can
be expanded significantly, and the leading development is in capturing 3D information.
The difference between a scanning electron microscope (SEM) and an optical microscope is
that the optical microscope uses visible light for imaging, while the electron microscope is
formed by the interaction of an electron beam light source and an electromagnetic field and
collects secondary electrons and backscattering after electrons hit the object. The electrons
are then analyzed and imaged. After forming a series of 2D EM images, they are realigned
and merged in order to obtain the 3D reconstructed EM images. It is mentioned in [11] that
FIB-SEM works similarly to SEM, except that the ions that strike the sample are different.
To more accurately show the state of cell interaction, FIB-SEM with excellent resolution is
used. FIB-SEM has been used to detect the number of viruses in cells and some delicate
membranous structures, such as filopodia (Filopodia), and it is also known that viruses can
use these structures to transfer from one cell to another. Therefore, if FIB-SEM imaging can
provide excellent 3D resolution of more than thousands of cubic microns, it can quickly
solve the problem of ultra-small structures such as cells or viruses [11].

2. Related Work

With the advancement of Electron Microscopy (EM) technology, neuroscientists can
study the functions of various organelles in various cells, such as mitochondria, endo-
plasmic reticulum, etc., at high magnification. Using human resources to analyze mito-
chondria in electron microscope imaging and estimating the number of mitochonderia is
time-consuming and expensive. To resolve this issue, many studies use specially designed
manual features (Hand-crafted) [12,13] to cut mitochondria. These features are usually
trained with machine learning algorithms to achieve better results [14-16]. Techniques
such as Random Forest and Conditional Random Field are commonly used. In recent years,
the process can be completely automated because of the emergence of Fully Convolutional
Neural Networks (FCN).

The idea is to build a more profound and broader neural network to solve challenging
biomedical image-cutting problems. The most widely used model is U-Net, a typical FCN
architecture. Using encoder-decoder and by adding a shortcut connection, the feature
map of the corresponding scale of each layer can be extracted. After that, it is integrated
with the up-sampling result to compensate for the spatial information lost due to the
down-sampling operation. The current studies on EM’s mitochondrial cutting tasks that
perform well [10,17] are based on the U-Net architecture, and its 3D (three-dimensional)
variant U-Net is used for enhanced results.

Given a volume image dataset, the 2D convolutional neural network processes each
slice one by one. Although the calculation efficiency is high, the 2D cutting network
usually cannot achieve competitive results because it completely ignores the correlation
between each slice. In contrast, using a 3D convolutional neural network can obtain a
more comprehensive view during 2D training using the information of the full-space front
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and rear slices. In addition, pre-processing methods are often used in biomedical images,
including cutting out glands from histology images (Glands) and cutting out nerve cells
from electron microscope images, etc. Examples of the cutting methods used in cutting
electron microscope imaging have achieved good results. However, the mitochondrial
data integration method used in the experiment of this study is the same as the nerve
cells, as mentioned earlier. These images are from an electron microscope, but compared
with the example of neuron cell cutting, each mitochondria has a different length and
thickness. Generally, the cutting method of neuron cells produces wrong results in the case
of mitochondria, which are sparse and similar in appearance [18,19]. Work [20] divides the
mitochondprial instance cutting task into two methods. The first is the top-down method,
in which the 2D image is passed through the object detector, and the object with the high
bounding box is selected.

Further, the cutting results are obtained by point-by-point classification for these
bounding boxes, which is then combined with post-processing, e.g., connected component
algorithm or graph-based watershed algorithm. The final objective is to achieve the instance
segmentation of each mitochondria. The second approach is based on the bottom-up
method, which uses the 2D CNN or 3D CNN to predict its edge-cutting. A contour or
binary segmentation mask is combined with the post-processing steps, such as connected
component or graph-based watershed algorithms. These steps mainly improvise the overall
instance segmentation of the mitochondria.

2.1. Top-down Approaches

The commonly used object detector in the top-down approach is built on the 2D Mask
R-CNN architecture [21]. Initially, object detection is performed, and based on the bounding
box information, the segmentation model focuses on targeting the mitochondria regions.
Generally, the model detects and cuts the region in all the directions of the bounding box
regions, and the detected outline can cover the mitochondria region. However, the major
problem with 2D Mask R-CNN is that there is no 3D connectivity information, which causes
the mitochondria in some slices to be easily missed. The narrow and long characteristics of
mitochondria often create incomplete results, mainly due to insufficient receptive fields.

Another top-down method [22] aims to increase the amplification direction of its
visibility so that the mitochondrial contour can be detected with high accuracy. In ad-
dition to the R-CNN architecture, a recursive cutting subnet is also used. The method
returns the output result to the input to further refine the results, which is also used in the
proposed technique.

2.2. Bottom-up Approaches

To conduct a bottom-up approach, a new dataset termed Lucchi++ [23] is proposed,
which comes with the improved label in the original Lucchi dataset [15]. The approach
performs cutting on every 2D slice, and the 2D U-Net is used as a backbone model. More-
over, the method uses interpolated up-sampling to replace the deconvolution in the classic
U-Net architecture to achieve an acceleration effect. In addition, to make up for the lack of
3D connectivity information in 2D cutting, the z-filtering post-processing is used to obtain
3D information, which can significantly improve the cutting results.

Subsequent bottom-up approaches are mainly based on three-dimensional informa-
tion. The method [17] uses a 3D U-Net cutting architecture to achieve excellent performance
in medical image cutting, and then uses a deep supervision mechanism to prevent possible
gradient vanishing during model training. In addition, to improve the cutting stability and
performance, the test-time augmentation method is used. However, no big improvements
are made on the model configuration, which can detect the mitochondria through better fea-
ture learning. Although the authors have obtained good cutting results with the 3D CNN
architecture, misjudgment detection still exists. Moreover, semantic segmentation using
adversarial networks is also proposed to learn and predict the higher-order inconsistencies
from the ground truth segmentation maps [24]. However, the segmented image suffers
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from jagged edges and overfitting problems. In the latest, a new transformer-based archi-
tecture for medical segmentation is proposed, termed UNEt TRansformers (UNETR) [25].
The segmentation network can capture global multiscale information and performs with
better accuracy. On the downside, the network requires extensive training and high
computational resources.

Considering the above limitations, the proposed work focuses on improving the
top-down and three-dimensional bottom-up approaches, taking advantage of both.

3. Proposed Method

This section presents the proposed cascaded two-stage training mechanism for the
enhanced segmentation of mitochondria. The section is divided into three subsections.
The first subsection details the open-source 3D mitochondrial datasets used for this study.
The second subsection covers the limitations of the 2D top-down and 3D bottom-up ap-
proaches with illustrations. The final subsection proposes three strategies for performance
improvisation, and the optimal method is selected.

3.1. Mitochondria Dataset

For the experimental study and analysis, the publicly available Luchhi++ dataset [23]
is considered, and it contains 3D mitochondrial images. Many works initially focus on
the Luchhi dataset [15], and several issues have been identified. In the method in [26],
while analyzing the large 3D mitochondrial image, some mitochondrial border labels are
found to be not consistent. Another method in [23] also reported some defects in the
mitochondrial label, such as wrong classifications and the inconsistency of the membrane
on the mitochondria. Subsequently, the Lucchi++ dataset is released with a re-annotated
qualitative truth label. Many senior biologists are involved in this modified work to obtain
accurate labeling of the mitochondrial membrane. In general, two neuroscientists are asked
to correct the correctness separately, and labels are finalized based on mutual agreement.
The Luchhi++ dataset is an improved version of the Luchhi dataset, with revised and
fine-tuned labels. The dataset is obtained by sampling a small section of hippocampal
gyrus cell slices from the mouse brain and using a focused ion beam scanning electron
microscope (FIB-SEM) to capture the microscopic details. The initial pixel (Voxel, vx) size
is of 5 x 5 x 5 nm scanning imaging. With the final alignment and correction, it is a 3D
image of size 2048 x 1536 x 1065 vx, as shown in Figure 1. However, the manually created
mitochondria segmentation is available only for two neighboring image stacks of each
1024 x 768 x 165 vx, and these two sub-sets are commonly used for training and testing to
evaluate mitochondria detection algorithms [10,17,23,27]. Figures 2 and 3 show the sample
images with their corresponding label from the training and test sets, respectively.

Figure 1. Raw dataset (2048 x 1536 x 1065 vx).
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(a) Sample training data (b) Ground truth label

Figure 2. Training data and its corresponding label.

(a) Sample test data (b) Ground truth label

Figure 3. Test data and its corresponding label.

Figure 4a,b show the actual labels of the 2D image of the same slice in the original
Luchhi dataset and the Luchhi++ dataset. Detailed work has already been carried out
by [23] to understand the critical differences between these datasets.

(a) Luchhi dataset annotations (b) Luchhi dataset annotations

Figure 4. Sample image from Luchhi and Luchhi++ dataset annotations.



Electronics 2023, 12, 928

6 of 15

The yellow range in Figure 4a is the real label given in [15], and the green part in
Figure 4b is the real label after the recalibration. The red and blue boxes represent the same
mitochondria. In Figure 4b, the yellow boxes indicate the newly identified mitochondria,
which do not present in the previous versions. Figure 5a,b recalibrated labels from the
training and test set, in which white pixels correspond to old labels and gray pixels indicate
the newly added changes.

(a) Sample training label (b) Sample testing label

Figure 5. Re-labeled ground truth labels.

The limitations of the top-down and bottom-up approaches are shown below with
sample results.

3.2. Limitations of 2D Top-down and 3D Bottom-up Approaches

The experimentation results from the top-down and bottom-up approaches are shown
to provide performance drawbacks. From a few results shown in Figure 6, it can be
seen that many detected mitochondrial areas are false positives due to failures in the
objects’ localization, in particular, the small mitochondria regions. These make the top-
down approach unsuited for detecting fine-grain mitochondrial portions, which are critical
for diagnosis.

(a) Sample result 1 (b) Sample result 2

Figure 6. Drawbacks of 2D top-down approaches. Blue contours: ground truth; green pixels: predict
results; yellow boxes: false positive; red boxes: false negative.

Similar problems are also reported in the 3D bottom-up approach, as in Figure 7.
However, the failure cases are far fewer than those of the top-down approach. The proposed
technique aims to improve the detection issues of both methods.
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(a) Sample result 1

(b) Sample result 2

Figure 7. Drawbacks of 3D top-down approaches. Blue contours: ground truth; green pixels: predict
results; yellow boxes: false positive; red boxes: false negative.

3.3. Proposed Strategies

Three essential strategies are proposed to improve the overall performance, and the
best option is selected based on the results. Figure 8 shows the proposed three-stage model.
The overall model comprises three stages: The first stage comprises the Mask R-CNN
network, which is based on the ResNet101 backbone, and the standard kernel of 3 x 3 is
used; the second stage comprises the 3D Res-UNet architecture, and a combined training
mechanism using two approaches is provided in the third stage. All of these stages are
independently trained and evaluated using a single-model configuration. From the results,
it is found that the third stage has false positives and false negatives, similar to the second
stage. This is mainly because the results of the Mask R-CNN model in the first stage on

the testing dataset are worse than the results of the second stage 3D Res-UNet. In the third
stage model, the channel 2 data from Mask R-CNN resulted in many failures.

Y

Loss fanction

Pre-trained -I
Mask RCNN D v on |
2D training data
I . I Mask R-CNN 2D Detection (Channel 2)
. - B I . g
2D testing data 2D Detection Results  Set of 2D Detection Resuls | \ ,\\\
The first stage |

) e
3D Res-UNet Set of 2D Detection (Channel 3)

Training stage of the third stage
Pre-trained 3D Res-UNet model

|

ResNet101

Finish training stage |
-«

3D Res-UNet model

Results

3D Res-UNet Set of 2D Detection (Channel 3)
Inference stage of the third stage

Set of 2D Detection I

Figure 8. Proposed three-stage model (Strategy 1).

The strategy used in the second approach is shown in Figure 9. The proposed 3D Res-
UNet model obtains the prediction results of the Mask R-CNN cutting model and is arranged
in channel 2. However, only the edge information is utilized during the training. As the
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3D information is not utilized in this training, the result still has issues identifying small
mitochondria objects.

N ¥
3D training data (channel 1) 3D Res-UNet model

Pre-trained

Ma -I I
sk R-CNN G ' I
F s

y
3D training data with median filter (channel 3)

2D Detection Results ~ Set of 2D Detection Results I Training stage of the second stage
2D Detection Results I
The first stage
— — — — — — — — — — — — 3D testing data (channel 1)
I SV
|¥,‘ ’.\\\ 4( |
o »
I R /. ‘.;
Mask R-CNN 2D Detection (Channel 2)
Set of 2D Detection

I Results

3D testing data with median filter (channel 3)
I Inference stage of the second stage

Figure 9. Proposed two-stage model (Strategy 2).

Based on the two outcomes, a final model is proposed, as in Figure 10, in which the
two-stage cascaded CNN object detection is proposed. The first stage has two phases, in
which a simple object detection model is used initially to obtain the bounding boxes along
the mitochondria regions. In addition, the approximated 3D results of the bounding boxes
are obtained using the rectangular warps from the labeled data. The second stage uses 3D
Res-UNet for training, as shown in Figure 10. The final architecture comprises a two-stage
series object detection model combined with the 3D Res-UNet architecture. The median
filters preserve the edge regions and remove any unwanted transients.

3D training data (chan.nel 1)

—_—
|
ﬁ | res llll
I ‘ Mask R-CNN 2D Detection (Channel 2)

Pre-trained ‘

T Mask R-CNN I
Ny _l*
= -» ¥ 3D training data with median filter (channel 3)

| D “‘“““‘E data " 2D Detection Results  Set of 2D Detection Results Training stage of the second stage
w7 - =
4l 2 LR
8 PIPLY
2D testing data 2D Detection Results Set of 2D Detection Results |
The first stage

I________.______I

ResNet101

Set of 2D Detection

3D testing data with median filter (channel 3)
| Inference stage of the second stage

Figure 10. Two-stage model with fusion module (final version).
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(@)

Betore fusing |
(Slice number: 100)

In the first two approaches, a 2D object detector is trained to predict the results, and the
method lacks the depth of information of the front and rear slices. The multi-stage training
is used for training, and the binary cross entropy is used as a loss function to optimize the
model. Some slices may have missed detection, as shown in Figure 11a—e. The red boxes in
the Figure represent the mitochondria. For example, Figure 11a represents the 100th slice, and
Figure 11b represents the 102nd slice. The red boxes in the two figures show false negatives
that are missed. But in Figure 11c—e, the same mitochondria are detected correctly.

) Betore tusing .
(Slice number: 102)

( (c) Before tusing

(Slice number: 104)

(d) Before fusing (e Before fusing
(Slice number: 106) (Slice number: 108

Figure 11. Multi-slice fusion slides (before fusion).

The brown arrow in Figure 12 represents the missed detection. Because the mito-
chondria have no specific shape rules, some slices are likely to be missed under the 2D
detection method, and subsequent slices are detected again. Hence, a new method, termed
multi-slice, is incorporated to identify and retrieve the missing detections.

Figure 12. Multi-slice fusion result.
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| () er sin -.
(Slice number: 100)

The improved results using the fusion technique are provided in Figure 13, and it
achieves better detection performance.

] (b) er fusion
(Slice number: 102)

(c) Atter fusion
(Slice number: 104)

= ) After fusio N (e) After fusion
(Slice number: 106) (Slice number: 108)

Figure 13. Multi-slice fusion slides (after fusion).

4. Experimental Results and Discussion

This section covers the training strategies, evaluation indices, and detailed comparison
studies. The illustrative results comparing the top-down, bottom-up, and proposed method
is also provided for additional validation. The critical advantage of the proposed method
and its limitations are also provided.

4.1. Training Specifications

As standard practice, all input images of size 1024 x 768 are resized to 1280 x 1024
before image augmentation. Around 330 image slices are equally divided and used for the
training and validation, and the first stage object detector can be of any object detection
model, e.g., YOLOVS5 [28], YOLO-R [29].

In the second stage, many data augmentation techniques, such as image rotation by
90 and 270 degrees, and image transposing, are introduced to increase the richness of the
data. Due to memory limitations, it is not feasible to directly use the actual resolution
1024 x 768 as input to the deep model. Hence, the images are divided into small cubes of
size 256 x 256 x 32 and fed into our 3D Res-UNet model for training. When segmenting a
large 3D image into a smaller 3D image, each small cube overlaps 50% in width and 75% in
height and depth. In addition, the Test-Time Augmentation (TTA) method is used in the
second phase of the test.

In addition, we have adopted a similar configuration in [30,31]. The network is trained
with a batch of size 4, and with a learning rate of 0.01 for 100 epochs.

4.2. Evaluation Indices

The prediction scores obtained through different test sets are averaged to obtain the
final evaluation index.

Accuracy = TP+ TN 1
Y= TP+ TN +EN+FP
Dice coef ficient = 21P (2)

2TP+FP+FN



Electronics 2023, 12, 928 11 of 15

TP
FGIoU = 75 PPN ®
TN
BGIoU = 70 Fp+FN @
m_ ol — FG_IoU —; BG_IoU 5)

Equations (1)—(5) are the evaluation metrics used for segmentation performance esti-
mation. The indices used are accuracy, dice coefficient, foreground intersection over union
(FG_IoU), background intersection over union (BG_IoU), and the mean intersection over
union (m_IolU).

4.3. Comparison Studies

The initial methods, such as [28-30], are based on the 2D Res-UNet, Mask R-CNN,
and 3D Res-UNet, respectively, and achieved a maximum accuracy of 0.994, which is close
to our proposed technique. However, the FG_IoU scores of the previous methods are
low, as they are missing many foreground mitochondria objects in the test images. The
subsequent approaches [10,23,31] are mainly based on the 3D model approach, which has
better accuracy and IoU scores than those of the previous model. From the results, it can
be inferred that, though the mean score and accuracy are improved, the FG_IoU score is
not significantly improved and far inferior to the proposed method. This is because the
one-stage object detection models introduce many false positives, which affect the training
of the 3D Res-UNet module.

Compared to all existing methods, as shown in Table 1, the proposed method has
achieved improved accuracy and all intersection scores. The improvements are achieved
through two-stage object detection and the multi-fusion module and significantly improved
the FG_IolU score.

Table 1. Comparison Studies on Luchhi++ Dataset.

Methods Accuracy Dice Coeff. FG_IoU m_IoU
2D Res-Unet [32] 0.985 0.887 0.797 0.891
2D Mask R-CNN [30] 0.986 0.904 0.825 0.905
3D Res-Unet [31] 0.994 0.957 0.918 0.956
Mekuc¢ et al., 2020 (3D method) [27] N/A N/A 0.900 N/A
Casser et al., 2020 (2D method) [23] 0.992 N/A 0.888 0.940
Casser et al., 2020 (2D method + z-filter) [23] 0.993 N/A 0.900 0.946
Daniel et al., 2021 (3D method 1, TTA 16) [10] N/A N/A 0.923 0.958
Daniel et al., 2021 (3D method 2, TTA 16) [10] N/A N/A 0.923 0.959
Daniel et al., 2021 (3D method 3, TTA 16) [10] N/A N/A 0.926 0.960
Ours: Strategy One (Multi-cue for seg.) 0.993 0.949 0.908 0.948
Ours: Strategy Two (Median filter) 0.991 0.930 0.868 0.929
Ours: Strategy Three (Multi-slice fusion) without TTA 0.995 0.964 0.930 0.963
Ours: Strategy Three (Multi-slice fusion) + TTA 3 0.995 0.966 0.935 0.965

4.4. Illustrative Results

This section compares the top-down Mask R-CNN and the bottom-up 3D Res-UNet
model for the randomly selected slices 10, 12, and 59. In all illustrations, the green color
represents the model predictions, and the blue color contours represent the mitochondria
ground truth. The red and yellow boxes represent the false negative (FN) and false positive
(FP), respectively.
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Figures 14 and 15 show that the existing methods have several issues, which are
indicated in the red and yellow boxes. The majority of the false positives are of small-size
patches, which may be due to the failures in the object detectors in identifying the fine-grain
mitochondria objects. In the proposed technique, most false positive results are eliminated
due to the two-stage strategy. The false negative cases are mainly due to the 3D Res-UNet
training failures. In this approach, data augmentation strategies are integrated to improve
feature learning. Figures 14c and 15¢ show that our results eliminate false negatives. Minor
failure cases of the proposed approach are shown in Figure 16.

(c) Proposed result

Figure 14. Comparison results for slice number 10.

(c) Proposed result

Figure 15. Comparison results for slice number 12.

Figure 16¢c shows that the proposed method has some minor failures in the false
positive detection of mitochondria objects. This is mainly due to the limitation of the object
detector. It can also be seen that the proposed method has very few failures compared to
the existing methods.
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Figure 16. Comparison results for slice number 59.

5. Conclusions

This work proposes a new architecture to present superior 3D mitochondria EM
segmentation detection compared to the state-of-the-art methods. Initially, the top-down
2D and bottom-up 3D approaches are implemented, and the comprehensive result analysis
is performed under limitations. As most of the works involve object detectors at the first
stage, performance issues in detecting tiny mitochondria objects are found. In addition,
with the integration of 3D datasets, many false positive cases still affect the mean IoU
score among the existing models. Specifically, it is found that many existing state-of-
the-art models have low foreground IoU, making it not feasible to carry out automated
diagnosis. The proposed work addresses all the issues in the existing frameworks and
has achieved superior foreground IoU detection and accuracy through the new two-stage
object detection module. Moreover, a new multi-fusion model is also proposed to enhance
the mean detection score and set a new benchmark in the Luchhi++ dataset. The proposed
method can produce accurate and mean IoU of 99.5% and 96.5%, respectively, which is
substantially higher than the existing solutions and can be very useful for clinical diagnosis.
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