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Abstract: Road damage detection is essential to the maintenance and management of roads. The mor-
phological road damage contains a large number of multi-scale features, which means that existing
road damage detection algorithms are unable to effectively distinguish and fuse multiple features.
In this paper, we propose a dense multiscale feature learning Transformer embedding cross-shaped
attention for road damage detection (DMTC) network, which can segment the damage information
in road images and improve the effectiveness of road damage detection. Our DMTC makes three
contributions. Firstly, we adopt a cross-shaped attention mechanism to expand the perceptual field of
feature extraction, and its global attention effectively improves the feature description of the network.
Secondly, we use the dense multi-scale feature learning module to integrate local information at
different scales, so that we are able to overcome the difficulty of detecting multiscale targets. Finally,
we utilize a multi-layer convolutional segmentation head to generalize the previous feature learning
and get a final detection result. Experimental results show that our DMTC network could segment
pavement pothole patterns more accurately and effectively than other methods, achieving an F1
score of 79.39% as well as an OA score of 99.83% on the cracks-and-potholes-in-road-images-dataset
(CPRID).

Keywords: road damage detection; cross-shaped attention; dense multi-scale feature learning

1. Introduction

The infrastructure of the road is an important public resource that contributes to
economic development and growth, while providing a number of social benefits. The
aging of roads, the rapid increase in the number of vehicles, and frequent use result in
damage to the road surface, which creates various defects in many countries’ roads. Over
time, pavement damage becomes a common phenomenon and it affects people’s lives
to varying degrees, with poor road conditions leading to excessive wear and tear on
vehicles, as well as increasing the likelihood of collisions and delays that can lead to traffic
accidents [1]. Road surface defects are of different shapes, sizes, numbers and varying
degrees of damage, which is a challenge for researchers of road damage. Moreover, the
interference of numerous environmental factors makes it difficult for researchers to detect
and repair these defects in real time. As a result, it is important to effectively detect the
road pavement condition and to develop an automated intelligent road damage detection
algorithm, in order to achieve rapid detection. This is important for managing, protecting
and repairing the poorer road surfaces, and is a pressing issue for improving road safety.

Recently, many researchers focus on the field of computer vision for road damage
recognition, and there are two main types of methods: traditional methods and deep
learning methods. Traditional methods include threshold segmentation, edge detection,
mathematical morphological operations, etc., and the combination of these algorithms
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with traditional machine learning classifiers such as artificial neural network (ANN) and
support vector machine (SVM). However, it is difficult to accurately detect cracks in real
pavement environments due to noise effects such as illumination variations and ground
roughness. With the technical progress of general-purpose deep learning methods [2],
many researchers apply deep learning-based detection methods to the task of detecting
road damage, for instance image classification [3,4], target detection [5–7], and semantic
segmentation [8–11]. These algorithms are effective in the detection of road damage [12–14].
Among them, the detection method based on image classification is to first segment the
original image into sub-image fast, then judge these sub-image blocks by using a binary
classification network; a final step involves stitching these sub-image modules into the
original image. Nevertheless, this type of approach has the disadvantages of ignoring the
relationship between the sub-image blocks and the surrounding environment, small accep-
tance field, and unsatisfactory detection results [15]. There is widespread use of detection
methods based on target detection, such as Faster R-CNN network [16–18] and YOLO
series networks [19,20], but this detection model requires layer-by-layer down-sampling, re-
sulting in poor model recognition of fine targets [21–23]. The semantic segmentation-based
method of pavement damage detection detects pavement damage by determining whether
each image element in the image is a cracked image element, which provides an accurate
assessment of pavement condition. We often use it for road damage detection tasks. For
example, the CrackNet series network [24–26] addresses crack detection in 3D pavement
data [27], FCN network achieves an end-to-end effect in crack detection [28–30], and a
U-net series network [31,32] proposes a unique data enhancement approach and bound-
ary weighted loss function for crack detection using encoding-decoding structure. The
DeepLab family of networks [33–35] combines null convolution and multiscale information
to enhance network performance for crack detection. The above review shows that existing
CNN-based network achieves good experimental results, but such models mainly rely on
convolution and down-sampling to obtain large perceptual field information, which can
only obtain short-range correlations and thus are usually ineffective in modeling long-range
dependencies. In spite of the addition of the dilation/void convolution or attention module,
the main network architecture remains the same, and it is only possible to improve the
model performance to a limited extent [36]. In contrast to CNN, the transformer model
represents coarser spatial information through location encoding and tokens, and uses
stacked transformer blocks to obtain features. It not only dynamically adjusts the sensory
field, but also obtains more long-range global correlation information. The CrackFormer
network uses a novel attention module to detect fine-grained cracks [37], UCCrack net-
work introduces vision transformer-based cross-attention for automatic recognition of road
cracks [38], and Swin-Transformer combines convolutional neural networks and vision
transformers for identifying road damage accurately [39]. Comparing with CNN, the
new Transformer technique has the advantages of strong ability to learn long-distance
dependence and multimodal fusion, but it is also more difficult to extract the target features
for different scale changes, and recognition detection is not effective.

We propose a brand-new deep learning-based model, dense multiscale feature learn-
ing Transformer embedding cross-shaped attention for road damage detection (DMTC),
for detecting pothole patterns in road images. Our network uses an encoder-decoder
architecture to identify features in road images using the cross-shaped attention (CSA)
mechanism in the encoding stage. In this case, the cross-shaped attention block (CSAB)
uses a CSA mechanism to achieve global attention [40]. In addition, we add a module
for locally enhanced positional encoding to our self-attention branch, and add positional
encoding to the self-attention operation by operating on ignored positional information in
each block. The design decouples the position encoding from the self-attentive calculation,
which allows increasing the local sensing bias. In the decoding stage, we use a dense
multiscale feature learning (DMFL) module to ensure that no information is lost during
the fusion of networks. The module achieves the fusion of multi-scale feature information
through the structure from top down and lateral connection fusion, which effectively solves
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the difficult problem of small potholes detection [41]. Contributions of this paper include
the following:

(1) We use CSA mechanisms in the backbone network and focus on the pothole region
to expand the attentional action range, which enables our DMTC network to deploy
global attention to the specified feature information more efficiently, enhances the
representational capabilities of the network, makes the network more capable of
detecting environmental and road potholes, and thus improves the accuracy of the
network’s recognition.

(2) We utilize the DMFL module to fuse independent information of multiple scales,
which significantly improves the detection performance. The DMFL module quickly
constructs a feature pyramid that contains strong semantic information at every scale,
recovers as much of the original pothole feature information as possible, reduces our
DMTC model’s false detection rate, and makes the edge lines of the detected potholes
are more complete.

(3) On the publicly available road detection dataset CPRID, we replicate some segmenta-
tion algorithms, provide baselines for road damage, and conduct extensive experi-
ments. Results of the experimental work in this paper demonstrate that our method is
visually and quantitatively superior in comparison with other conventional methods.

2. Materials and Method

For the multi-scale feature information of potholes in road damage images, we propose
a DMTC network model to segment road damage effectively. Figure 1 shows the three
main components of our network: CSAB feature extraction module, DMFL module, and
Segmentation-Head module. Among them, the CSAB feature extraction module uses the
cross-attention module to create long-range interactions between the underived feature
maps, which extends the attention range and thus improves the feature representation of
the damage. The DMFL module uses the fusion of the shallow layer with high resolution
and the deep layer with rich semantic information to fuse the feature maps at different
stages to obtain a fine-grained result. The Segmentation-Head module uses multi-layer
convolution to perform the final generalization and learning of the feature map and output
the final result. The following sections will present the three modules in detail.
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Figure 1. Overview of the proposed DMTC. Our network receives road images as input. The CSAB
module uses a cross-attention mechanism to obtain bit-time multiscale feature information with rich
contextual semantics. The DMFL module progressively integrates the extracted multiscale feature
information. Finally, the road pothole segmentation results are output through a fully connected
convolutional network.
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2.1. Cross-Shaped Attention

Road damage detection is a challenging problem, which due to uneven image intensity,
complex topology, low contrast and pothole background noise. In addition, the diversity
of potholes enhances the difficulty of detection. The CSAB model collects contextual
information both horizontally and vertically to enhance pixel-level representation and is
more efficient than non-local blocks. It also has a sufficient number of heads of multi-
headed self-attentive layers, which are as expressive as any convolutional layer. Therefore,
we utilize the CSAB module to encode feature information from images of road potholes.

We input an original image C1 and pass it through a convolutional layer with a
convolution kernel size of 7 × 7 and a step size of 4, and at this point there are 96 channels,
thus changing the number of input channels. Throughout the entire decoding module, there
are four stages: stage 1, stage 2, stage 3 and stage 4. There is a convolutional layer between
each two stages to reduce the number of markers and increase the number of channels, and
the convolutional kernel size is 3 × 3 with a step size of 2. Finally, as a result of the four
stages of feature mapping, the feature maps are 112 × 112, 56 × 56, 28 × 28, and 14 × 14 in
size, the resolutions are 1/4, 1/8, 1/16, 1/32 of the original image, and the four channel
numbers are 96, 192, 384 and 768. Our DMTC network uses the CSA mechanism to broaden
the attentional scope and achieve global self-attentiveness. Additionally, in the self-attentive
branch, we introduce a parallel module for Locally Enhanced Positional Encoding.

A cross-shaped window provides self-attention for horizontal and vertical bars, which
is a major part of the mechanism. The input features map T ∈ R(H×W)×C under the action
of a multi-head self-attention mechanism that first performs the linear mapping operation
on m heads, and then the feature map obtained from each head mapping performs local
self-attention using the CSA mechanism. For self-attention performed on horizontal bars,
divide T evenly into horizontal bars that are all Sw in width, and these horizontal bars are
non-overlapping. We denote these equal-width horizontal bars as [T1, T2, . . . , TM], and
each horizontal bar has Sw ×W tokens. We use Sw to adjust to balance learning ability and
computational complexity. The horizontal bar’s self-attentive output is:

T = [T1, T2, . . . , TM] (1)

Ei
m = Attn(TiWQ

m , TiWK
m , TiWV

m ) (2)

H − Attnm(T) = [E1
m, E2

m, . . . , EM
m ] (3)

where Ti ∈ R(Sw×W)×C, M = H/Sw, i ∈ [1, M]. WQ
m ∈ R(C×dm), WK

m ∈ R(C×dm),
WV

m ∈ R(C×dm) are denoted as the q, k, v projection matrices of the m-th head, respec-
tively, and dm = C/M. Finally, joining the outputs of the two parallel groups, horizontal
and vertical bars together complete our global self-attentiveness, noting it as CSAttn(X),
and with:

CSAttn(X) = Concat(head1, . . . , headm)W (4)

headm = { H − Attnm(T), m = 1, . . . , M/2,
V − Attnm(T), m = M/2 + 1, . . . , M

(5)

Since transformers use multi-heads in the computation of attention, in order to keep
the amount of computation, this paper divides the head into two, one for row attention
and one for column attention. There are 2, 4, 8 and 16 attention heads in each of the four
stages of our DMTC network, and the Sw are 1, 2, 7, 7, respectively. In Figure 2, we show
the steps for implementing the attention manipulation mechanism for stage 1.
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Figure 2. Architecture of the stage1. We use two parts to calculate the global attention of the feature
graph T in stage 1; one part calculates the row attention and one part calculates the column attention.
Finally, these two parts are combined to achieve parallel processing of the output feature map T’.
Similarly, stage 2, stage 3 and stage 4 also output the corresponding attentional feature maps.

2.2. Dense Multiscale Feature Learning

Road damage has different shapes and scales. In comparison with large potholes,
when potholes appear as multiscale targets at a distance, they are easily lost in the process
of down-sampling because they contain less pixel information in themselves. For detection
problems where the target size difference is very significant, we use the DMFL structure as a
decoding module to solve the multi-scale fusion problem in road detection with a minimal
computational effort. We apply the output feature maps obtained from the 4 stages of the
CSAB model as the input of the decoding stage; their channel numbers are 96, 192, 384
and 768, respectively, and we denote these 4 output feature maps as [C2, C3, C4, C5]. For
fusing the contextual information that feed the feature map into the DMFL structure, we
add a 1 × 1 convolutional layer to [C2, C3, C4, C5] to generate low-resolution feature maps
[P2, P3, P4, P5], where the feature map size remains the same and we reduce the channel
count to 64, 128, 256, 512. Afterwards, we up-sample the feature mapping set [P2, P3,
P4, P5] so that they have the corresponding dimensions. To obtain the final fused feature
map, we adopt an additive method to process the [P2, P3, P4, P5] and their output after the
up-sampling operation.

The shallow layer of the feature map has high resolution, and the deep layer has
rich semantic information. We adopt the DMFL model to fuse the shallow layer and the
deep layer, and increase the perceptual field of the shallow layer, so that the shallow layer
can obtain more contextual information when performing multiscale target detection. As
well as fusing multi-scale information, it also reduces the confounding effect caused by
superimposing different scale feature maps, providing powerful semantic information and
improving multiscale target detection accuracy.

2.3. Segmentation-Head

In order to generalize and learn the feature information from the previous stage and
predict a better road damage segmentation map, we utilize a segmentation head module to
generalize the previously learned features and implement the accurate image segmentation
in this paper. Specifically, the module is a hierarchical convolutional structure. First, we
downscale the fused feature maps using a convolutional layer with a 3 × 3 kernel size
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and a 1 step size. This is followed by extraction of the feature map using a convolutional
layer, with a convolutional kernel size of 3 × 3 and a step size of 1, in order to further
generalize and learn the previous feature map, thus making the segmented image features
more obvious and detectable. Lastly, we use a convolutional layer with a kernel size of
1 × 1 and a step size of 1 as a decision layer to reduce the dimensionality while correcting
and reconstructing the feature map. To enhance the nonlinear relationship between the
three convolutional layers, we introduce a rectified linear unit (ReLU) activation function
between two convolutional layers. This also improves our DMTC network’s nonlinear
representation and feature fitting. The final layer of the neural network uses the Softmax
function, which restricts the scores of all categories to be between [0,1] and the sum of the
scores of all categories to be 1. This allows us to consider the final output as the probability
of the category, so we can adjust the network by comparing the actual situation with the
predicted situation.

2.4. Loss Function

Road damage presents a serious imbalance between the number of positives and
negatives in one stage of analysis, and an unbalanced background before and after. In
order to change this imbalance and improve the performance of the model for damage, we
introduce a hybrid loss for flexible optimization, which combines the advantages of the
Focal Loss [42] and the Dice Loss [43].

We use the Focal loss function to solve the problem of extreme imbalance between the
number of positives and negatives, obtaining the Focal loss on the improvement of binary
cross-entropy loss. It is a dynamically scaled cross-entropy loss with a dynamic scaling
factor, which dynamically reduces the weights of easily distinguishable samples during
training in order to focus the weights quickly on those that are difficult to distinguish. The
formula is as follows:

LFocal = −αt(1− Pt)
γ log(Pt) (6)

where Pt =

{
p, y = 1,

1− p, y 6= 1
, p ∈ [0, 1] , γ ∈ [0, 5] and weighting factor α ∈ [0, 1], with

weighting factor α when it is a positive sample and 1− α when it is a negative sample.
We can resolve the problem of before-after background imbalance by using the Dice

Loss function, adopting the Dice coefficient to measure the similarity of points between
two samples. The formula is as follows:

S =
2|X ∩Y|
|X|+|Y| (7)

where X ∩Y denotes the intersection between X and Y samples, || denotes the number
of elements, and the coefficient of the numerator is 2. In reality, the Dice loss refers to the
negative value of the dice coefficient. The formula is as follows:

LDICE = 1− S = 1− 2|X ∩Y|
|X|+|Y| (8)

The Dice coefficient is higher when loss is smaller, indicating that the two samples are
more similar.

From the above loss function calculation, we can express the used hybrid loss as:

L = LFOCAL + LDICE (9)

3. Experiments and Results
3.1. Datasets

The main types of road damage are cracking, block cracking, longitudinal cracking,
transverse cracking, potholes and subsidence. Among them, cracks do not have much
impact on people’s normal life, the sinkage area is large and we can easy to find it. However,
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potholes will further expand and eventually develop into sinkholes while affecting people’s
lives. Effective detection of road potholes is crucial, which is the main reason why we use
them as test samples.

We use the Cracks-and-Potholes-in-Road-Images-Dataset [44] (CPRID) to represent
the advantages of our DMTC network. The datasets contain a total of 2235 road images
as well as label samples, each with a size of 1024 × 640. In our work, the image size of
the dataset is 448 × 448 pixels, and the ratio between the training, validation, and test set
samples is 3:1:1. The CPRID has a wide variety of information regarding potholes. Some of
the pavement pothole images are shown in Figure 3.
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Figure 3. Visualization of the sample images from the CPRID. The first row is the source image
and the second row is the label image. The red border crater in the first row of the source image
corresponds to the white block pattern in the label image.

3.2. Experimental Details
3.2.1. Evaluation Metrics

We evaluate the proposed model using evaluation metrics: Precision, Recall, F1
score [45], Intersection Over Union_0 (IOU_0), Intersection Over Union_1 (IOU_1), Mean In-
tersection Over Union (mIOU), Overall Accuracy (OA), and Kappa coefficient. Specifically,
the above evaluation metrics are calculated as follows:

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

F1 =
2× TP

2× TP + FP + FN
(12)

IOU_0 =
TN

TN + FN + FP
(13)

IOU_1 =
TP

TN + FN + FP
(14)

mIOU =
IOU_0 + IOU_1

2
(15)

OA =
TP + TN

TP + TN + FP + FN
(16)
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TMP =
(TP + FP)(TP + FN) + (FP + TN)(FN + TN)

(TP + TN + FP + FN)2 (17)

Kappa =
OA− TMP

1− TMP
(18)

In the above formula, Precision represents the performance of evaluating error detec-
tion; higher precision means less frequent error detection. Recall represents the performance
of evaluating missed detection, and higher Recall means less missed detection. The F1
score represents the efficiency of the algorithm. mIOU_0 represents the background IOU
value; mIOU_1 represents the pitted IOU value.

3.2.2. Parameter Settings

We implement our DMTC using PyTorch, and perform all model training, validation,
and testing experiments on an NVIDIA Tesla A100 GPU with 80 G of on-board memory.
Before starting the model training, we complete the configuration of the parameters of the
network model, conducting training in batches of four, with 500 rounds of training, and
with a dynamic cycle learning rate by OneCycle method [46]. In addition, the potholes
area occupies only a very small percentage of the entire image, and its background area
has a more significant influence on the training of the model. Therefore, we preprocessed
the original data by dividing the image into 448 × 448 blocks according to the ratio of
225 × 225, so that the similarity of the images is between [0,1]. This weakened the data
noise and improved the stability of the model, thus improving the detection performance
during training.

We use the same hyperparameters when training the CPRID with these network
models, thus ensuring the fairness and validity of the algorithms. We do not change the
original network parameters, but only change the network model. Therefore, it is also
possible to compare the experimental results in a more intuitive manner.

3.3. Baselines

For the purpose of comparing the performance of our methods fairly, we reproduce
9 mainstream segmentation methods on the CPRID. The following is a brief overview of
these models.

1. EfficientFCN [47]: An ImageNet pretrained network without any dilated convolutions
forms the backbone of the system. Utilizing multi-scale features in the encoder to
obtain high-resolution, semantically rich feature maps. To convert decoding tasks
into novel codebook generation and codeword assembly tasks, encoders use their
high-level and low-level functions.

2. IFNet [48]: A deeply supervised image fusion network. First, extracts features by
using a full convolutional network with volume branching. The second step involves
detecting changes using a deep supervised difference discriminative network.

3. UNet [10]: Getting the network by extending and modifying the full convolutional
network. Two parts comprise the network: a contracting path for obtaining context
information, and a symmetric expanding path for pinpointing the location.

4. SegNet [49]: A symmetric network consisting of encoder (left) and decoder (right).
Encoder is a network model along the lines of Visual Geometry Group (VGG16),
which mainly parses object information. The decoder converts the parsed information
into the form of the final image.

5. FastFCN [50]: For the purpose of improving semantic segmentation, turning the
extraction of high-resolution feature maps into a joint up-sampling problems by using
a new joint up-sampling module JPU (Joint Pyramid Up-sampling).

6. PSPNet [51]: In this module, the core function is pyramid pooling, which aggregates
context information on different areas in order to improve access to global information.

7. FCN16s [9]: The backbone network is Visual Geometry Group (VGG16), and the key
step is to deconvolute (up-sampling bilinear interpolation can be done) the prediction
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results of 1/32 graph into 1/16 graph. Predicts the results of the 1/16th graph pooling
layer and adds them to the previous 1/32nd graph results. The final result is an
enhanced version of the 1/16th graph prediction result, and then deconvoluting the
predicted result to obtain the original image size to get the final outcome.

8. FCN32s [9]: In accordance with VGG16 (Visual Geometry Group) neural networks, re-
moving the 3 fully connected layers firstly and then adding the 3 convolutional
layers. To prevent overfitting, adding the dropout layers after each of the first
2 convolutional layers, and finally scaling up the results 32 times with transposed
convolutional layers for restoring the original size of the output image.

9. DeepLabV3+ [52]: The model uses DeepLabv3 as the encoder module and a simple
but effective decoder module as the decoder module. Through atrous convolution,
the model can adjust the resolution of the encoded features, thus balancing accuracy
and runtime.

3.4. Visual Performance
3.4.1. Detection Results

Figure 4 represents the representative road damage segmentation results of our DMTC.
In this paper, we provide six cases from the dataset CPRID, all including small potholes on
the road, medium-sized potholes on the road, and large potholes on the road. In most cases,
our DMTC is able to detect the actual pothole areas almost perfectly. Even if there are only
minor road potholes in the scene images, as in columns 1–3 of Figure 4, our method is still
able to accurately extract information about the road damage. For medium-sized potholes
and large potholes, such as the scenes in columns 4–9 in Figure 4, our results are almost
the same as GT as seen in the “Differ” images, which proves the powerful road pothole
segmentation detection performance of the present network.
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result and GT.

3.4.2. Comparison with Baselines

To better demonstrate the segmentation performance of our DMTC in road damage
task, we compared with other mainstream methods. In Figures 5–10, we visualize the
results of the inspection experiments for some small potholes, medium-sized potholes,
and large potholes. For these three types of images, our model basically reverts to a more
regular boundary profile and a more compact interior when identifying single or multiple
potholes. The other nine comparison network models are unable to accurately identify
and detect road potholes. There are some models that are incapable of detecting potholes,
such as DeepLabV3+, EfficientFCN, and FCN16s, and the remaining network models are
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also prone to wrong results or missing detection cases. In our analysis of the entire set of
images, our method shows a more intuitively superior performance.
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Figure 5. Visual comparison of the results of a series of segmentation methods for small potholes on
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the label map and segmentation map, and black in the rest of the background.
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Figure 7. Visual comparison of the results of a series of segmentation methods for medium potholes
on CPRID. There is a red outline around the pits in the original image, a white outline around the
pits in the label map and segmentation map, and black in the rest of the background.
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Figure 8. Visual comparison of the results of a series of segmentation methods for medium potholes
on CPRID. There is a red outline around the pits in the original image, a white outline around the
pits in the label map and segmentation map, and black in the rest of the background.
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3.5. More Analysis
3.5.1. Interpretable Analysis

In this section, we analyze the attention module by using the attention graph. Our
DMTC is required to identify not only small, medium, and large potholes, but also other
environmental factors. The size and shape of road potholes vary, making it challenging for



Electronics 2023, 12, 898 12 of 17

the network model to extract features pertaining to them, especially for small potholes. We
use the CSA mechanism to perform the self-attentive calculation of pit shape size in parallel
on horizontal and vertical bars, with each bar derived from splitting the input features into
equal-width bars. Adjusting the width of the strips according to the depth of the network,
and a wider stripe width can facilitate the connection between process elements. Thus, the
presence of a continuous connection between the pitted features extracted at each layer
of the network contributes to the network’s model of attention. It may also increase the
confidence that the network has learned to focus on the relevant features of the finely pitted
images and to predict reasonable features. In Figure 11, we illustrate how our approach
visualizes attention mapping at different stages through several examples of potholes. The
blue color indicates that attention is low, whereas the red color indicates that attention
is high.
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As part of our analysis of CPRID, we create attention maps, and extract four images
from the dataset for display. Our attention mechanism is a cross-shaped window self-
attention channel. From Figure 11, we can observe that in the first and second scenes of
CPRID, the small pit feature is not very obvious. The occupied area is relatively small.
At this time, our attention mainly focuses on environmental information. In stage 1, the
self-attentive channel also observes the small pit region, which was not extremely red in
color. In spite of this, the CSA channel gradually becomes more focused on the small pit
region as the network layer becomes deeper. At the fourth stage, our CSA channel peaks in
the depressed area, with the contents of the depressed area showing up as dark red and the
contents of the background area showing up as dark blue. Similarly, in the third and fourth
scenes of CPRID, the attention module also reaches maximum attention in medium and
large pothole areas.

3.5.2. Generalization Analysis

As the task of road damage detection is essentially a classification problem, and road
construction is an indispensable part of our daily life, the damage detection is of vital
significance for road maintenance and management. In order to prove that our DMTC
has good generalization ability, we conducted test experiments on the crack data set in the
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public road data set CPRID. Figure 12 shows that our method can also segment different
sizes of cracks and obtain better segmentation results for road cracks.
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Figure 12. Visualization of partial crack segmentation results in the CPRID dataset. It includes the
segmentation results of small, medium and large cracks. There is a red outline around the pits in the
original image.

4. Quantitative Analysis

Table 1 shows the quantitative comparison between our DMTC and the most dominant
algorithms. As can be seen, our network leads in almost all metrics for the multi-scale road
damage image segmentation task. More specifically, we can see that our model outperforms
the other models across all five aspects: F1 score, Precision, Recall, IOU_0, and Kappa,
achieving 79.39%, 81.37%, 77.51%, 65.83%, and 79.31%, respectively. In comparison with
FastFCN that ranks second in comprehensive performance, our DMTC was 4.97%, 1.11%,
8.12%, 6.57% and 5% percent higher in these five metrics, respectively. In addition, although
the values of mIOU, IOU_1 and OA are close to the other nine comparison algorithms, the
proposed model is still in an advantageous position in these three indicators. Overall, our
method is the most effective.

Table 1. The quantitative results of proposed method on CPRID.

Method Precision Recall F1 Score mIOU IOU_0 IOU_1 OA Kappa

EfficientFCN 79.56 61.72 69.51 99.77 53.27 76.52 99.77 69.4
IFNet 64.17 40.56 49.7 99.65 33.07 66.36 99.65 49.54
UNet 76.52 59.4 66.89 99.75 50.25 75.00 99.75 66.76

SegNet 46.73 50.06 48.34 99.54 31.87 65.71 99.54 48.11
FastFCN 80.26 69.39 74.42 99.80 59.26 79.53 99.80 74.31
PSPNet 73.05 48.65 58.4 99.7 41.25 70.48 99.7 58.26
FCN16s 7.68 7.94 7.85 99.21 4.09 51.65 99.21 7.45
FCN32s 61.05 49.87 54.9 99.65 37.83 68.74 99.65 54.72

DeepLabV3+ 33.82 34.34 34.08 99.43 20.54 59.98 99.43 33.79
DMTC 81.37 77.51 79.39 99.83 65.83 82.83 99.83 79.31

Note that all metrics in the table are in percentages. The higher the value of these metrics, the better the
performance. We highlight the best two results in red and green, respectively.

Moreover, we randomly selected some images from the 447 test set data for quan-
titative evaluation and comparison, and in Figure 13, we compare our model with the
other nine comparison models in terms of the four metrics. Figure 11 illustrates that our



Electronics 2023, 12, 898 14 of 17

DMTC outperforms other method models in terms of Recall, F1 score, and mIOU metrics.
The accuracy of our method is lower than that of the UNet model, but still has significant
advantages over the other remaining models.
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5. Conclusions

We have proposed a DMTC network, which is a novel approach to road damage
detection segmentation based on a cross-shaped attention mechanism and multi-scale
feature fusion module. The CSAB module utilizes the CSA mechanism to expand the
attention range, realize global attention, and resolve the problem of weak local feature
extraction. The DMFL module fuses the extracted multi-scale features, which effectively
solves the problem that multiscale targets are difficult to identify. Finally, using the multi-
layer convolutional segmentation head, enables the network to summarize and learn the
feature map. To show the superiority of our DMTC, we compared it with 9 mainstream
semantic segmentation methods. Through the comparison experiment based on CPRID,
we can find that the standard 8 index values obtained by our DMTC are higher than those
obtained by other nine mainstream networks. From this, we have reached the following
conclusions. Our DMTC has enhanced the ability of the network model to represent
features through the cross-shaped attention mechanism. Meanwhile, introducing the dense
multiscale feature learning module to fuse the multi-scale feature map by simple connection,
greatly enhances the performance of the multi-scale pothole identification. In addition, we
use the multi-layer convolutional splitting head to effectively summarize and learn the
feature map, which has reduced the number of parameters and has improved network
performance. At present, our model only performs segmentation experiments on potholes
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of the road surface and achieves good experimental results. We intend to apply our network
to future crack detection tasks, thus providing a contribution to road construction research.

Author Contributions: Conceptualization, C.X., Q.Z., L.M. and X.Z.; methodology, Q.Z.; software,
Z.Y.; validation, L.M., S.S. and D.L.; formal analysis, X.Z.; investigation, L.M.; data curation, S.S.;
writing—original draft preparation, Q.Z.; writing—review and editing, C.X.; visualization, L.M.;
supervision, C.X., W.Y. and X.Z.; project administration, C.X.; funding acquisition, C.X. and W.Y. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China (Nos. 41601443,
41771457); Scientific Research Foundation for Doctoral Program of Hubei University of Technology
(BSQD2020056); Science and Technology Research Project of Education Department of Hubei Province
(B2021351).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Naddaf-Sh, S.; Naddaf-Sh, M.-M.; Kashani, A.R.; Zargarzadeh, H. In An efficient and scalable deep learning approach for

road damage detection. In Proceedings of the 2020 IEEE International Conference on Big Data (Big Data), Atlanta, GA, USA,
10–13 December 2020; pp. 5602–5608.

2. Xu, C.; Ye, Z.; Mei, L.; Shen, S.; Zhang, Q.; Sui, H.; Yang, W.; Sun, S. SCAD: A Siamese Cross-Attention Discrimination Network
for Bitemporal Building Change Detection. Remote Sens. 2022, 14, 6213. [CrossRef]

3. Kim, H.-K.; Park, J.H.; Jung, H.-Y. An efficient color space for deep-learning based traffic light recognition. J. Adv. Transp. 2018,
2018, 1–12. [CrossRef]

4. Sudakov, O.; Burnaev, E.; Koroteev, D. Driving digital rock towards machine learning: Predicting permeability with gradient
boosting and deep neural networks. Comput. Geosci. 2019, 127, 91–98. [CrossRef]

5. Xiao, J.; Guo, H.; Zhou, J.; Zhao, T.; Yu, Q.; Chen, Y. Tiny object detection with context enhancement and feature purification.
Expert Syst. Appl. 2023, 211, 118665. [CrossRef]

6. Ale, L.; Zhang, N.; Li, L. Road damage detection using RetinaNet. In Proceedings of the 2018 IEEE International Conference on
Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; pp. 5197–5200.

7. Wang, W.; Wu, B.; Yang, S.; Wang, Z. Road damage detection and classification with faster R-CNN. In Proceedings of the 2018
IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; pp. 5220–5223.

8. Mei, L.; Guo, X.; Huang, X.; Weng, Y.; Liu, S.; Lei, C. Dense contour-imbalance aware framework for colon gland instance
segmentation. Biomed. Signal Process. Control. 2020, 60, 101988. [CrossRef]

9. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE—
Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.

10. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the
International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October
2015; Springer: Cham, Switzerland, 2015; pp. 234–241.

11. Zhang, Y.; Fan, J.; Zhang, M.; Shi, Z.; Liu, R.; Guo, B. A Recurrent Adaptive Network: Balanced Learning for Road Crack
Segmentation with High-Resolution Images. Remote Sens. 2022, 14, 3275. [CrossRef]

12. Tsai, Y.-C.; Kaul, V.; Mersereau, R.M. Critical assessment of pavement distress segmentation methods. J. Transp. Eng. 2010, 136,
11–19. [CrossRef]

13. Robet, R.; Hasibuan, Z.A.; Soeleman, M.A.; Purwanto, P.; Andono, P.N.; Pujiono, P. Deep Learning Model in Road Surface
Condition Monitoring. In Proceedings of the 2022 International Seminar on Application for Technology of Information and
Communication (iSemantic), Kota Semarang, Indonesia, 17–18 September 2022; pp. 204–209.

14. Sizyakin, R.; Voronin, V.; Gapon, N.; Pižurica, A. A deep learning approach to crack detection on road surfaces. In Artificial
Intelligence and Machine Learning in Defense Applications II; SPIE: Bellingham, WA, USA, 2020; pp. 128–134.

15. Li, H.; Xu, H.; Tian, X.; Wang, Y.; Cai, H.; Cui, K.; Chen, X. Bridge crack detection based on SSENets. Appl. Sci. 2020, 10, 4230.
[CrossRef]

16. Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Washington, DC, USA, 7–13
December 2015; pp. 1440–1448.

17. Fang, F.; Li, L.; Gu, Y.; Zhu, H.; Lim, J.-H. A novel hybrid approach for crack detection. Pattern Recognit. 2020, 107, 107474.
[CrossRef]

18. Ibragimov, E.; Lee, H.-J.; Lee, J.-J.; Kim, N. Automated pavement distress detection using region based convolutional neural
networks. Int. J. Pavement Eng. 2022, 23, 1981–1992. [CrossRef]

19. Du, Y.; Pan, N.; Xu, Z.; Deng, F.; Shen, Y.; Kang, H. Pavement distress detection and classification based on YOLO network. Int. J.
Pavement Eng. 2021, 22, 1659–1672. [CrossRef]

http://doi.org/10.3390/rs14246213
http://doi.org/10.1155/2018/2365414
http://doi.org/10.1016/j.cageo.2019.02.002
http://doi.org/10.1016/j.eswa.2022.118665
http://doi.org/10.1016/j.bspc.2020.101988
http://doi.org/10.3390/rs14143275
http://doi.org/10.1061/(ASCE)TE.1943-5436.0000051
http://doi.org/10.3390/app10124230
http://doi.org/10.1016/j.patcog.2020.107474
http://doi.org/10.1080/10298436.2020.1833204
http://doi.org/10.1080/10298436.2020.1714047


Electronics 2023, 12, 898 16 of 17

20. Park, S.-S.; Tran, V.-T.; Lee, D.-E. Application of various yolo models for computer vision-based real-time pothole detection. Appl.
Sci. 2021, 11, 11229. [CrossRef]

21. Xu, Q.; Lin, R.; Yue, H.; Huang, H.; Yang, Y.; Yao, Z. Research on small target detection in driving scenarios based on improved
yolo network. IEEE Access 2020, 8, 27574–27583. [CrossRef]

22. Liu, Z.; Wu, W.; Gu, X.; Li, S.; Wang, L.; Zhang, T. Application of combining YOLO models and 3D GPR images in road detection
and maintenance. Remote Sens. 2021, 13, 1081. [CrossRef]

23. Dharneeshkar, J.; Aniruthan, S.; Karthika, R.; Parameswaran, L. Deep Learning based Detection of potholes in Indian roads using
YOLO. In Proceedings of the 2020 International Conference on Inventive Computation Technologies (ICICT) 2020, Coimbatore,
India, 26–28 February 2020; pp. 381–385.

24. Zhang, A.; Wang, K.C.; Li, B.; Yang, E.; Dai, X.; Peng, Y.; Fei, Y.; Liu, Y.; Li, J.Q.; Chen, C. Automated pixel-level pavement crack
detection on 3D asphalt surfaces using a deep-learning network. Comput.-Aided Civ. Infrastruct. Eng. 2017, 32, 805–819. [CrossRef]

25. Zhang, A.; Wang, K.C.; Fei, Y.; Liu, Y.; Tao, S.; Chen, C.; Li, J.Q.; Li, B. Deep learning–based fully automated pavement crack
detection on 3D asphalt surfaces with an improved CrackNet. J. Comput. Civ. Eng. 2018, 32, 04018041. [CrossRef]

26. Zhang, A.; Wang, K.C.; Fei, Y.; Liu, Y.; Chen, C.; Yang, G.; Li, J.Q.; Yang, E.; Qiu, S. Automated pixel-level pavement crack detection
on 3D asphalt surfaces with a recurrent neural network. Comput.-Aided Civ. Infrastruct. Eng. 2019, 34, 213–229. [CrossRef]

27. Fei, Y.; Wang, K.C.; Zhang, A.; Chen, C.; Li, J.Q.; Liu, Y.; Yang, G.; Li, B. Pixel-level cracking detection on 3D asphalt pavement
images through deep-learning-based CrackNet-V. IEEE Trans. Intell. Transp. Syst. 2019, 21, 273–284. [CrossRef]

28. Lee, T.; Yoon, Y.; Chun, C.; Ryu, S. CNN-based road-surface crack detection model that responds to brightness changes. Electronics
2021, 10, 1402. [CrossRef]

29. Lee, T.; Chun, C.; Ryu, S.-K. Detection of road-surface anomalies using a smartphone camera and accelerometer. Sensors 2021, 21,
561. [CrossRef]

30. Haris, M.; Glowacz, A. Road object detection: A comparative study of deep learning-based algorithms. Electronics 2021, 10, 1932.
[CrossRef]

31. Mahenge, S.F.; Wambura, S.; Jiao, L. A Modified U-Net Architecture for Road Surfaces Cracks Detection. In Proceedings of the
8th International Conference on Computing and Artificial Intelligence, Tianjin, China, 18–21 March 2022; pp. 464–471.

32. Zhang, L.; Shen, J.; Zhu, B. A research on an improved Unet-based concrete crack detection algorithm. Struct. Health Monit. 2021,
20, 1864–1879. [CrossRef]

33. Sun, X.; Xie, Y.; Jiang, L.; Cao, Y.; Liu, B. DMA-Net: DeepLab with Multi-Scale Attention for Pavement Crack Segmentation. IEEE
Trans. Intell. Transp. Syst. 2022, 23, 18392–18403. [CrossRef]

34. Vishwakarma, R.; Vennelakanti, R. Cnn model & tuning for global road damage detection. In Proceedings of the 2020 IEEE
International Conference on Big Data (Big Data), Atlanta, GA, USA, 10–13 December 2020; pp. 5609–5615.

35. Liu, Y.; Zhang, X.; Zhang, B.; Chen, Z. Deep network for road damage detection. In Proceedings of the 2020 IEEE International
Conference on Big Data (Big Data), Atlanta, GA, USA, 10–13 December 2020; pp. 5572–5576.

36. Zheng, S.; Lu, J.; Zhao, H.; Zhu, X.; Luo, Z.; Wang, Y.; Fu, Y.; Feng, J.; Xiang, T.; Torr, P.H. Rethinking semantic segmentation from
a sequence-to-sequence perspective with transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 6881–6890.

37. Liu, H.; Miao, X.; Mertz, C.; Xu, C.; Kong, H. CrackFormer: Transformer Network for Fine-Grained Crack Detection. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021;
pp. 3783–3792.

38. Yu, M.; Wu, D.; Rao, W.; Cheng, L.; Li, R.; Li, Y. Automated Road Crack Detection Method based on Visual Transformer with
Multi-Head Cross-Attention. In Proceedings of the 2022 IEEE International Conference on Sensing, Diagnostics, Prognostics, and
Control (SDPC), Chongqing, China, 5–7 August 2022; pp. 328–332.

39. Mehajabin, N.; Ma, Z.; Wang, Y.; Tohidypour, H.R.; Nasiopoulos, P. Real-Time Deep Learning based Road Deterioration Detection
for Smart Cities. In Proceedings of the 18th International Conference on Wireless and Mobile Computing, Networking and
Communications (WiMob), Thessaloniki, Greece, 10–12 October 2022; pp. 321–326.

40. Dong, X.; Bao, J.; Chen, D.; Zhang, W.; Yu, N.; Yuan, L.; Chen, D.; Guo, B. Cswin transformer: A general vision transformer
backbone with cross-shaped windows. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
New Orleans, LA, USA, 19–20 June 2022; pp. 12124–12134.

41. Feng, H.; Xu, G.S.; Guo, Y. Multi-scale classification network for road crack detection. IET Intell. Transp. Syst. 2019, 13, 398–405.
[CrossRef]

42. Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International
Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988.

43. Jadon, S. A survey of loss functions for semantic segmentation. In Proceedings of the 2020 IEEE Conference on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB), Via del Mar, Chile, 27–29 October 2020; pp. 1–7.

44. Thompson, E.M.; Ranieri, A.; Biasotti, S.; Chicchon, M.; Sipiran, I.; Pham, M.-K.; Nguyen-Ho, T.-L.; Nguyen, H.-D.; Tran, M.-T.
SHREC 2022: Pothole and crack detection in the road pavement using images and RGB-D data. arXiv 2022, arXiv:2205.13326.
[CrossRef]

45. Lipton, Z.C.; Elkan, C.; Narayanaswamy, B. Thresholding classifiers to maximize F1 score. arXiv 2014, arXiv:1402.1892.

http://doi.org/10.3390/app112311229
http://doi.org/10.1109/ACCESS.2020.2966328
http://doi.org/10.3390/rs13061081
http://doi.org/10.1111/mice.12297
http://doi.org/10.1061/(ASCE)CP.1943-5487.0000775
http://doi.org/10.1111/mice.12409
http://doi.org/10.1109/TITS.2019.2891167
http://doi.org/10.3390/electronics10121402
http://doi.org/10.3390/s21020561
http://doi.org/10.3390/electronics10161932
http://doi.org/10.1177/1475921720940068
http://doi.org/10.1109/TITS.2022.3158670
http://doi.org/10.1049/iet-its.2018.5280
http://doi.org/10.1016/j.cag.2022.07.018


Electronics 2023, 12, 898 17 of 17

46. Smith, L.N. A disciplined approach to neural network hyper-parameters: Part 1—Learning rate, batch size, momentum, and
weight decay. arXiv 2018, arXiv:1803.09820.

47. Liu, J.; He, J.; Zhang, J.; Ren, J.S.; Li, H. EfficientFCN: Holistically-guided decoding for semantic segmentation. arXiv 2020,
arXiv:2008.10487.

48. Zhang, C.; Yue, P.; Tapete, D.; Jiang, L.; Shangguan, B.; Huang, L.; Liu, G. A deeply supervised image fusion network for change
detection in high resolution bi-temporal remote sensing images. ISPRS J. Photogramm. Remote Sens. 2020, 166, 183–200. [CrossRef]

49. Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef]

50. Wu, H.; Zhang, J.; Huang, K.; Liang, K.; Yu, Y. Fastfcn: Rethinking dilated convolution in the backbone for semantic segmentation.
arXiv 2019, arXiv:1903.11816.

51. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890.

52. Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image
segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018;
pp. 801–818.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.isprsjprs.2020.06.003
http://doi.org/10.1109/TPAMI.2016.2644615

	Introduction 
	Materials and Method 
	Cross-Shaped Attention 
	Dense Multiscale Feature Learning 
	Segmentation-Head 
	Loss Function 

	Experiments and Results 
	Datasets 
	Experimental Details 
	Evaluation Metrics 
	Parameter Settings 

	Baselines 
	Visual Performance 
	Detection Results 
	Comparison with Baselines 

	More Analysis 
	Interpretable Analysis 
	Generalization Analysis 


	Quantitative Analysis 
	Conclusions 
	References

