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Abstract: Although the NeRF approach can achieve outstanding view synthesis, it is limited in
practical use because it requires many views (hundreds) for training. With only a few input views,
the Depth-DYN NeRF that we propose can accurately match the shape. First, we adopted the ip_basic
depth-completion method, which can recover the complete depth map from sparse radar depth data.
Then, we further designed the Depth-DYN MLP network architecture, which uses a dense depth prior
to constraining the NeRF optimization and combines the depthloss to supervise the Depth-DYN MLP
network. When compared to the color-only supervised-based NeRF, the Depth-DYN MLP network
can better recover the geometric structure of the model and reduce the appearance of shadows. To
further ensure that the depth depicted along the rays intersecting these 3D points is close to the
measured depth, we dynamically modified the sample space based on the depth of each pixel point.
Depth-DYN NeRF considerably outperforms depth NeRF and other sparse view versions when there
are a few input views. Using only 10–20 photos to render high-quality images on the new view, our
strategy was tested and confirmed on a variety of benchmark datasets. Compared with NeRF, we
obtained better image quality (NeRF average at 22.47 dB vs. our 27.296 dB).

Keywords: NeRF; scene representation; view synthesis; image-based rendering; volume rendering

1. Introduction

Graphically realistic rendering has a wide range of applications, including virtual
reality, autonomous driving, 3D capture, and even 3D visualization; however, there are
significant challenges in the photo-level rendering of the display world from any view-
point. Traditional modeling approaches, while yielding high-quality scene geometry, are
often too costly and time consuming. Therefore, researchers have developed image-based
rendering (IBR), which combines scene-based geometric modeling with image-based view
interpolation [1–3]. Despite the great progress, the method has certain problems, as, for
some environments, not only do realistic and complex scenes have to be portrayed, but
also light and shadow changes and visual angles. To overcome these limitations, the rise
of the neural radiance field (NeRF) technique [4] has enabled closer human interaction
with the scene and has taken implicit modeling to a new level, modeling the scene as a
continuous volumetric field parametrized using a neural network, using MLP to minimize
the loss of all observed views in the real. The new view synthesis of the scene produces
stunning results.

Although NeRF is able to synthesize photo-quality images with a complex geometry
and appearance, NeRF still has many problems: first, the NeRF method requires a huge
number of images, often hundreds of images for a “classroom” size scene. As shown in
Figure 1, NeRF does not work well for scenes with only a few dozens of images, and the
rendering results have large blurring areas. This is because NeRF relies purely on RGB
values to determine the correspondence between images, and only a sufficient number of
images can overcome this blurring generation to achieve high-quality visual effect. In the
case of significantly reduced images, an NeRF technique that relies on color supervision
alone is no longer able to construct fine 3D scenes. Secondly, the surface of the 3D model
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obtained using NeRF with a small number of inputs is rough. Because NeRF does not
intersect rays with the surface of an object at a single point, but rather represents the
probability of a series of points, the rendering process of the model relies on the RGB
values of the image. Therefore, when only a small number of input images are available,
the difference between the rendered image and the training image view is too large to
enable the NeRF method to locate the exact intersection of the camera rays with the scene
geometry and to show a blurred rendering (Figure 2). Thirdly, the NeRF method requires
nearly 200 forward predictions of the MLP depth model for each pixel while producing
raw images. Despite the small size of a single computation, the pixel-by-pixel computation
to complete the rendering of the whole image requires a significant computational cost.
Secondly, the training time required by NeRF for each scene is also slow due to the large
number of sampling points required for each pixel point to determine its spatial location.

Electronics 2023, 12, x FOR PEER REVIEW 2 of 16 
 

 

images can overcome this blurring generation to achieve high-quality visual effect. In the 
case of significantly reduced images, an NeRF technique that relies on color supervision 
alone is no longer able to construct fine 3D scenes. Secondly, the surface of the 3D model 
obtained using NeRF with a small number of inputs is rough. Because NeRF does not 
intersect rays with the surface of an object at a single point, but rather represents the prob-
ability of a series of points, the rendering process of the model relies on the RGB values of 
the image. Therefore, when only a small number of input images are available, the differ-
ence between the rendered image and the training image view is too large to enable the 
NeRF method to locate the exact intersection of the camera rays with the scene geometry 
and to show a blurred rendering (Figure 2). Thirdly, the NeRF method requires nearly 200 
forward predictions of the MLP depth model for each pixel while producing raw images. 
Despite the small size of a single computation, the pixel-by-pixel computation to complete 
the rendering of the whole image requires a significant computational cost. Secondly, the 
training time required by NeRF for each scene is also slow due to the large number of 
sampling points required for each pixel point to determine its spatial location. 

 

  

  
(a) Ground Truth (b) GT (c) NeRF 

Figure 1. Local images of NeRF reconstruction effect on 11 images. 

 

 
Figure 2. Geometric structure constructed by NeRF with a small number of input images (first from 
left) and the visualized depth information (second from left). 

In this paper, we propose the use of a Dynamic Depth Radiation Field (Depth-DYN 
NeRF), a new implicit representation that can be used for fast and high-quality free-view-
point rendering. Instead of only modeling space in terms of point positions and orienta-
tions, Depth-DYN NeRF constrains the implicit function of NeRF by truncating the sym-
bolic distance function. Specifically, we construct the truncated symbolic distance func-
tion based on the depth data of each pixel point and use the multilayer perceptron (MLP) 
to build the 3D model only in the parts with content, gradually learning Depth-DYN NeRF 
from coarsely to subtly, and building voxels that do not contain scene information, so that 
the network focuses on learning the volumetric regions with scene content for implicit 

Prediction Ground Truth 

Camera 

Figure 1. Local images of NeRF reconstruction effect on 11 images.

Electronics 2023, 12, x FOR PEER REVIEW 2 of 16 
 

 

images can overcome this blurring generation to achieve high-quality visual effect. In the 
case of significantly reduced images, an NeRF technique that relies on color supervision 
alone is no longer able to construct fine 3D scenes. Secondly, the surface of the 3D model 
obtained using NeRF with a small number of inputs is rough. Because NeRF does not 
intersect rays with the surface of an object at a single point, but rather represents the prob-
ability of a series of points, the rendering process of the model relies on the RGB values of 
the image. Therefore, when only a small number of input images are available, the differ-
ence between the rendered image and the training image view is too large to enable the 
NeRF method to locate the exact intersection of the camera rays with the scene geometry 
and to show a blurred rendering (Figure 2). Thirdly, the NeRF method requires nearly 200 
forward predictions of the MLP depth model for each pixel while producing raw images. 
Despite the small size of a single computation, the pixel-by-pixel computation to complete 
the rendering of the whole image requires a significant computational cost. Secondly, the 
training time required by NeRF for each scene is also slow due to the large number of 
sampling points required for each pixel point to determine its spatial location. 

 

  

  
(a) Ground Truth (b) GT (c) NeRF 

Figure 1. Local images of NeRF reconstruction effect on 11 images. 

 

 
Figure 2. Geometric structure constructed by NeRF with a small number of input images (first from 
left) and the visualized depth information (second from left). 

In this paper, we propose the use of a Dynamic Depth Radiation Field (Depth-DYN 
NeRF), a new implicit representation that can be used for fast and high-quality free-view-
point rendering. Instead of only modeling space in terms of point positions and orienta-
tions, Depth-DYN NeRF constrains the implicit function of NeRF by truncating the sym-
bolic distance function. Specifically, we construct the truncated symbolic distance func-
tion based on the depth data of each pixel point and use the multilayer perceptron (MLP) 
to build the 3D model only in the parts with content, gradually learning Depth-DYN NeRF 
from coarsely to subtly, and building voxels that do not contain scene information, so that 
the network focuses on learning the volumetric regions with scene content for implicit 

Prediction Ground Truth 

Camera 

Figure 2. Geometric structure constructed by NeRF with a small number of input images (first from
left) and the visualized depth information (second from left).

In this paper, we propose the use of a Dynamic Depth Radiation Field (Depth-DYN
NeRF), a new implicit representation that can be used for fast and high-quality free-
viewpoint rendering. Instead of only modeling space in terms of point positions and
orientations, Depth-DYN NeRF constrains the implicit function of NeRF by truncating
the symbolic distance function. Specifically, we construct the truncated symbolic distance
function based on the depth data of each pixel point and use the multilayer perceptron
(MLP) to build the 3D model only in the parts with content, gradually learning Depth-DYN
NeRF from coarsely to subtly, and building voxels that do not contain scene information, so
that the network focuses on learning the volumetric regions with scene content for implicit
function learning. We determined the sampling range of sampling points based on the
depth data of each pixel point to avoid blank sampling points as much as possible, which
can remove a large number of empty voxels without scene content and greatly accelerate
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the rendering at the time of inference. In the rendering stage, as shown in Figure 3, our
specific approach is used for processing the depth information obtained using a light
detection and ranging (LiDAR) or depth camera through a depth-completion network to
make the depth information more accurate and complete. We constructed a point cloud
model through the depth forward projection of a small number of images and obtained
the depth information of the corresponding pose on the point cloud model and completed
the depth information using a depth-completion algorithm. We evaluated our method on
the dataset constructed using DoNerf [5], which only uses a small number of input images,
and extensive experiments have shown that our method outperforms most of the current
mainstream algorithms with a small number of image inputs. We provide data, videos, and
code of our findings in the supplementary material.
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Figure 3. When there are few input images, the training NeRF may yield incorrect geometric
structures. We use the depth information to add additional supervision to train NeRF so that each ray
is sampled on the surface of the object. At the same time, we use the depth information to construct a
3D point cloud with the image, and, in the rendering stage, we obtain the depth information from the
3D point cloud to assist the rendering of NeRF. Our method is an extension of NeRF, which can be
applied to any such methods.

The main contributions of our Depth-DYN NeRF are summarized as follows:

1. Depth-based Dynamic Sampling: We use additional depth supervision to train Depth-
DYN NeRF. Unlike traditional NeRF, we dynamically control the spatial extent of
each pixel sampled to recover the correct 3D geometry faster;

2. Depth-DYN MLP: We construct the distance constraint function between the sampled
points and the depth information; then, then the distance constraint is position-
encoded and input to the MLP network to guide and optimize it. As far as we know,
SD-NeRF is the first algorithm that incorporates depth prior information in the MLP;

3. Depth Supervision Loss: We construct a depth-supervised loss function and a com-
plete loss function based on the correspondence between color and depth, which
effectively mitigates the appearance of artifacts, further refines the edges of objects,
and shows excellent performance when multiple standard baselines are compared.
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2. Related Work

Neural scene representation for new view synthesis. The purpose of new view syn-
thesis is to generate images observed from a new view based on a set of captured scene
images. In order to obtain the correct synthesis results, the underlying 3D geometry of the
scene must be taken into account, and various scene representations are proposed for this
purpose. We can obtain the new view by densely capturing the images of the observed
scene using optical scene interpolation [6–8]. In the case of a small number of images, on
the one hand, we can represent the scene by using its geometric information, such as texture
meshes [9–12], voxels [13,14], or point clouds [15–18]. On the other hand, this could be
achieved based on image-based rendering [19–23], which mainly uses a mesh model of the
scene that is usually reconstructed using offline structure of motion (SfM) and multiview
stereometric (MVS) methods [24–30].

Neural radiation fields with few views. NeRF-synthesizing images of new views
often requires a large number of images, while NeRF for geometric reconstruction may
suffer from various artifacts such as ‘floaters’, i.e., artifacts caused by defective density
distributions, when there are too few images. Recent research has led to a decrease in
the number of datasets required by NeRF in several ways. MVSNeRF [31] proposed a
generalized deep neural network that can reconstruct radial fields from only three nearby
input views by using fast network inference with plane-scan cost volumes for geometry
aware scene inference and combing its physics-based volume rendered for neural radial
field reconstruction. IBRNet [32] synthesizes a new view synthesis method for complex
scenes by inserting a sparse set of nearby views, using a network architecture of multilayer
perceptrons and ray transformers with radiation and volume densities at successive 5D
locations. PixelNeRF [33] and metaNeRF [34] use data-driven priors recovered from the
training scene fields to complete the missing information. This approach is effective when
given sufficient training scenes and a limited gap between the training and test distributions;
however, this assumption is not flexible enough.

Neural radiation fields with depth. Recently, there have been many algorithms that
expand NeRF by adding depth prior information to NeRF, e.g., Dense Depth Priors for
NeRF [35] uses a depth-complementary network running on an SfM point cloud to estimate
depth in order to constrain NeRF optimization, and thus can produce higher image quality
in scenes with sparse input images. DS-NeRF [36] uses the structure of motion (sfm) to
generate sparse 3D points, and then the errors between the 2D key points and the projected
3D points are reprojected and the model is optimized by combining color and depth loss.
DS-NeRF can train better images with fewer training views. NerfingMVS [37] uses the
depth obtained using SFM reconstruction to train a monocular depth network. After this,
the depth, estimated by the monocular depth network, is used to guide NeRF for learning.
Finally, the quality of the depth map is further enhanced using filters based on the results
of view synthesis. DoNeRF [5] proposes a dual network design to reduce the evaluation
cost which carries out a depth estimation network to provide sampling locations for the
coloring network by learning to solve the classification task. It also introduces a nonlinear
transformation to handle large open scenes, showing that the sampling of the coloring
network should occur in a distorted space to better capture the different frequencies in the
foreground and background.

In our work, we created a new view synthesis technique based on a small number
of samples from an implicit surface. The proposed method calculates the relationship
between each sample point and depth by constructing a distance function between each
ray and depth. The depth is also smoothed to deal with the edge jaggedness phenomenon,
and the depth constraint is applied directly to the MLP network to help NeRF recover
the geometry better. We also used a depth-complementary network for problems such as
voids in the LiDAR depth data. In this way, our new view achieves high image quality and
accurate depth information with a small set of inputs and sampling points. Compared to
some recent algorithms that incorporate a depth prior into NeRF reconstruction, we are
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able to synthesize high-quality and new views in color and depth with a small number of
trained images.

3. Method

Our Depth-DYN NeRF differs from most of the current deep prior networks in that
our Depth-DYN NeRF learns 3D scenes by combining explicit and implicit modeling. As
shown in Figure 4, we propose a new network architecture that replaces the traditional 5D
vector function used by NeRF to represent the scene with a 6D vector function related with
a depth prior, and we approximate this continuous 6D scene display with the MLP network
FΘ and optimize its weights Θ, mapping each inputted 6D coordinate to its corresponding
bulk density and oriented emission colors:

FΘ(X, d, D) = (c, σ) (1)

where X denotes a 3D position (x, y, z), d is the viewing direction (θ, φ), D is the relationship
function between just one point and depth information, c is the output radiation (RGB
color) at X, and σ is the bulk density at X.
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In this paper, as shown in Figure 3, we combine RGB and depth information in the
training phase to complete the training of Depth-DYN NeRF. The network structure of MLP
for Depth-DYN NeRF is shown in Figure 4, where we input the position of 3D points in
space, the direction of rays, and the distance function to obtain the color and voxel density
of the image. In the rendering phase, we synthesize the depth data in the new view and
then combine it with a depth-completion algorithm to complete the depth data. Finally, the
synthesized depth is used to assist the rendering of the Depth-DYN NeRF. At all stages, the
acquisition space of our rays is sampled in range based on depth.

3.1. Depth Completion

As shown in the rendering part of Figure 3, we use the depth-completion method
to complete the depth image of the synthesized new perspective. Since there is a lot
of noise in the LiDAR scanned data, particularly the depth voids in the glass material,
we use the IP_Basic [38] depth-completion technique for depth completion. The depth-
completion problem can be described as follows. Given a picture I ∈ RM×N and depth
data Dsparse ∈ RM×N findˆthat approximates a true function : RM×N ×RM×N → RM×N ,
where

(
I, Dsparse

)
= Ddense. This problem can be formulated as:

min{||̂
(
I, Dsparse

)
−

(
I, Dsparse

)
||2F = 0} (2)

Here, Ddense is the output dense depth map of the same size as I and Dsparse, and the
null is replaced with the depth estimate. We achieve this by processing the operation with
different sized kernels as shown in Figure 5. For a depth image as shown in Figure 6a, the
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first step uses the Diamond kernel to complete the missing information next to the effective
depth. The second step uses the 5 × 5 Full kernel to perform the closure operation for
connecting the nearby depth values. The third step uses a 7 × 7 Full kernel to handle small
to medium-sized voids. The fourth step uses a 31 × 31 Full kernel to handle the remaining
larger voids, keeping the original effective pixels unchanged. The fifth step uses a 5 × 5
Cross kernel to remove the outliers presenting in the expansion process. Finally, a 5 × 5
Gaussian blur is used for smoothing. The result of the complemented depth is obtained, as
shown in Figure 6b.
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3.2. Depth Priors

For the distance function D in Formula (1), the depth information and the distance
between sampling points are input into the MLP network as constraints. As shown in
Figure 7, for any pixel Pi,j∈ R3×3, we use the Level Set [39] method to construct the distance
function Di,j. Di,j = 0 when the sampling point is on the surface of the object, and Di,j
increases gradually between the interval [−0.5,0.5] when the sampling point is from near
to far, which can be expressed as the following equation:

F(z_val) = z_val− depth, z_val ∈ Ω (3)
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where Ω is the sample space sampling, z_val is the distance from the sample point to the
camera origin in each sample space, and depth is the depth of the pixel point.
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3.3. Depth-Guided Sampling

We propose a depth-guided dynamic sampling approach that allows the depth infor-
mation to guide the rays to sample valuable parts. When we train the scene, a ray exists for
each pixel. Finally, the following equation is obtained:

r(t) = ro + trd, t ∈ [tn, tf] (4)

where the ray origin ro is the camera center, rd is the ray direction, and tn and tf are the
near and far planes of the ray.

The rays are sampled along the near and far planes between N. The location of
the NeRF sampling points depends on the size of the sampling space; for large scenes,
expanding the sampling space of the original NeRF may result in many invalid sampling
points; moreover, a reduction in the range of the sampling space may result in distant
samples not being included in the sampling space. Therefore, we propose a method
to control the sampling point interval according to the depth. For each pixel P in the
picture RM×N there exists depth values pi ∈ RM×N. We construct the depth range interval
T = [pi − δ, pi + δ], where δ is the hyperparameter, usually taken as 0.5. The traditional
NeRF depth interval T is a constant, while our interval T is a dynamic variable. We make tn
= min{T}, tf = max{T} and use this to determine the sampling interval for each pixel point.
Finally, we obtain the following equation:

r(t) = ro + trd, t ∈ [pi − δ, pi + δ] (5)

3.4. Network Training

A joint optimization was performed for all parameters of both MLPs. A mean square
error (MSE) color loss was applied for each ray r: Lcolor = [||Ĉ(r)− C(r)||22], where C is the
ground truth color. Finally, the following equation is obtained:

Lcolor = [||Ĉc(r)− C(r)||22] + [||Ĉf(r)− C(r)||22] (6)
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where C(r) is the true RGB color, Ĉc(r) is the RGB color predicted by the coarse network,
and Ĉf(r) is the RGB color predicted by the fine network. Note that, even though the final
rendering comes from Ĉf(r), we still minimize the loss of Ĉf(r) so that the distribution of
weights from the coarse network can be used to distribute samples in the fine network.

We add the depth loss to the loss of color as an additional constraint to the optimization
problem. Here, we use the MSE depth loss:

Ldepth = ||Ẑ(r)− Z(r)||22 (7)

where Ẑ(r) is the depth value predicted by the network and is the true depth value.
The complete loss is as follows:

L = ∑
r∈R
Lcolor(r) + λLdepth(r) (8)

where R is the set of rays for each batch and λ is the hyperparameter used to balance the
supervision of depth and color.

3.5. Volumetric Rendering

As shown in Figure 1, in the rendering stage, we construct a 3D model using forward
projection of the training image based on depth information and point cloud fusion using
an Iterative Closest Point (ICP) algorithm [40]. Then, the depth images are captured from
the 3D model in different camera poses. As shown in Figure 6a, since the depth image has
been captured from a new viewpoint, there is a large amount of empty information on the
depth image, and we use the depth-complementation algorithm in Section 3.1 to perform a
depth reduction operation on the empty depth image. The final restored effect is shown
in Figure 6b. We restore the depth information according to Equation (2) and obtain the
ray sampling space [tn, tf] to calculate the depth and sampling point correspondence and
input to the network in the adopted space according to Equation (3). In the Depth-DYN
NeRF rendering process, to add additional depth, the algorithm can be constructed using
the correct depth around the 3D model’s construction.

In combination, MLP maps a 3D point to its color c and density σ under the constraint
of depth. To obtain an image of the new view, we need to render the color of each pixel
individually. As shown in Figure 1, to render a pixel P, we emit a ray r(t) = ro + trd, t ∈
[tn, tf], distributing the N sampling points between tn, tf: {hi}N

i=1. The color Ĉ of each pixel
point p is obtained using the volume rendering formula along ray r:

Ĉ(r) =
N

∑
i=1

Ti(1− exp(−σiδi))ci, where Ti = exp (−
i−1

∑
j=1

σjδj) (9)

where δi = ti+1 − ti is the distance between neighboring samples. This function calculates
Ĉ(r) from the set of (ci,σi) values is differentiable and reduces to the conventional alpha
value αi = 1− exp(−σiδi).

4. Results

Table 1 shows the results of our evaluation, and Figure 8 shows our qualitative example.
We evaluated our method using the Barbershop [5], San Miguel [5], Classroom [5] datasets.
It is also compared with other methods.
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Table 1. Quantitative comparison of the test sets of the three datasets. We use three metrics: peak
signal-to-noise ratio (PSNR) (↑), structural similarity (SSIM) (↑), and image perceptual similarity
(LPIPS) (↓) to evaluate the rendering quality.

Barbershop San Miguel Classroom

PSNR↑ SSIM↑ LPIPS↓ Depth-
MSE↓ PSNR↑ SSIM↑ LPIPS↓ Depth-

MSE↓ PSNR↑ SSIM↑ LPIPS↓ Depth-
MSE↓

Nerf 22.143 0.769 0.275 0.587 21.641 0.647 0.431 7.798 23.629 0.802 0.2479 0.575
MVSNerf 21.309 0.728 0.283 5.574 23.76 0.757 0.267 3.693 23.253 0.867 0.148 0.395
DoNerf 23.117 0.799 0.222 0.003 22.135 0.69 0.301 0.69 24.216 0.822 0.196 0.004

Ours
(Synthetic depth) 24.687 0.843 0.169 0.0017 23.701 0.758 0.21 0.0016 25.188 0.849 0.161 0.0009

Ours (ground
truth depth) 26.683 0.904 0.111 0.0004 26.148 0.827 0.17 0.001 29.059 0.908 0.096 0.0003

4.1. Experimental Setup

Dataset We trained on three scenes in Barbershop, San Miguel, and Classroom. They
show fine, high-frequency details and large depth ranges; moreover, all datasets are ren-
dered with blender. Each scene is trained with only 11 images; meanwhile, in order to
simulate the missing depth of the LiDAR data, we perform random gouging on the depth
data of the dataset. The depth is then repaired using a depth-completion network. To verify
the superiority of our algorithm, we tested it from 60 new views.

NeRF Optimization In our experiments, we used 8192 rays per batch, with each coarse
volume sampled at Nc = 3 and fine volume sampled at Nf = 16. The Adam optimizer
was kept consistent with the original NeRF, and its learning rate started at 5 × 10−4 and
decayed exponentially to 5 × 10−5 during the optimization process. The other Adam
hyperparameters were kept at the default values β1 = 0.9, β2 = 0.999 and ε = 10−8. The
optimization of a single scene typically requires about 100 k iterations to converge to a
single NVIDIA 3080Ti GPU (about 2 to 3 h).

Evaluation Metrics Besides qualitative observations, to measure the quality of the
images rendered by the network out of the new view, we also calculated the peak signal-to-
noise ratio (PSNR), structural similarity (SSIM) [41], image perceptual similarity (LPIPS) [42],
and mean square error (MSE) of the expected ray termination depth of the NeRF against
the sensor depth to assess the accuracy of the rendered depth.

4.2. Baseline Comparison

We compared our method with NeRF and some recent works such as the sparse
picture input MVSNeRF and DoNeRF with the addition of deep supervision. We tested it
on Barbershop, San Miguel, and Classroom datasets and provided ablation experiments.
The quantitative results (Table 1) show that our method outperforms the baseline criteria
on all metrics.

As shown in Figure 8b, because NeRF does not add depth supervision, it is difficult
to rely on RGB values to determine the corresponding relationship between images in a
small number of images, resulting in a large number of “artifacts”. MVSNeRF is used to
learn a general network and reconstruct the radiation field across scenes from only three
input images. However, due to the limited input and high diversity between different
scenarios and datasets, it is impossible to achieve good results when the test scenario
is too different from the pretraining scenario (example c in Figure 8). DoNeRF, on the
other hand, introduces real depth information and considers only the important samples
around the object surface; moreover, the number of samples required for each view ray
can be greatly reduced. However, its network does not include depth information in the
rendering stage, and the view differences under a small number of images are too large,
resulting in the depth not being close to the true depth under the new view, which makes
the image produce artifacts. Due to our depth supervision, we considered only the samples
around the object and synthesized the depth information of the new view based on the
depth information during the rendering phase, allowing the rays to be rendered around
the samples. As shown in Figure 8, when using Barbershop, Depth-DYN NeRF greatly
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reduces these artifacts compared to the baseline, with more accurate depth output and more
detailed colors. Depth-DYN NeRF also improved the quality of the rendering of the detail
part (Figure 8 San Miguel), where no other method could recover the detail information of
the vase, and where Depth-DYN NeRF was able to clearly recover complex textures.
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4.3. Ablation Study

To verify the effectiveness of the added components, we conducted ablation exper-
iments on the Barbershop, San Miguel, and Classroom scenes. The quantitative results
(Table 2) and the rendering results (Figure 9) show that the best performance was achieved
in the full version of our method in terms of image rendering as well as depth estimation.
We provide full details of the experiments in Appendix A.

Table 2. Ablation studies performed on our model. The table shows a quantitative comparison of
Depth-DYN NeRF without depth loss (w/o DPLOSS), without depth loss and depth MLP (w/o
dploss, Depth-DYN MLP), and without dynamic depth and depth MLP (w/o dysamp, Depth-
DYN MLP).

Barbershop San Miguel Classroom

PSNR↑ SSIM↑ LPIPS↓ Depth-
MSE↓ PSNR↑ SSIM↑ LPIPS↓ Depth-

MSE↓ PSNR↑ SSIM↑ LPIPS↓ Depth-
MSE↓

Depth-DYN NeRF 26.683 0.904 0.111 0.0004 26.148 0.827 0.17 0.001 29.059 0.908 0.096 0.0003
w/o DPLOSS 26.378 0.899 0.115 0.009 25.919 0.83 0.158 0.713 28.188 0.904 0.098 0.033
w/o dploss,

Depth-DYN MLP 24.937 0.869 0.1455 0.028 25.963 0.8198 0.182 0.003 27.48 0.88 0.1287 0.0008

w/o dysamp,
Depth-DYN MLP 20.475 0.694 0.396 0.251 21.656 0.595 0.46 2.021 23.852 0.776 0.281 0.111
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w/o dysamp, Depth-DYN MLP In this experiment, we only added the depthloss
module to the original NeRF and observed a significant improvement in the depth of the
model during rendering but not in the quality of the rendered image.

w/o dploss, Depth-DYN MLP In this experiment, we only used the dynamic sampling
space module to make changes to the way NeRF is sampled; the MLP input and the loss
function are used in the original NeRF method.

w/o dploss, In this experiment, only the Depth-DYN MLP was used as well as the
dynamic sampling space, without adding depth loss. It is observed that the generated
depth images are not particularly accurate in some parts, especially in sharp areas.

Depth-DYN NeRF In this experiment, we used the Depth-DYN MLP; dynamic sam-
pling space and depth loss modules to render high-quality image levels and reconstruct
better results at edges and complex textures.
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4.4. Depth-DYN NeRF with Synthetic Depth

Our validation of the Depth-DYN NeRF rendering of the scene with synthetic depth
(ours (synthetic depth)) (Figure 10) shows an average loss of about 3 dB compared to the
Depth-DYN NeRF (see Table 1). Classroom has the largest loss; for the barbershop, the
difference between using synthetic depth and using real depth is the most minimal. The
texture recovery is also excellent, especially in the near details. For San Miguel (Figure 10),
Depth-DYN NeRF was able to reconstruct the details of the leaves, and the rendering results
show that, although we used synthetic depth for the rendering of the image, Depth-DYN
NeRF (synthetic depth) still produced sharper results than DoNeRF.
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5. Limitations

Although our method is an improvement over the baseline method, there may be vari-
ous problems with depth in real scenes, and accurate depth images may not be recovered
in depth recovery. Therefore, Depth-DYN NeRF may only provide authentic results for
data with fewer depth voids.

Future Work

In this paper, we only focused on static scenarios, and will consider dynamic NeRF
algorithms in the future. By using depth data to constrain and guide the optimization, we
combine spatiotemporal data to build dynamic 3D scenes.

6. Conclusions

We propose a new attempted synthesis method using a depth prior to the neural
radiation field, which uses RGB-D data to learn the neural radiation field and obtain a
better geometric mechanism as well as a faster training time. We can use fewer views to train
the neural radiation field because the deep supervision provides additional supervision
with efficient sampling. The use of a deep prior enables the neural radiation field to learn
more accurate geometric information using limited views. Experiments have shown that
our method outperforms the state-of-the-art methods both quantitatively and qualitatively
by learning accurate geometric mechanisms in 10 to 20 training images.

Supplementary Materials: The following supporting information can be downloaded at: https:
//github.com/joeyw1030/depth-DYN-NeRF, accessed on 10 January 2023.

https://github.com/joeyw1030/depth-DYN-NeRF
https://github.com/joeyw1030/depth-DYN-NeRF
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Appendix A

We will provide more details about the datasets we used. We conducted single-scene
learning experiments on three datasets.
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