
Citation: Zhang, Y.; Liu, J.; Guan, Z.;

Zhao, B.; Leng, X.; Bian, S. ARMOR:

Differential Model Distribution for

Adversarially Robust Federated

Learning. Electronics 2023, 12, 842.

https://doi.org/10.3390/

electronics12040842

Academic Editor: Aryya

Gangopadhyay

Received: 5 January 2023

Revised: 1 February 2023

Accepted: 3 February 2023

Published: 7 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

ARMOR: Differential Model Distribution for Adversarially
Robust Federated Learning
Yanting Zhang 1,2 , Jianwei Liu 3, Zhenyu Guan 3, Bihe Zhao 3 , Xianglun Leng 4 and Song Bian 3,*

1 School of Electronic and Information Engineering, Beihang University, Beijing 100191, China
2 ShenYuan Honors College, Beihang University, Beijing 100191, China
3 School of Cyber Science and Technology, Beihang University, Beijing 100191, China
4 PowerTensors.AI, Shanghai 200031, China
* Correspondence: sbian@buaa.edu.cn

Abstract: In this work, we formalize the concept of differential model robustness (DMR), a new property
for ensuring model security in federated learning (FL) systems. For most conventional FL frameworks,
all clients receive the same global model. If there exists a Byzantine client who maliciously generates
adversarial samples against the global model, the attack will be immediately transferred to all other
benign clients. To address the attack transferability concern and improve the DMR of FL systems,
we propose the notion of differential model distribution (DMD) where the server distributes different
models to different clients. As a concrete instantiation of DMD, we propose the ARMOR framework
utilizing differential adversarial training to prevent a corrupted client from launching white-box
adversarial attack against other clients, for the local model received by the corrupted client is different
from that of benign clients. Through extensive experiments, we demonstrate that ARMOR can
significantly reduce both the attack success rate (ASR) and average adversarial transfer rate (AATR)
across different FL settings. For instance, for a 35-client FL system, the ASR and AATR can be reduced
by as much as 85% and 80% over the MNIST dataset.

Keywords: federated learning; model robustness; adversarial training; differential model distribution;
Byzantine robustness

1. Introduction

Federated learning (FL) became one of the most active areas of research in large-scale
and trustworthy machine learning [1,2]. The main goal of FL is to enable distributed
learning across data domains while protecting personal or institutional privacy, which is
essential in financial [3] and medical [4] applications to develop large-scale joint learning
platforms. More recently, the versatile framework of FL is proven beneficial in many other
applications as well, notably in the area of distributed learning over Internet-of-things
devices, such as the joint training of autonomous driving systems [5,6].

Following the popularity, we see two main lines of research within the realm of FL:
one that improves the utility (e.g., prediction accuracy) of FL [7,8], and the other that
studies the security and privacy of FL [9,10]. In particular, a plethora of attack and defense
techniques were proposed for FL, which help sketched the overall security and privacy
properties of FL frameworks. We note that, the malicious party in an attack against an FL
framework can either be the server [11–13] or clients potentially controlled by third-party
adversaries [14,15]. At the same time, various countermeasures were proposed against
both server-side attacks [9,10,16] and client-side (or third-party adversarial) attacks [17–19].

Amongst the different offense schemes, we focus on the study of adversarial attacks in
the presence of a Byzantine failure, as such attacks are serious threats to client-side security.
It has been shown that FL is vulnerable towards traditional Byzantine attacks [14,20].
However, we make the observation that, to the best of our knowledge, no existing works
study the countermeasures against adversarial attacks launched by Byzantine clients inside

Electronics 2023, 12, 842. https://doi.org/10.3390/electronics12040842 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12040842
https://doi.org/10.3390/electronics12040842
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-4608-9229
https://orcid.org/0000-0001-8349-4533
https://orcid.org/0000-0003-0467-6203
https://doi.org/10.3390/electronics12040842
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12040842?type=check_update&version=2

Electronics 2023, 12, 842 2 of 22

the FL systems. Therefore, in this work, we propose a new notion of differential model
robustness for FL. We point out the fact that, in most FL protocol designs, the server
distributes the same global model to each and every client. When a Byzantine client
becomes malicious against the other clients, the Byzantine client immediately gains full
knowledge on the exact model architecture and parameters of all other clients, translating
to a significant attack advantage on the adversary side.

Upon the above observations, we ask the simple question: can we distribute different
models to clients, such that, while each client can still utilize its model for benign inferences,
successful attacks against one client model do not transfer to other models? To answer
this important research question, we propose new definitions and differential model distri-
bution (DMD) techniques for FL systems. We also propose a concrete construction of our
DMD technique called ARMOR. The name ARMOR is taken from Adversarially Robust
differential MOdel distRibution. The main contributions of this work can be summarized
as follows.

• Differential Model Robustness: To the best of our knowledge, we are the first to
formalize the notion of differential model robustness (DMR) under the FL context.
Roughly speaking, the goal of DMR is to attain the same level of utility while keeping
the client models as different as possible against adversarial attacks.

• Differential Model Distribution: We explore how can DMR be realized in concrete
FL protocols based on neural networks (NNs). Specifically, we develop the differential
model distribution technique, which distributes different NN models using differential
adversarial training.

• Thorough Experiments and Ablation Studies: We provided detailed ablation studies
and thorough experiments to study the utility and robustness of client models in our
ARMOR framework. Through experiments, we show that, by carefully designing the
DMD, the ASR and AATR can be reduced by as much as 85% and 80% respectively, at
an accuracy cost of only 8% over the MNIST dataset for a 35-client FL system.

2. Background
2.1. Notation

In this work, we use D, P and S to denote datasets, and we use |D| to depict the size
of the dataset D. d is a sample in dataset D, [R] is short for set {1, 2, · · · , R}, and E means
the expectation of a sequence. C represents the set of clients. In terms of FL parameters, we
consider an FL system with one server and a total of K clients, within which one client is
malicious while other K− 1 clients are benign.

2.2. Federated Learning

The notion of FL is first proposed by McMahan et al. [21]. Algorithm 1 shows the well-
known Federated Averaging (FedAvg) [21] protocol. Here we give a detailed interpretation.
First, on line 2, the server assigns each client with the same initialized w0. In each com-
munication round t, the server chooses a set of clients Ct. Each client k ∈ Ct in possession
of a local dataset Pk follows Algorithm 2 to train a local NN model wk, and uploads local
model to the server. Next, on line 10, the server aggregates the uploaded client models
of all clients in Ct in the t-th communication round, to produce the global model wt for
next communication round. The protocol then repeats, where the server re-distributes the
model wt to clients for the next epoch of local training.

Electronics 2023, 12, 842 3 of 22

Algorithm 1: Federated Averaging.
Input: K clients indexed by k, the ratio of clients to be selected for aggregation c.
Output: The aggregated model wR after R communication rounds.

1 # Server executes:
2 Assign each client with the same initialized w0
3 for t ∈ [R] communication round do
4 m← max(c · K, 1)
5 Ct ← (random set of m clients)
6 for each client k ∈ Ct in parallel do
7 wk

t ← ClientUpdate(k, wt−1)
8 end
9 Update the global parameters as

10 wt ← ∑K
k=1 piwk

t
11 end

Algorithm 2: ClientUpdate(k, w).
Input: The client ID k, the global model w, the local dataset Dk, the minibatch size

B, the number of local epochs E, and the learning rate κ
Output: The locally trained model wk.

1 # Client executes:
2 B ← (split Dk into batches of size B)
3 for each local epoch i ∈ [E] do
4 for batch b ∈ B do
5 w← w− κ∇`(w; b)
6 end
7 end
8 wk = w
9 return wk to server

We note that most (if not all) traditional FL protocols distribute the same global model
to each and every client. Consequently, Byzantine attack has become one of the most
powerful attacks against FL systems.

2.3. Adversarial Attack

The notion of adversarial attack is first proposed by Goodfellow et al. [22], and is
proven powerful against centralized learning mechanisms [23]. When the adversary is
able to obtain full access to the victim model, the adversarial attack is known as white-box
attack [24], which is the case for traditional FL systems in the presence of a corrupted client.
Upon receiving the victim model f , the adversary begins to generate adversarial samples.
The goal of the attack is to find some δ such that f (x + δ) 6= f (x). Here, the optimized
x + δ is referred to as the adversarial samples.

2.4. Adversarial Training

Adversarial training [22] seeks to train deep neural networks that are robust against
adversarial samples by leveraging robustness optimization. For each data point x ∈ D and
its label y, adversarial training introduces a set of perturbations δ ∈ S . Let L denote the
loss function (e.g., the Cross-Entropy loss). The objective function of adversarial training is
as follows:

min
f

E(x,y)∈D

[
max
δ∈S
L(f , x + δ, y)

]
. (1)

For the inner maximization of the saddle point formulation in Equation (1), the projected
gradient descent (PGD) method [25] is usually applied. PGD adopts an iterative approach
to generating the optimized adversarial sample x + δ from some clean sample x. In the

Electronics 2023, 12, 842 4 of 22

iteration of PGD method, for each step t, it essentially executes projected gradient descent
on the negative loss function

xt = Πx+S (xt−1 + δstep sign(∆xL(f , x, y))). (2)

3. Related Works
3.1. Federated Adversarial Training

Adversarial training is a typical method to enhance model robustness [22,26–31].
Recently, many works explored the application of adversarial training in FL. Adversarial
training is originally developed primarily for IID data, and it is still challenging to be carried
out in non-IID FL settings. Zizzo et al. [32] took the first step towards federated adversarial
training (FAT), and evaluated the feasibility of practical FAT in realistic scenarios. The main
objective of FAT is to utilize adversarial training to solve the robustness and accuracy
challenges faced by FL systems when applied in real-world tasks.

3.2. Byzantine-Robust Federated Learning

A stream of works have considered Byzantine-robust federated learning. Generally
speaking, FL clients exchange knowledge through the aid of a trusted server. Under this
setting, any client can be an adversary who wants to damage or poison the federated model.
i.e., a Byzantine failure can occur within the FL system when clients become malicious.
Byzantine-type attacks against FL systems include untargeted poisoning attacks [14,15,17,33]
and targeted poisoning attacks [20].

To deal with Byzantine failures, several techniques are proposed to perform robust
aggregation of user updates [34–36] or to detect and eliminate malicious user updates by
similarity-based metrics [17–19,37]. Zizzo et al. [32] analyzed federated adversarial training
in the presence of Byzantine clients, and concluded that it is still an open problem if both
Byzantine-robustness and adversarial-robustness can co-exist within an FL system. Wang
et al. [38] gave the theoretical proof that the existence of an adversarial sample implies the
existence of a backdoor attack.

3.3. Research Gaps and Our Goal

Existing works on federated adversarial training try to train one globally robust model
through the cooperation of all clients. If we adopt this traditional adversarial training
procedure, the robustness of the global model will be indeed enhanced. Nonetheless,
in the presence of a Byzantine failure (i.e., corrupted clients), successful adversarial samples
generated on one client through powerful white-box attacks can still be perfectly transferred
to other client models, rendering the entire system vulnerable. Therefore, we point out
that none of the above works follow our definition of DMR, and are independent from
our work. In defining DMR and instantiating an effective DMD technique, our main
objective is to differentiate client models, so as to resist adversarial attack in the presence of
a Byzantine failure.

In regard of Byzantine-robustness, we share the similar goal with Byzantine-robust fed-
erated learning, i.e., to develop Byzantine-robust federated learning frameworks. However,
our key insight is that, if we distribute different models to different clients, we can signif-
icantly increase the difficulty of the corrupted clients to launch attacks. The challenge is
how to maintain the overall model utility while carrying out the differentiating procedure.

4. Methodology

In this section, we first define a set of notions to assist us in formalizing the notion
of DMR under FL. Then, we discuss the threat model we consider in this work. Next, we
propose a concrete DMD method to improve the DMR of client models and introduce the
ARMOR framework. Finally, we analyze the robustness for FL under DMD.

Electronics 2023, 12, 842 5 of 22

4.1. Definition

To formulate the differential robustness of our framework, we present two important
metrics: Attack Success Rate (ASR) and Average Adversarial Transfer Rate (AATR). While ASR
is a conventional metric to measure the attacking capability of an adversary, AATR is a
novel metric that evaluates the transferability of adversarial samples within a multi-client
FL system.

The definitions for ASR vary in different works [24,39–42]. In this work, we define ASR
as follows. For any clean dataset D, Dadv is the set of adversarial samples generated from
D by some adversary A, i.e., for any dAi ∈ Dadv, there exists some δi such that dAi = di + δi,
where di ∈ D and |δi| ≤ δmax. Under this setting, we define ASR as follows.

Definition 1 (Attack Success Rate). The adversary A chooses a clean dataset D, and generates
the adversarial dataset Dadv. For some victim model X, we denote the set of all di ∈ D that X
predicts correctly by DX, and the set of all corresponding dAi by DX

adv. For each dAi ∈ DX
adv, if X

gives incorrect prediction on dAi , we call dAi a successful adversarial sample. Denote the set of all
successful adversarial samples dAi by SX

adv, and the set of all corresponding di by SX . We say that
the attack success rate of the adversary A on the victim model X is ASRA,X

D = |SX |
/
|DX |.

ASR describes how effective is the attack launched by the adversary against a single
victim model. In an FL scheme where clients receive different global models, however, we
need a new metric to describing the transferability of adversarial samples across clients. We
consider a K-client FL system with one malicious client the adversary A and K− 1 benign
clients. Under this setting, we define AATR as follows.

Definition 2 (Average Adversarial Transfer Rate). The adversaryA first chooses a clean dataset
D, and generate the adversarial dataset Dadv from D. For each pair of di ∈ D and dAi ∈ Dadv,
assume that a total number of `i benign clients give correct predictions on di but incorrect predictions
on the corresponding dAi . Then, we say that the adversarial transfer rate of dAi is ATRdAi

=

`i/(K− 1). The average adversarial transfer rate is defined as AATRADadv
= EdAi ∈Dadv

(ATRdAi
).

Note that in differentially robust FL, the malicious client has no knowledge of the exact
parameters of other benign client models. As a result, A cannot decide which adversarial
samples generated can be more powerful over the others. Thus, A can only use adversarial
samples that are correctly classified on its own model to launch adversarial attacks against
the benign clients.

With AATR in hand, we are ready to formalize the notion of Differential Model Robust-
ness (DMR) in FL setting. We point out that there are two (somewhat conflicting) goals that
the server wishes to achieve here. On the ond hand, the server wants the client models to
stay close to the global model when predicting on the clean samples. On the other hand,
client models should respond as different as possible against adversarial samples. Formally,
we express the above idea of DMR as follows.

Definition 3 (Differential Model Robustness). Let I be the indicator function such that
I(F(x)) = 1 if F(x) is the correct classification of sample x. Given an FL system with one
malicious client, K− 1 benign clients, and some generalization dataset G, let the global model be
some function Y, and the differentiated client models be functions Xj for j ∈ [K− 1]. We say that
the system achieves (ρ, ε, δmax)-DMR if the following inequalities hold:

min
j∈[K−1]

∑gi∈G I(Xj(gi))

|G| ≥
∑gi∈G I(Y(gi))

|G| − ρ, (3)

AATRADadv
≤ ε. (4)

Electronics 2023, 12, 842 6 of 22

Here, when A generates dAi = di + δi from di, we restrict the amount of perturbations that the
adversary A can add to the clean data samples by |δi| ≤ δmax.

In Equation (3), the left hand side is the minimum accuracy of the differentiated client
models, and the right hand side is the accuracy of the global model with an acceptable
accuracy deterioration of ρ. In other words, Equation (3) expresses our utility demand
inside the notion of DMR, where client models should respond similarly to the global model
over clean samples. Meanwhile, Equation (4) gives the maximum level of AATR, which
describes the robustness towards adversarial samples across different clients, i.e., how
client models respond differently against adversarial samples.

4.2. Threat Model

We assume that the server and all clients participating in the the learning procedure of
the original FL system are honest, which means that the server aggregates local models
in the way it is supposed to, and each client honestly trains the local model using its own
private dataset (we assume that any malicious local model update in the learning procedure
can be detected or terminated by the server, since there exists various effective robust
aggregation method [17–19,35–37]). However, after the global model being distributed
to all clients, there exists one client that is malicious or compromised by a third-party
adversary. As mentioned, we call this corrupted client the adversary A. In this work,
the attack is outside of the pristine FL learning procedure, and is targeted at the model
which will be deployed by each client to its practical applications.

Adversary’s capability. We consider a K-client federated learning system with one
client is malicious or compromised by a third-party adversary, and other K− 1 clients are
benign. The adversary is assumed to have the following attack capabilities.

1. To access the local training data of the compromised client, but have no knowledge of
the private training datasets of other benign clients.

2. To launch white-box attacks at its will, as any client participating in the training
process of FL has direct access to its own local model parameters and the global
model parameters.

Adversary’s goal. Different from a centralized learning scheme, the goal of an adver-
sarial attack under a distributed learning setting is to find some perturbation δ such that
other clients, as many as possible, classify the adversarial sample dadv = d + δ incorrectly.
Formally, let Iadv be the indicator function where IF,d

adv(y) = 1 if y 6= F(d) and 0 otherwise,
and Xj be the differentiated model received by client j, the above idea can be expressed as
the optimization over

arg max
δ

L

∑
j=1

IXj ,d
adv

(
Xj(d + δ)

)
, (5)

and that |δ| ≤ δmax to restrict the perturbation. However, we note that in practical FL
systems, the number of benign clients can be very large, and according to Theorem 1, we
can hardly achieve Equation (5) when there are enough number of benign clients whose
models are properly differentiated. Therefore, we also define an empirical goal for the
adversary in terms of the AATR simply as

arg max
Dadv

AATRADadv
. (6)

4.3. Intuitions and Framework Overview

In this section, we give the intuition and overview of our approach to enhancing DMR
of FL systems. Then we propose the ARMOR framework as a concrete construction of our
differential model distribution.

Targeted Problem: As described in Section 4.2, we consider adversarial attacks
launched by Byzantine clients inside the FL systems. A Byzantine client has direct

Electronics 2023, 12, 842 7 of 22

access to the global model and can construct effective adversarial samples efficiently.
In traditional FL protocols, the server distributes the same global model to each client.
Consequently, adversarial samples constructed by the Byzantine client can easily
attack all of other benign clients. We aim at preventing such Byzantine adversarial
attacks from generalizing inside the FL system.
General Solution: Our main insight is that model differentiation can reduce the trans-
ferability of adversarial samples among clients in FL systems. However, if we conduct
trivial model differentiation, such as adding noise in the way similar to differential
privacy, a satisfactory level of differential model robustness will be accompanied by
high levels of utility deteriorations. We manage to attain the same level of utility over
normal inputs while keeping the client models as different as possible against adver-
sarial inputs. We discover that combining with suitable differentiating operations,
adversarial training can be useful to produce differentially robust models.

As is illustrated in Figure 1, the ARMOR framework can be roughly divided into
three parts: sub-federated model generating phase, adversarial sample generating phase
and differential adversarial training phase. Here we give the intuitional explanation and
general description of the three phases.

Phase 3 : Differential

Adversarial Training

Global Model Sub-Fed Model i

+

Phase 1 :

Sub-Federated

Model Generating

Randomly

Select

Aggregate

Client 1 Client 2 Client 3 Client K

…

Client j Client k

Sub-Fed Model i

Phase 2 : Adversarial

Sample Generating

+

Global ModelExample i Perturbation i

Adv. Sample i

Trusted Server

Distributed

Model for Client i

…

Figure 1. The general working flow of the ARMOR framework. ARMOR consists of three phases:
sub-federated model generating, adversarial sample generating and differential adversarial train-
ing. The first two phases produce two types of differentiation while the last phase completes the
differentiation fusion.

Phase 1. Sub-Federated Model Generating:

• Intuition: In traditional FL systems, there is only one aggregated model known as
global model (or federated model). If we develop our differential client models from
the same global model, the differentiation can be too weak to powerful Byzantine
clients. We try to find out how to decide the directions in which we differentiate the
global model.

• Solution: The last round of aggregation is shown in Algorithm 3. From Line 12 to 15,
after getting all client model updates, for each client, the server randomly aggregates a
set of client models into a sub-federated model. System manager can decide the number

Electronics 2023, 12, 842 8 of 22

of clients included in one sub-federated model by adjusting the proportion parameter
to achieve satisfactory model utility. That is, for a total of K clients, the server will
generate K different sub-federated models for preparation of directing and regulating
the subsequent differential adversary training phase.

Algorithm 3: Differential Model Distribution.
Input: K clients indexed by k, c the proportion of clients participating in each

round, B the local mini-batch size, E the number of local epochs, Eadv the
number of adversarial training epochs, κ the learning rate, R the number of
communication rounds, D the public dataset chosen by the server, η the
proportion of sub-federated model, and λ the differentiation factor of
sub-federated model.

Output: A group of differentially robust models wt
k(k ∈ [K]) after R

communication rounds.
1 # Server executes: The regular FL protocol
2 Assign each client with the same initialized w0
3 for t ∈ [R] communication round do
4 m← max(c · K, 1)
5 Ct ← (an m-size random subset of client index [R])
6 for each Client k ∈ Ct in parallel do
7 wt

k ← ClientUpdate(k, wt−1)
8 end
9 Update the global parameters as wt ← ∑k∈Ct(pkwt

k)

10 end
11 # Step one: Generate sub-federated models
12 for each Client k ∈ [K] do
13 Wk ← (a random set of ηK local model parameters wi)
14 wsub

k ← ∑wi∈Wk
(piwi)

15 end
16 # Step two: Adversarial training
17 for each client k ∈ Ct do
18 Dk ← (an N-size random subset of public dataset D)
19 w̃k = wR

20 for each epoch i ∈ [Eadv] do
21 Dadv,k ← PGD(Dk, w̃k)

22 w̃k ← DiffTrain(w̃k, wsub
k , λ,Dadv,k)

23 end
24 Distribute w̃k to Client k
25 end
26 DiffTrain(w, wsub

k , λ,Dadv,k):
27 B ← (split Dadv,k into batches of size B)
28 for batch b ∈ B do
29 w← w− κ∇L(w, wsub

k ; b)
30 end
31 return w

Phase 2. Adversarial Samples Generating:

• Intuition: In centralized adversary training, the server generates adversarial samples
through adversarial attack methods such as FGSM attack [22] or PGD attack [25]. If we
simply follow the same paradigm and utilize the whole public dataset to train the
global model, we will come back to the problem of Byzantine clients again. As pointed
out in Section 3.3, it is dangerous for all clients to hold the same global model in
the model deployment phase. We need to generate different adversarial samples for
each client.

Electronics 2023, 12, 842 9 of 22

• Solution: As shown in Algorithm 3, from Line 17 to 21, after aggregating client models
in the last round into a final global model, the server further generates adversarial
samples based on the final global model. For each client, the server chooses a different
set of samples from its public dataset, and uses different randomness to generate
adversarial samples from the chosen sample set. That is, for a total of K clients, the
server will generate K different sets of adversarial samples.

Phase 3. Differential Adversary Training:

• Intuition: Now, we need to find an efficient way to conduct the differentiation while
retaining the model accuracy. We are faced with two challenges. First, how to decide
the metric of model distance (or model similarity)? A suitable metric is extremely
important as it will directly influence our differential adversary training directions.
Second, how to quantitatively produce different levels of differentiation? As model
utility and DMR is a trade-off, a higher level of differentiation will lead to stronger
DMR but weaker model utility. We should be able to adjust the level of differentiation
to achieve a balance between utility and DMR.

• Solution: Utilizing Phase 1 and Phase 2, the server allocates each client a sub-federated
model and a set of adversarial samples. When conducting differential adversarial
training, we choose cosine similarity as the criterion to measure model distance. We
use the cosine similarity between the output vectors of global model and sub-federated
model to construct a similarity loss. We combine the similarity loss with the regular
cross-entropy loss during adversarial training to accomplish our goal of differentiation.

4.4. Key Algorithms In ARMOR

As discussed in Section 4.3, in the ARMOR framework, our differential adversarial
training consists of two types of differentiation followed by a differentiation fusion step.
The detailed algorithm is given in Algorithm 3. Here, we give a line-by-line interpretation
of Algorithm 3.

We consider an FL system with K clients. From Line 1 to 10, ARMOR follows the
traditional FL protocol. We choose the standard Federated Averaging (FedAvg) [21] pro-
tocol as the basic FL algorithm. On Line 2, the server samples an initialized global model
w0 and assigns each client with the same initialized w0. We assume the total number of
global communication rounds to be R. For each round t ∈ [R], the server first computes
the number of clients participating in this training round as m← max(c · K, 1). Then the
server randomly samples an m-size random subset of client index [R]. We denote the col-
lection of these m clients by Ct. Each client k in Ct executes ClientUpdate to train the current
global model wt−1 using its own local dataset, and outputs local model update wt

k (The
description of ClientUpdate is shown in Algorithm 2). When all clients in Ct complete their
local training and return the local model update, the server updates the global parameters
as wt ← ∑k∈Ct(pkwt

k).
Then, Lines 11 to 25 describe what we refer to as the differential adversarial training

technique, which is proven effective in enhancing the DMR while retaining a high level
of utility of each client model. Differential adversarial training can be divided into two
steps. In the first step, i.e., Line 11 to 15, the server generates sub-federated models for
clients. The server first decides a factor η, which denotes the proportion of clients included
in one sub-federated model. For each client k ∈ [K], the server randomly samples a set of
ηK local model parameters wi, and aggregates them into sub-federated model for client
k as wsub

k ← ∑wi∈Wk
(piwi). In the second step, i.e., Line 16 to 25, the server conducts

adversarial training. We assume the total number of adversarial training epochs to be
Eadv. For each client k ∈ [K], the server randomly samples an N-size subset of public
dataset D. In each adversarial training epoch i ∈ [Eadv], the server uses PGD method to
generate adversarial samples Dadv,k, and executes DiffTrain to finish the training procedure.
The DiffTrain algorithm is described in Line 26 to 30, which is run by the server to produce
differentiated models based on the global model, the chosen sub-federated model and the

Electronics 2023, 12, 842 10 of 22

chosen adversarial samples. Finally, for each client k ∈ [K], the server distributes w̃k to
client k.

The formal descriptions of the three key components in the ARMOR framework are
given as follows.

1. Sub-Federated Model Based Model Differentiation: At the last round of aggrega-
tion, the server gets the set of all local models X = {X1, X2, · · · , XK} from K clients,
and aggregate these local models into a global federated model Y = ∑Xi∈X (piXi)
(With some abuse of notations, we use Y = ∑Xi∈X (piXi) to denote the server’s opera-
tion of aggregating several local models Xi with model parameter wi to generate the
global model Y with model parameter w, i.e., w = ∑

|X |
i=1 piwi. In this work, we have

pi = 1/|Xi|, i ∈ [|X |].). For each client k, the server randomly chooses dηKe local
models from the set X to form a subset Xk, and aggregate the dηKe local models in Xk
into a sub-federated model Yk = ∑Xi∈Xk

(piXi). We denote the set of all sub-federated
models by Ysub = {Y1, Y2, · · · , YdηKe}.

2. Adversarial Samples Based Model Differentiation: In ARMOR, the server generates
K different sets of adversarial samples based on the global model. For each client k,
the server chooses a set of samples Dk from its public training dataset D, and adopts
PGD method [25] to generate a set of adversarial samples Dadv,k in preparation for
adversarial training. In this step, each adversarial dataset Dadv,k for k ∈ [K] contains
a different flavor of robustness, which will be introduced to the global model in the
following adversarial training phase.

3. Differential Adversary Training: Combining the above two steps, the server asso-
ciates each Client k with a sub-federated model Yk and a set of different adversarial
samples Dadv,k. Figure 2 illustrates the detailed relationships between models and
losses in our training process. The server executes DiffTrain in Algorithm 3 to make
each client find its way from Y towards the direction between Yk and the robustness
introduced by Dadv,k. Next, for DiffTrain, our goal is to produce differentiated model
Yk based on the global model Y (we note that directly using Yk as the k-th client model
results in degraded accuracy performance). Here, we choose the cosine distance as the
criterion to measure the similarity between the global model and the sub-federated
models. Given input samples Dadv,k, we compute the cosine embedding loss of the
output of global model Y and the corresponding sub-federated model Yk. Let Y and
Yk be the model functions whose outputs are the probability vectors over the class
labels. We define the similarity loss for sample dAi as

`sim,i(Y, Yk) = 1−
Y(dAi) ·Yk(dAi)T

‖Y(dAi)‖2 × ‖Yi(dAi)‖2
, (7)

where · is the inner product between vectors, ‖ · ‖2 depicts the L2-norm of a vector,
and× denotes integer multiplication. When measuring similarity, we define the target
labels T = {t1, t2, · · · , t|Dadv,k |} for the cosine similarity loss, where each ti follows the
Bernoulli distribution P(ti) where Pr[ti = 1] = p. Then, we use T to select a portion
of p samples with label 1 to participate in similarity measurement. Now, we have our
total cosine similarity loss

Lsim(Y, Yk) = ∑
dAi ∈Dadv,k

ti × `sim,i(Y, Yk)

|Dadv,k|
. (8)

Electronics 2023, 12, 842 11 of 22

··· Client i ··· Client j ··· Client k ··· Client l

𝑥

𝑦

"𝑦

"𝑦!"#_%&'

𝑥!"#

ℒ(&

ℒ!)*

𝐿𝑜𝑠𝑠

Sub-Fed
Model 𝑌+

Global
Model 𝑌

GAN_
Global

Cosine
Similarity

Cross
Entropy

ℒ(& + 𝜆ℒ!)*

Local
Models 𝒳

Global Model 𝑌

Server

Clients

Public Dataset

Figure 2. The server conducts differential adversarial training with the aid of a public dataset.
The loss function consists of two parts: one is the cross entropy loss of the regular adversarial training,
and the other is the cosine similarity loss between the global model and the sub-federated model.

In addition to the similarity measurement, we follow the method of [22] to train on a
mixture of clean and adversarial examples. We compute the regular cross-entropy loss Lce
between input Dadv,k and the label set of the corresponding clean dataset Dk as

Lce(Y) = ∑
dAi ∈Dadv,k

[
`ce,i(Y, di) + `ce,i(Y, dAi)

]
× 1
|Dadv,k|

. (9)

Combining the two losses, we have our final objective loss function as

L = Lce(Y) + λLsim(Y, Yk), (10)

where λ is the controlling factor to decide how strong our differential models will be
differentiated in the directions of the randomly generated sub-federated models.

4.5. Robustness Analysis

Before delving into the theory, we first note that there exists adversarial perturbations
which are effective against any classifier [43–45]. As a result, when only a small number
(e.g., one) client is benign in an FL system, the derivations in [43] indicate that there is an
upper limit on the adversarial robustness of any classifier.

Consequently, we seek the following alternative. From a high level of view, the differ-
ential model distribution technique, i.e., the differential adversarial training method we
proposed above, can be seen as conducting stochastic perturbations to the global model
while retaining an acceptable level of accuracy deterioration. Due to the randomness
introduced by stochastic functions during the training procedure, we can take these per-
turbations as independent random variables added to the global model. Subsequently,
the following theorem can be established.

Theorem 1. We consider an K-client FL system with one malicious client and K− 1 benign clients.
Each client receives a linear classifier Fi for i ∈ [K]. Assume that there exists some DMD mechanism
in the FL system such that for any two benign client models Fi(x) = wix and Fj(x) = wjx where
i 6= j, it holds that wi = w + βi and wj = w + β j where βi and β j are independent random

Electronics 2023, 12, 842 12 of 22

variables satisfying βi, β j ≥ βmin for all i, j ∈ [L]. Then, for any adversarial sample dAi = di + δi
with restriction of |δi| ≤ δmax, we have that

Pr[ATRdAi
≥ θ] ≤ (1− γ)θ(K−1) (11)

for some real numbers θ, γ ∈ [0, 1].

Proof. We can prove the theorem via a simple probabilistic argument. Without loss of
generality, we assume that the malicious client is Client 0. First, observe that for any
successful adversarial sample dA = d + δ on the corrupted client, it holds that

sign(w0(d + δ)) 6= sign(w0(d)). (12)

Expanding the terms, we get

sign(w0d + w0δ) 6= sign(w0d), which means that (13)

sign(wd + β0d + wδ + β0δ) 6= sign(wd + β0d). (14)

For the adversarial sample dA to transfer to the j-th client, we need to achieve a similar
goal, i.e.,

sign(wd + β jd + wδ + β jδ) 6= sign(wd + β jd). (15)

Since both Client 0 and Client j correctly classify d (which is a necessary condition for
any adversarial attack to be meaningful), we know that

sign(wd + β jd) = sign(wd + β0d). (16)

Then, we know that the objective of transferring the adversarial sample from Client 0
to the Client j can be formulated as

sign(wd + β jd + wδ + β jδ) = sign(w0(d + δ)). (17)

We point out that wj can be formulated as a “differentiated” version of w0, i.e.,

wj = w0 + β0j, (18)

where β0j = −β0 + β j. As a result, the LHS for Equation (17) becomes

sign(w0(d + δ) + β0j(d + δ)) = sign(w0(d + δ)). (19)

Here, we can consider the term β0j(d + δ) as an additive noise to the classification
result w0(d + δ), which is a label that is the opposite of w0d. Now, to satisfy the objective of
Equation (17), we basically need the noise of β0j(d + δ) to be small enough such that the
addition of this term does not cause the classification result to cross the decision boundary
(i.e., flip the sign). Unfortunately, from the results in [43], we know that the robustness of
any classifier is bounded from above. Let ξ denote that the probability of classifying the
result to 1, then the probability of 0 becomes 1− ξ, and the fraction of adversarial samples
that does not work on wj becomes

Pr(R(x) ≤ η) ≥ 1−
√

π

2
e−ω−1(η)2/2, (20)

Electronics 2023, 12, 842 13 of 22

where R(x) = minδ ||δ|| such that w0(x + δ) 6= w0(x) (i.e,. the robustness of the input
sample x), η is the robustness threshold, ω is the modulus of continuity, Simialr to [43],
when we take ω−1(η) = η/L where L is the Lipschitz constant, we have that

Pr(R(x) ≤ η) ≥ 1−
√

π

2
e−(η/L)2/2. (21)

Replacing x with the adversarial sample d + δ, we see that the stability of transferring
the adversarial sample can be seen as its robustness, and this robustness is bounded from
above by some factor η. Hence, when we have a model-wise perturbation that is larger
than the robustness of the adversarial sample, i.e.,

β0j(d + δ) ≥ η, (22)

the j-th model will produce a “mis-classified” adversarial sample with non-negligible
probability, which is exactly the probability of the j-th model to produce a correct prediction
on the adversarial sample in the binary classification case. Since β0j can be adjusted
according to βmax, we are guaranteed that

Pr[sign(w0(d + δ) + β0j(d + δ)) = sign(w0(d + δ))] (23)

= Pr[sign(w0(d + δ) + η) = sign(w0(d + δ))] (24)

= 1− Pr[R(x) ≤ η] (25)

≤ 1− Pr[R(x) ≤ β0j(d + δ)]. (26)

Let γ = Pr[R(x) ≤ β0j(d + δ)], we then know that the probability that any adversarial
sample d+ δ can transfer to the j-th client model is 1− γ. Since all pairs of β0j for j ∈ [K− 1]
is mutually independent, the probability that an adversarial sample dA simultaneously
transfers to ` benign clients is (1− γ)`. Then, we have that for any adversarial sample dA,

Pr[All ` clients are compromised] = (1− γ)`. (27)

As defined in Definition 2, since ` is the number of clients that are compromised,
ATRdA = `/(K− 1), we have

Pr[ATRdA ≥ θ] = Pr[`/(K− 1) ≥ θ] ≤ (1− γ)θ(K−1), (28)

and the theorem follows.

We note that Equation (28) goes to a probability of 0 as the total number of benign
clients K− 1 goes to infinity. That is to say that, for any adversarial sample dA and any
attack transfer rate θ that is non-zero, the probability of an adversary achieving this ATR
goes to zero when the number of benign clients grow.

5. Experiment Results
5.1. Experiment Flow and Setup

To validate the effectiveness of our DMD method, we perform experiments in FL
settings of different client numbers, and in each setting we balanced the partition of the
whole training dataset among all clients in a non-i.i.d. manner. We follow the DMD
technique described in Algorithm 3 to conduct our experiment. In this experiment, we take
nine different FL settings of clients number K = 10, 15, 20, 25, 30, 35, 40, 45, 50 and set c = 1
in FedAvg algorithm.

Physical Specifications: We conduct our experiments on Linux platform with NVIDIA
A100 SXM4 with a GPU memory of 40GB. The platform is equipped with a driver of
version 470.57.02 and CUDA of version 11.4.

Electronics 2023, 12, 842 14 of 22

Datasets: We empirically evaluate the ARMOR framework on two datasets: MNIST [46]
and CIFAR-10 [47]. To simulate the heterogeneous data distributions, we make non-
i.i.d. partitions of the datasets, which is a similar partition method as [21].

(1) Non-IID MNIST: The MNIST dataset contains 60,000 training images and
10,000 testing images of 10 classes. Each sample is a 28 × 28 size gray-level
image of a handwritten digit. We first sort the training dataset by digit label,
divide it into 3K shards of size 60, 000/dKe, and assign each client 3 shards.

(2) Non-IID CIFAR-10: The CIFAR-10 dataset contains 50,000 training images and
10,000 test images of 10 classes. Each sample is a 32× 32 size tiny color image.
We first sort the training dataset by class label, divide it into 4K shards of size
50, 000/dKe, and assign each client 4 shards.

Model: For the MNIST dataset, we use a CNN model with two 5× 5 convolution
layers (the first with 4 channels, the second with 10 channels, each followed with 2× 2
max pooling), a fully connected layer with 100 units, an ReLu activation, and a final
output layer. For the CIFAR-10 dataset, we use the VGG-16 model [48].
Hyperparameters: For both datasets, we first train with the federated averaging
algorithm. In each communication round, we let all clients to participate in the
training (i.e., c = 1), where the client model is trained by one epoch using the local
datasets. On the server side, the model update from each client is weighted uniformly
(since we assume that each client has the same number of training samples). For
MNIST and CIFAR-10, we set the number of communication round R to 50 and 500,
the learning rate κ to 0.07 and 0.05, and the client batch size to 10 and 64, respectively.

When applying the PGD attack for adversarial training, we need to decide the upper
bound on the gradient steps in the `∞-norm. For MNIST, the server uses 1000 public images
to generate adversarial samples for training, each adversarial sample is constructed with
δmax = 0.2 (also denoted as ε in many works) as the max perturbation range by a step size
of δstep = 0.01 for 40 iterations, while for CIFAR-10, we choose 1000 public images with
δmax = 0.03 by a step size of δstep = 0.008 for 20 iterations. Note that we have K clients in
this FL setting, so the server generates K different sets of adversarial samples based on the
global model.

5.2. Main Results

In this section, we show the results of applying ARMOR over the MNIST and CIFAR-10
datasets.

5.2.1. Results on MNIST

Table 1 illustrates the results of the average model accuracy over all clients, and average
ASR and AATR of adversarial samples on benign clients with a varying number of FL
clients. Before delving into the results, we first explain the subtle relationship between Acc
and AccD . Recall that our goal is to make the client models stay close to the global model
when predicting the clean samples while responding as differently as possible against
adversarial samples. Here, Acc is the accuracy on randomly selected testing samples, while
AccD is the accuracy on clean dataset D. Note that when launching attacks, A only chooses
successful adversarial samples (i.e., misclassified by the client model of A) whose clean
samples can be correctly classified using its own client model. In other words, for the client
model of A, ASRAD = 100%. Therefore, the difference between Acc and AccD indicates
whether correctly predicted samples in D is different from the datasets of all other clients.
To this end, Table 1 confirms that AccD is almost identical to Acc. The conclusion here is
that, the adversaryA cannot tell which sample will be more susceptible to the other models
possessed by the benign clients with high confidence.

Comparing the accuracy and AATR of models with and without our differential
adversarial training, we point out that model utility and DMR is indeed a trade-off. For
example, for client number K = 35 in Table 1, after deploying our DMD technique, we

Electronics 2023, 12, 842 15 of 22

are able to reduce the ASR on benign clients from 100% to 15.21% and AATR from 100%
to 20.45% while maintaining the overall client model accuracy of 90.35%. At the same
time, as the number of FL clients increases, AATR in Table 1 exhibits a smooth decrease,
as predicted in Section 4.5.

Table 1. Results of FL with/without DMD under different settings for MNIST.

Client Num DMD Acc (%) AccD (%) ASR (%) AATR (%)

10 × 98.33 98.33 100.00 100.00
X 90.12 84.66 16.76 28.82

15 × 98.33 98.33 100.00 100.00
X 90.18 86.33 14.82 23.64

20 × 98.38 98.38 100.00 100.00
X 90.21 84.83 15.99 23.38

25 × 98.38 98.38 100.00 100.00
X 90.33 85.32 15.43 21.99

30 × 97.95 97.95 100.00 100.00
X 90.09 85.20 16.93 22.67

35 × 98.38 98.38 100.00 100.00
X 90.35 85.43 15.21 20.45

40 × 98.38 98.38 100.00 100.00
X 89.11 84.41 14.57 19.47

45 × 98.38 98.38 100.00 100.00
X 88.01 83.20 13.95 18.44

50 × 98.38 98.38 100.00 100.00
X 87.07 81.89 14.60 18.88

We present the frequency of the average transfer rate of each adversarial sample
generated by adversary A in Figure 3. Note that without our DMD method, the ATR of
every adversarial sample is 100%, and consequently, the AATR is also 100%. Here we have
the following two main remarks.

0.0 0.2 0.4 0.6 0.8 1.0
ATR on benign

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Fr
eq

ue
nc

y
of

 sa
m

pl
es TR on benign

(a) Num = 10

0.0 0.2 0.4 0.6 0.8 1.0
ATR on benign

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Fr
eq

ue
nc

y
of

 sa
m

pl
es TR on benign

(b) Num = 20

0.0 0.2 0.4 0.6 0.8 1.0
ATR on benign

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Fr
eq

ue
nc

y
of

 sa
m

pl
es TR on benign

(c) Num = 40

Figure 3. The probability distribution of the transfer rate of all adversarial samples generated by the
adversary A. The horizontal axis is the transfer rate of a single adversarial sample, and the vertical
axis is the frequency of samples at that transfer rate.

Remark 1. The empirical observations agree with Theorem 1. Due to this special property, apart
from our differential adversarial training method, we can develop more DMD techniques to step
further towards the DMR goal in FL and propose various trustworthy FL protocols under the
presence of Byzantine failure.

Remark 2. The DMR improvement due to the proposed DMD technique increases when the client
number K of FL increases. Intuitively, as the number of FL clients increases from 10 to 30, the
distribution histograms are pushed toward the zero-ATR side, and the shape becomes more squeezed
and narrow. This trend shows that as the client number increases, the sub-federated models become

Electronics 2023, 12, 842 16 of 22

more different from each other, which makes the differentially distributed client models more robust
against attacks from the malicious FL client.

By applying differential adversarial training to the global model, we are able to control
the attack transferability within an acceptable range. For example, we consider the FL
setting of K = 40 clients in Figure 3c. With our differential adversarial training method,
we obtain an AATR of 19.47%. With this level of AATR, we can make sure that 45% of
the adversarial samples generated by the malicious client have ATR ≤ 10%, while 75%
samples have that ATR ≤ 30%. In particular, almost no adversarial samples can achieve an
ATR of 100%.

5.2.2. Results on CIFAR-10

Similar to the analyses for MNIST, as is illustrated in Table 2, ARMOR can reduce ASR
and AATR of benign clients over the CIFAR-10 dataset as well. For example, for K = 35,
if we apply the DMD method, the ASR is reduced from 100% to 26.09% and the AATR can
be reduced from 100% to 35.07%. Results on both datasets confirm that ARMOR is effective
in reducing the vulnerability of FL client models against Byzantine-style adversarial attacks.

Table 2. Results of FL with/without DMD under different settings for CIFAR-10.

K DMD Acc (%) AccD (%) ASR (%) AATR (%)

10 × 73.27 73.27 100.00 100.00
X 51.58 65.53 24.70 41.75

15 × 74.48 74.48 100.00 100.00
X 54.66 69.27 27.59 40.32

20 × 73.53 73.53 100.00 100.00
X 56.19 70.17 28.96 39.57

25 × 71.71 71.71 100.00 100.00
X 52.94 68.18 27.91 38.36

30 × 70.61 70.61 100.00 100.00
X 52.67 67.83 27.49 36.79

35 × 72.28 72.28 100.00 100.00
X 51.88 66.72 26.09 35.07

40 × 72.27 72.27 100.00 100.00
X 53.02 68.14 28.75 37.18

45 × 70.21 70.21 100.00 100.00
X 51.65 66.94 25.53 33.71

50 × 70.07 70.07 100.00 100.00
X 51.70 67.98 26.71 34.54

Comparing Table 2 with Table 1, we can find that accuracy deterioration in Table 2
is much higher than that in Table 1. If we keep accuracy deterioration in Table 2 around
the same level of Table 1, the reduction of ASR and AATR on CIFAR-10 will be less
than that on MNIST. As a potential explanation, existing works [25,27,49] show that,
under a centralized learning setting, various adversarial training methods are generally
less effective on models trained on CIFAR-10 than models trained on MNIST. For example,
in centralized settings [25], PGD adversarial training achieves a robustness of at most
45.80% (ASR = 54.20%) in CIFAR-10 while achieving a much better robustness of 89.30%
(ASR = 10.70%) in MNIST.

5.3. Ablation Study

Differentiation methods: In Table 3, we perform the ablation studies on our frame-
work over the MNIST dataset to confirm that both of the sub-federated model-based and

Electronics 2023, 12, 842 17 of 22

adversarial sample-based differentiation techniques are crucial in improving the DMR of
FL. We note that, in the case where we directly perform adversarial sample based differen-
tiation without sub-federated model generation, the objective function is reduced to the
cross-entropy loss

Lce(Y) = ∑
dAi ∈Dadv,k

[
`ce,i(Y, di) + `ce,i(Y, dAi)

]
× 1
|Dadv,k|

. (29)

Table 3. Ablation study of the two different DMD steps on MNIST. Lce denotes the case where
we only use adversarial sample-based model differentiation, and Lce + λLsim specifies the case
of combining sub-federated model-based model differentiation with adversarial samples based
model differentiation.

K DMD Acc (%) AccD (%) ASR (%) AATR (%)

10 Lce 95.82 95.17 49.06 56.04
Lce + λLsim 94.65 94.02 31.64 40.89

15 Lce 95.84 94.73 49.47 54.96
Lce + λLsim 93.83 92.61 24.57 32.27

20 Lce 95.68 95.18 50.50 54.93
Lce + λLsim 92.66 89.20 20.15 27.00

25 Lce 95.99 94.71 50.28 54.43
Lce + λLsim 91.20 88.35 20.38 26.54

30 Lce 95.69 94.87 50.27 54.05
Lce + λLsim 91.93 88.81 20.13 25.78

35 Lce 95.79 94.77 49.41 53.03
Lce + λLsim 91.85 87.94 18.60 23.95

40 Lce 95.62 94.52 48.49 52.08
Lce + λLsim 91.54 87.57 18.59 23.55

45 Lce 95.54 94.45 49.79 53.14
Lce + λLsim 91.87 87.94 20.21 24.95

50 Lce 95.56 94.82 49.10 52.29
Lce + λLsim 91.35 87.31 18.72 23.17

Comparing the trends of ASR and AATR as the DMD method and client number K
changes, we have two main observations here:

• First, the adversarial samples based model differentiation does have a positive in-
fluence on reducing ASR and AATR of benign clients. Nevertheless, the reduction
is limited. However, when combined with the sub-federated model-based model
differentiation, both ASR and AATR of benign clients are reduced significantly. For
example, when K = 50, if we only apply Lce based DMD, the AATR is reduced from
100% to 52.29%. If we further combine Lce with Lsim, the AATR is further reduced
to 23.17%, which demonstrates that the key in enhancing DMR is the combination of
sub-federated model generation and differential adversarial training.

• Second, the DMR improvement increases as the client number K of FL increases.
Table 4 illustrates that ASR and AATR decrease as K increases. For example, when ap-
plying Lce + λLsim, the AATR is 40.89% for 10 clients, 26.54% for 25 clients, and 23.17%
for 50 clients. This is reasonable because as the client number increases, the diversity
of sub-federated model is enlarged. As sub-federated models become more differ-
ent from each other, the differentially distributed client models become more robust
against attacks from the malicious client, resulting in additional DMR improvements.

Electronics 2023, 12, 842 18 of 22

Table 4. Ablation study of different DMD parameters on MNIST. λ is the differentiation factor of
the sub-federated model. η is the proportion of the sub-federated model. p is the probability of
Bernoulli distribution.

K λ η p Acc (%) AccD (%) ASR (%) AATR (%)

10

500 0.25 0.10 94.65 94.02 31.64 40.89

600 0.25 0.10 88.13 84.54 15.29 27.66

600 0.35 0.10 89.13 84.04 16.38 28.32

300 0.25 0.20 92.49 90.63 21.67 32.30

350 0.25 0.20 90.12 84.66 16.76 28.82

15

500 0.25 0.10 93.83 92.61 24.57 32.27

600 0.25 0.10 90.18 86.33 14.82 23.64

600 0.35 0.10 87.66 83.45 14.85 23.90

300 0.25 0.20 91.75 88.09 17.25 25.97

350 0.25 0.20 87.37 83.24 14.08 23.05

20

500 0.25 0.10 92.66 89.20 20.15 27.00

600 0.25 0.10 90.86 85.59 17.06 24.50

600 0.35 0.10 90.21 84.83 15.99 23.38

300 0.25 0.20 92.78 89.24 19.43 26.34

350 0.25 0.20 89.14 83.63 14.68 21.75

25

500 0.25 0.10 91.20 88.35 20.38 26.54

600 0.25 0.10 86.85 82.71 14.82 21.16

600 0.35 0.10 88.04 82.57 14.35 20.67

300 0.25 0.20 90.33 85.32 15.43 21.99

350 0.25 0.20 87.98 82.82 14.02 20.57

30

500 0.25 0.10 91.93 88.81 20.13 25.78

600 0.25 0.10 88.53 82.72 14.12 19.98

600 0.35 0.10 87.89 82.41 15.97 21.80

300 0.25 0.20 90.09 85.20 16.93 22.67

350 0.25 0.20 89.26 83.52 13.59 19.43

35

500 0.25 0.10 91.85 87.94 18.60 23.95

600 0.25 0.10 89.06 84.06 15.74 21.04

600 0.35 0.10 88.58 84.02 16.48 21.62

300 0.25 0.20 90.10 85.44 16.71 21.94

350 0.25 0.20 90.35 85.43 15.21 20.45

40

500 0.25 0.10 91.54 87.57 18.59 23.55

600 0.25 0.10 89.11 84.41 14.57 19.47

600 0.35 0.10 87.65 82.68 14.92 20.05

300 0.25 0.20 89.56 85.08 17.60 22.63

350 0.25 0.20 87.06 81.11 14.34 19.37

Electronics 2023, 12, 842 19 of 22

Table 4. Cont.

K λ η p Acc (%) AccD (%) ASR (%) AATR (%)

45

500 0.25 0.10 91.87 87.94 20.21 24.95

600 0.25 0.10 88.01 83.20 13.95 18.44

600 0.35 0.10 87.57 83.01 15.13 19.72

300 0.25 0.20 89.07 84.32 15.42 19.99

350 0.25 0.20 87.15 82.24 14.01 18.70

50

500 0.25 0.10 91.35 87.31 18.72 23.17

600 0.25 0.10 88.13 83.22 16.02 20.52

600 0.35 0.10 88.69 83.47 15.46 19.91

300 0.25 0.20 89.26 84.44 16.51 20.84

350 0.25 0.20 87.07 81.89 14.60 18.88

The impact of DMD parameters: As is shown in Table 4, we choose five different combi-
nations of the proportion of sub-federated model η, the differentiation factor of sub-federated
model λ and the probability p of Bernoulli distribution: (1) λ = 500, η = 0.25, p = 0.10,
(2) λ = 600, η = 0.25, p = 0.10, (3) λ = 600, η = 0.35, p = 0.10, (4) λ = 300, η = 0.25, p = 0.20,
(5) λ = 350, η = 0.25, p = 0.20. When the differentiation factor λ increases, clients’ models
tend to produce more mispredictions. Hence, the server needs to carefully adjust λ to
retain a practical level of utility while improving the robustness for the differentiated client
models. Comparing the results of different DMD parameters settings, we have two main
observations here:

• First, the DMR of FL client models is strengthened as the differentiation factor λ
increases. We fix η = 0.25 and p = 0.10, then set λ = 500 and λ = 600, respectively.
Similarly, we fix η = 0.25 and p = 0.20, then set λ = 300 and λ = 350, respectively.
We find that for p = 0.10 (resp., p = 0.20), DMD with λ = 600 (resp., λ = 350)
constantly leads to lower ASR and AATR than DMD with λ = 500 (resp., λ = 300),
which validates the positive effect of the sub-federated model differentiation.

• Second, we observe that as the proportion of sub-federated model η increases from
1/K, the overall accuracy of model also increases. However, as long as the sub-
federated model is of enough utility, further increasing η does not help much. We
fix λ = 600 and p = 0.10, then set η = 0.25 and η = 0.35, respectively. We find that
slight change in η does not lead to much differences in ASR and AATR. However,
choosing only one single local model as the sub-federated model (i.e., η = 1/K) leads
to significant deterioration of performance.

From the ablation study results, we conclude that the combination of sub-federated
model based differentiation and adversarial sample based differentiation is effective in
reducing both the ASR and AATR while maintaining the overall accuracy of the benign
client models.

6. Discussion

We aim at ensuring the safety of FL systems when Byzantine failure occurs in real-life
applications. Such failure is very likely to occur in real-world FL systems, and can be life-
threatening when critical inference devices are attacked. For example, in the joint training
of autonomous driving systems, each autonomous vehicle is deployed with an NN model
under an FL setting. If there exists a malicious client in this system, the malicious client
can easily generate adversarial samples to attack all other vehicles, potentially causing
serious accidents. Consequently, all other vehicles in the system using the same model
will collectively produce wrong predictions on these adversarial traffic signs, potentially

Electronics 2023, 12, 842 20 of 22

causing serious accidents. ARMOR is one of the first works to explore defense mechanisms
against such attacks, and can be essential in developing safe and trustworthy FL protocols.

7. Conclusions

In this work, we study the differential robustness of NN models against adversarial
attacks in FL systems in the presence of Byzantine failures. By providing with clients
carefully differentiated NN models, the main objective of the proposed ARMOR framework
is to reduce the risks of corrupted FL clients launching white-box adversarial attacks against
benign clients. By carefully designing the experiments and ablation studies under various
FL settings, we show that techniques proposed in the ARMOR framework are indeed
effective in reducing both the ASR and AATR of adversarial samples generated by the
corrupted clients.

Author Contributions: Conceptualization, Y.Z., J.L., Z.G., X.L. and S.B.; methodology, Y.Z., S.B.
and X.L.; software, Y.Z.; investigation, B.Z.; writing—original draft preparation, Y.Z. and B.Z.;
writing—review and editing, Y.Z., S.B., J.L., Z.G., X.L. and B.Z.; supervision, J.L., Z.G., X.L. and S.B.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Key R&D Program of China under Grants
2021YFB2700200, in part by the National Natural Science Foundation of China under Grant 62202028,
U21B2021, 61972018, and 61932014. This work was supported in part by PowerTensors.AI.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: A proof-of-concept implementation of our technique is available from
https://github.com/ARMOR-FL/ARMOR (accessed on 19 December 2022). The data used to
support the findings of this study are included within the article.

Acknowledgments: Our deepest gratitude goes to the anonymous reviewers for their careful work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bonawitz, K.A.; Eichner, H.; Grieskamp, W.; Huba, D.; Ingerman, A.; Ivanov, V.; Kiddon, C.; Konečný, J.; Mazzocchi, S.;

McMahan, B.; et al. Towards Federated Learning at Scale: System Design. In Proceedings of the Machine Learning and Systems 1
(MLSys 2019), Stanford, CA, USA, 31 March–2 April 2019.

2. Li, T.; Sahu, A.K.; Talwalkar, A.; Smith, V. Federated Learning: Challenges, Methods, and Future Directions. IEEE Signal Process.
Mag. 2020, 37, 50–60. [CrossRef]

3. Long, G.; Tan, Y.; Jiang, J.; Zhang, C. Federated Learning for Open Banking. In Federated Learning—Privacy and Incentive; Lecture
Notes in Computer Science; Springer: Berlin, Germany, 2020; Volume 12500, pp. 240–254.

4. Guo, P.; Wang, P.; Zhou, J.; Jiang, S.; Patel, V.M. Multi-Institutional Collaborations for Improving Deep Learning-Based Magnetic
Resonance Image Reconstruction Using Federated Learning. In Proceedings of the Conference on Computer Vision and Pattern
Recognition (CVPR) 2021, Nashville, TN, USA, 20–25 June 2021; pp. 2423–2432.

5. Du, Z.; Wu, C.; Yoshinaga, T.; Yau, K.A.; Ji, Y.; Li, J. Federated Learning for Vehicular Internet of Things: Recent Advances and
Open Issues. IEEE Open J. Comput. Soc. 2020, 1, 45–61. [CrossRef] [PubMed]

6. Pokhrel, S.R.; Choi, J. Federated Learning With Blockchain for Autonomous Vehicles: Analysis and Design Challenges. IEEE
Trans. Commun. 2020, 68, 4734–4746. [CrossRef]

7. Li, Q.; He, B.; Song, D. Model-Contrastive Federated Learning. In Proceedings of the Conference on Computer Vision and
Pattern Recognition (CVPR) 2021, Nashville, TN, USA, 20–25 June 2021; pp. 10713–10722.

8. Lai, F.; Zhu, X.; Madhyastha, H.V.; Chowdhury, M. Oort: Efficient Federated Learning via Guided Participant Selection.
In Proceedings of the Operating Systems Design and Implementation (OSDI) 2021, Virtual, 14–16 July 2021; pp. 19–35.

9. Zhang, C.; Li, S.; Xia, J.; Wang, W.; Yan, F.; Liu, Y. BatchCrypt: Efficient Homomorphic Encryption for Cross-Silo Federated
Learning. In Proceedings of the USENIX Security 2020, San Diego, CA, USA, 12–14 August 2020; pp. 493–506.

10. Wei, K.; Li, J.; Ding, M.; Ma, C.; Yang, H.H.; Farokhi, F.; Jin, S.; Quek, T.Q.S.; Poor, H.V. Federated Learning With Differential
Privacy: Algorithms and Performance Analysis. IEEE Trans. Inf. Forensics Secur. 2020, 15, 3454–3469. [CrossRef]

11. Shokri, R.; Stronati, M.; Song, C.; Shmatikov, V. Membership Inference Attacks Against Machine Learning Models. In Proceedings
of the SP 2017, San Jose, CA, USA, 22–26 May 2017; pp. 3–18.

https://github.com/ARMOR-FL/ARMOR
http://doi.org/10.1109/MSP.2020.2975749
http://dx.doi.org/10.1109/OJCS.2020.2992630
http://www.ncbi.nlm.nih.gov/pubmed/32386144
http://dx.doi.org/10.1109/TCOMM.2020.2990686
http://dx.doi.org/10.1109/TIFS.2020.2988575

Electronics 2023, 12, 842 21 of 22

12. Nasr, M.; Shokri, R.; Houmansadr, A. Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-box Inference
Attacks against Centralized and Federated Learning. In Proceedings of the SP 2019, San Francisco, CA, USA, 19–23 May 2019;
pp. 739–753.

13. Zhang, Y.; Jia, R.; Pei, H.; Wang, W.; Li, B.; Song, D. The Secret Revealer: Generative Model-Inversion Attacks Against Deep
Neural Networks. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR) 2020, Seattle, WA,
USA, 13–19 June 2020; pp. 250–258.

14. Fang, M.; Cao, X.; Jia, J.; Gong, N.Z. Local Model Poisoning Attacks to Byzantine-Robust Federated Learning. In Proceedings of
the USENIX Security 2020, San Diego, CA, USA, 12–14 August 2020; pp. 1605–1622.

15. Shejwalkar, V.; Houmansadr, A. Manipulating the Byzantine: Optimizing Model Poisoning Attacks and Defenses for Federated
Learning. In Proceedings of the Network and Distributed System Security Symposium (NDSS) 2021, Virtual, 21–25 February 2021.

16. Kido, H.; Yanagisawa, Y.; Satoh, T. Protection of Location Privacy using Dummies for Location-based Services. In Proceedings of
the International Conference on Data Engineering (ICDE) 2005, Tokyo, Japan, 3–4 April 2005; p. 1248.

17. Blanchard, P.; Mhamdi, E.M.E.; Guerraoui, R.; Stainer, J. Machine Learning with Adversaries: Byzantine Tolerant Gradient
Descent. In Proceedings of the NeurIPS 2017, Long Beach, CA, USA, 4–9 December 2017; pp. 119–129.

18. Yin, D.; Chen, Y.; Ramchandran, K.; Bartlett, P.L. Byzantine-Robust Distributed Learning: Towards Optimal Statistical Rates.
In Proceedings of the International Conference on Machine Learning (ICML) 2018, Stockholm, Sweden, 10–15 July 2018;
pp. 5636–5645.

19. Pillutla, K.; Kakade, S.M.; Harchaoui, Z. Robust aggregation for federated learning. IEEE Trans. Signal Process. 2022, 70, 1142–1154.
[CrossRef]

20. Bagdasaryan, E.; Veit, A.; Hua, Y.; Estrin, D.; Shmatikov, V. How To Backdoor Federated Learning. In Proceedings of the AISTATS
2020, Palermo, Italy, 26–28 August 2020; Volume 108, pp. 2938–2948.

21. McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; y Arcas, B.A. Communication-Efficient Learning of Deep Networks from
Decentralized Data. In Proceedings of the AISTATS 2017, Fort Lauderdale, FL, USA, 20–22 April 2017; Volume 54, pp. 1273–1282.

22. Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and Harnessing Adversarial Examples. In Proceedings of the International
Conference on Learning Representations (ICLR) 2015, San Diego, CA, USA, 7–9 May 2015.

23. Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.J.; Fergus, R. Intriguing properties of neural networks.
In Proceedings of the International Conference on Learning Representations (ICLR) 2014, Banff, AB, Canada, 14–16 April 2014.

24. Ru, B.; Cobb, A.D.; Blaas, A.; Gal, Y. BayesOpt Adversarial Attack. In Proceedings of the International Conference on Learning
Representations (ICLR) 2020, Addis Ababa, Ethiopia, 26–30 April 2020.

25. Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; Vladu, A. Towards Deep Learning Models Resistant to Adversarial Attacks.
In Proceedings of the ICLR 2018, Vancouver, BC, Canada, 30 April–3 May 2018.

26. Miyato, T.; Dai, A.M.; Goodfellow, I.J. Adversarial Training Methods for Semi-Supervised Text Classification. In Proceedings of
the International Conference on Learning Representations (ICLR) 2017, Toulon, France, 24–26 April 2017.

27. Shafahi, A.; Najibi, M.; Ghiasi, A.; Xu, Z.; Dickerson, J.P.; Studer, C.; Davis, L.S.; Taylor, G.; Goldstein, T. Adversarial training for
free! In Proceedings of the NeurIPS 2019, Vancouver, CA, Canada, 8–14 December 2019; pp. 3353–3364.

28. Zhang, D.; Zhang, T.; Lu, Y.; Zhu, Z.; Dong, B. You Only Propagate Once: Accelerating Adversarial Training via Maximal
Principle. In Proceedings of the NeurIPS 2019, Vancouver, CA, Canada, 8–14 December 2019; pp. 227–238.

29. Zhu, C.; Cheng, Y.; Gan, Z.; Sun, S.; Goldstein, T.; Liu, J. FreeLB: Enhanced Adversarial Training for Natural Language
Understanding. In Proceedings of the International Conference on Learning Representations (ICLR) 2020, Addis Ababa, Ethiopia,
26–30 April 2020.

30. Jiang, H.; He, P.; Chen, W.; Liu, X.; Gao, J.; Zhao, T. SMART: Robust and Efficient Fine-Tuning for Pre-trained Natural Language
Models through Principled Regularized Optimization. In Proceedings of the ACL 2020, Virtual, 5–10 July 2020; pp. 2177–2190.

31. Qin, C.; Martens, J.; Gowal, S.; Krishnan, D.; Dvijotham, K.; Fawzi, A.; De, S.; Stanforth, R.; Kohli, P. Adversarial Robustness
through Local Linearization. In Proceedings of the NeurIPS 2019, Vancouver, CA, Canada, 8–14 December 2019; pp. 13824–13833.

32. Zizzo, G.; Rawat, A.; Sinn, M.; Buesser, B. FAT: Federated Adversarial Training. arXiv 2020, arXiv:2012.01791.
33. Bhagoji, A.N.; Chakraborty, S.; Mittal, P.; Calo, S.B. Analyzing Federated Learning through an Adversarial Lens. In Proceedings

of the ICML 2019, Long Beach, CA, USA, 9–15 June 2019; Volume 97, pp. 634–643.
34. Li, L.; Xu, W.; Chen, T.; Giannakis, G.B.; Ling, Q. RSA: Byzantine-Robust Stochastic Aggregation Methods for Distributed

Learning from Heterogeneous Datasets. In Proceedings of the AAAI 2019, Honolulu, HI, USA, 27 January–1 February 2019;
pp. 1544–1551.

35. Kerkouche, R.; Ács, G.; Castelluccia, C. Federated Learning in Adversarial Settings. arXiv 2020, arXiv:2010.07808.
36. Fu, S.; Xie, C.; Li, B.; Chen, Q. Attack-Resistant Federated Learning with Residual-based Reweighting. arXiv 2019, arXiv:1912.11464.
37. Chen, Y.; Su, L.; Xu, J. Distributed Statistical Machine Learning in Adversarial Settings: Byzantine Gradient Descent. Proc. ACM

Meas. Anal. Comput. Syst. 2017, 1, 44:1–44:25. [CrossRef]
38. Wang, H.; Sreenivasan, K.; Rajput, S.; Vishwakarma, H.; Agarwal, S.; Sohn, J.; Lee, K.; Papailiopoulos, D.S. Attack of the Tails:

Yes, You Really Can Backdoor Federated Learning. In Proceedings of the NeurIPS 2020, Virtual, 6–12 December 2020.
39. Zhou, M.; Wu, J.; Liu, Y.; Liu, S.; Zhu, C. DaST: Data-Free Substitute Training for Adversarial Attacks. In Proceedings of the

Conference on Computer Vision and Pattern Recognition (CVPR) 2020, Seattle, WA, USA, 13–19 June 2020; pp. 231–240.

http://dx.doi.org/10.1109/TSP.2022.3153135
http://dx.doi.org/10.1145/3154503

Electronics 2023, 12, 842 22 of 22

40. Wang, W.; Yin, B.; Yao, T.; Zhang, L.; Fu, Y.; Ding, S.; Li, J.; Huang, F.; Xue, X. Delving into Data: Effectively Substitute Training
for Black-box Attack. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR) 2021, Nashville, TN,
USA, 20–25 June 2021; pp. 4761–4770.

41. Ma, C.; Chen, L.; Yong, J. Simulating Unknown Target Models for Query-Efficient Black-Box Attacks. In Proceedings of the
Conference on Computer Vision and Pattern Recognition (CVPR) 2021, Nashville, TN, USA, 20–25 June 2021; pp. 11835–11844.

42. Li, X.; Li, J.; Chen, Y.; Ye, S.; He, Y.; Wang, S.; Su, H.; Xue, H. QAIR: Practical Query-Efficient Black-Box Attacks for Image
Retrieval. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR) 2021, Nashville, TN, USA,
20–25 June 2021; pp. 3330–3339.

43. Fawzi, A.; Fawzi, H.; Fawzi, O. Adversarial vulnerability for any classifier. In Proceedings of the NeurIPS 2018, Montreal, QC,
Canada, 3–8 December 2018; pp. 1186–1195.

44. Tramèr, F.; Papernot, N.; Goodfellow, I.J.; Boneh, D.; McDaniel, P.D. The Space of Transferable Adversarial Examples. arXiv 2017,
arXiv:1704.03453.

45. Fawzi, A.; Fawzi, O.; Frossard, P. Analysis of classifiers’ robustness to adversarial perturbations. Mach. Learn. 2018, 107, 481–508.
[CrossRef]

46. LeCun, Y.; Cortes, C.; Burges, C.J.C. The MNIST Database of Handwritten Digits. 1998. Available online: http://yann.lecun.com/
exdb/mnist/ (accessed on 20 January 2022).

47. Krizhevsky, A. Learning Multiple Layers of Features from Tiny Images; University of Toronto: Toronto, ON, Canada, 2009.
48. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the

International Conference on Learning Representations (ICLR) 2015, San Diego, CA, USA, 7–9 May 2015
49. Wong, E.; Rice, L.; Kolter, J.Z. Fast is better than free: Revisiting adversarial training. In Proceedings of the International

Conference on Learning Representations (ICLR) 2020, Addis Ababa, Ethiopia, 26–30 April 2020.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s10994-017-5663-3
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

	Introduction
	Background
	Notation
	Federated Learning
	Adversarial Attack
	Adversarial Training

	Related Works
	Federated Adversarial Training
	Byzantine-Robust Federated Learning
	Research Gaps and Our Goal

	Methodology
	Definition
	Threat Model
	Intuitions and Framework Overview
	Key Algorithms In ARMOR
	Robustness Analysis

	Experiment Results
	Experiment Flow and Setup
	Main Results
	Results on MNIST
	Results on CIFAR-10

	Ablation Study

	Discussion
	Conclusions
	References

