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Abstract: Various analog design automation attempts have addressed the shortcomings of the still
largely manual and, thus, inefficient and risky analog design approach. These methods can roughly
be divided into synthesis and procedural generation. An important key aspect has, however, rarely
been considered: usability. While synthesis requires sophisticated constraints, procedural generators
require expert programmers. Both prevent users from adopting the respective method. Thus, we
propose a new approach to automatically create procedural generators in a user-driven way. First,
analog generators, which also create symbols and layouts, are utilized during schematic entry to
encapsulate common analog building blocks. Second, automatic code creation builds a hierarchical
generator for all views with the schematic as input. Third, the approach links the building block
generators with the layout through an object-oriented template library that is accessible through
generator parameters, allowing the user to control the arrangement. No programming is required to
reach this state. We believe that our approach will significantly ease the transition of analog designers
to procedural generation. At the same time, the templates allow for a “bridge” to open frameworks
and synthesis approaches so that the methodologies can be both better spread and combined. This
way, comprehensive frameworks of both synthesis-based and procedural-based analog automation
methods can be built in a user-driven way, and designers are enabled to gain early layout insight and
ease IP reusability.

Keywords: IC design; analog layout; reuse; EDA; design automation; generators; templates; usability;
code generation

1. Introduction

Analog IC design still relies on largely manual design entry and manual design itera-
tions. Despite a variety of automation attempts that have been demonstrated, only a few
have found their way into the broadly accepted industrial design environments. Simu-
lation and schematic-level optimization is mainstream. Procedural generators automate
device-level layouts and layout tools support designers interactively during manual design
entry, e.g., by schematic-driven design or on-line design rule checking. All these tools,
however, do not automate actual design or help with reusing circuitry but rather accelerate
individual design steps. The lack of comprehensive automation, such as in the digital
domain, still sets analog design productivity far behind.

In order to overcome this shortcoming, we propose a new method that enables analog
design engineers to create procedural generators on their own and, thus, ease IP reuse. The
method is based on procedural automation that utilizes generators at hierarchy levels far
above device level. In addition, we overcome the need for programming generator code by
means of automatic code generation. This enables designers to get a flexible generator in
a matter of minutes. This way, parametric layout automation is made available without
the former need to wait for expert generator programmers. We believe that this approach
will significantly lower the entry barrier for utilizing analog generators by diminishing the
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former hurdle of initial generator programming. As a result, analog design engineers are
enabled to leverage themselves and their individual analog designs.

1.1. Context of the Presented Work

Analog IC design can be broken down into many separate design steps that, however,
are closely linked with each other. Much research has been conducted across these levels
that would exceed the scope of this paper. Thus, we first clarify this work’s scope.

Figure 1 shows the simplified analog design flow and depicts this work’s focus on both
schematic-level design entry and layout design. The automation approach is generator-
based and, thus, is to be distinguished from synthesis methods (see below). While syn-
thesis requires a sophisticated and complete set of constraints, generators must initially
be programmed by EDA experts. Both constraints management and dedicated generator
programming are significant entry barriers to the respective automation method. As an
example, complex constraint management becomes adherent to enable synthesis meth-
ods [1–3], while generator development requires significant development time. The latter
was even considered a “paradigm shift” by the Berkeley Analog Generator (BAG) working
group [4].
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Figure 1. Scope of this Work. From the usual design flow, this work focusses on both schematic and
layout design as well as the connection of them in a systematic and reusable way.

We believe that a combined approach of both synthesis methods and procedural
automation will pave the way towards full analog automation—in accordance with [5]. As
a step towards this goal, we address automatic code generation of procedural generators
that automate layouts (plus schematic and symbol views) in a user-driven way, based on
existing designs. In addition, we support various PDKs through abstraction of technology
data [6].

1.2. Our Contribution

We pursue increased flexibility of otherwise structurally relatively static analog layout
generators. Former generators can only be adapted to new requirements by time-consuming
programming. This work combines several recent advances in generator-based layout
automation and implements a user-driven method that allows automatic generator creation
in a matter of seconds. The new method utilizes the following recent advances:

• Generator-based schematic design entry and cellview generation of building blocks
that include the views symbol, schematic, and layout [7],

• Template-based extensions of generators in a matrix style [8],
• Template-based extensions of generators in a “street” style [9],
• Automatic generator code creation with a schematic as the input that allows immediate

generation of non-hierarchical matrix-style layouts [10].
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Based on the previous advances mentioned above, the key contributions of this work
are the following:

• The new method creates generator code from an input schematic and automatically
links layout instances to a variety of templates in order to control them.

• Via a parameter mask, placement patterns, instance rotation, and routing channels can
be defined by the user through adapting (template) parameters.

• The new method creates hierarchical generators, each of which incorporates the
aforementioned templates to ease layout flexibility through hierarchical composition.

As a result, our presented method allows the translation of a hierarchical schematic
into an executable and hierarchical generator, which immediately provides several place
and route options among a set of pre-defined place and route templates.

This way, early layout extraction can be carried out in order to analyze layout behavior
very early in the design flow and accelerate design. Further manual rework of the gener-
ated layouts is fully supported, as the approach creates persistent cells and views in the
design library.

2. State of the Art

This chapter presents a brief overview of the state of the art in the automation of analog
IC design. A distinction is made between optimization-based top-down and procedural
generator-based bottom-up approaches [5] (We adopted the notations top-down and bottom-
up from [5], as this summarizes the methods’ natures in a concise form. However, it should
be noted that these terms address the major nature while either of the methods might still
utilize elements of the respective other approach.). We believe that templates are promising
because they combine both methodologies (Figure 2). The respective advantages and
disadvantages are discussed in the following subchapters.
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Figure 2. Comparison of top-down optimization (left) and bottom-up procedural generation (right).
While optimization-based approaches search a solution that fulfills the given set of constraints and
that improves the performance, procedural approaches execute a pre-defined design strategy in form
of generator source code that is based on expert knowledge. This figure is adapted from both [5,6] to
which we added templates as our proposal to link both methods with each other.

2.1. Optimization

Optimization-based approaches are already available in commercial design environ-
ments for schematic sizing. Major design software vendors such as Cadence® (San Jose,
CA, USA), Synopsys® (Mountain View, CA, USA), and Siemens EDA (Munich, Germany,
former Mentor Graphics®) offer tools that specifically “try” sizing variants of manually
designed circuit topologies and, thus, automatically optimize them. In addition, companies
such as MunEDA (Unterhaching, Germany) [11] and Intento Design (Paris, France) [12]
have specialized in circuit optimization and analysis, respectively. In practice, optimization
methods tend to be applied to smaller building blocks and components (e.g., standard
cells or operational amplifiers), since larger circuits such as converters require too much



Electronics 2023, 12, 1047 4 of 20

computation time when optimized. Approaches to more systematic and multi-disciplinary
design approaches are, therefore, the subject of further research [5,13–15].

In the area of optimization-based layout automation, there is still mostly academic
work. In some cases, these are part of larger frameworks and, thus, also consider parasitic
layout effects during circuit sizing (often called “layout-aware sizing”). Such approaches use
so-called templates (see next subsection) [16–19], explore templates during runtime [20,21],
or even synthesize layouts without the help of templates [3]. In refs. [22,23], SWARM
is presented which is an iterative method of self-organization for layout placement and
wiring based on explicit and implicit specifications. With the recent rapid development of
machine learning (ML), there are also ML-based optimization methods that can provide
better results than previous optimization-based algorithms even at fewer iterations [24].
Pulsic Animate™ (Bristol, UK) [25] is a commercial tool for (partial) automatic layout
synthesis based on a given hierarchical schematic. The typical circuit complexity is mostly
in the spectrum of components, such as operational amplifiers or smaller building blocks.

2.2. Templates

Template-based layout methods are often used in the optimization-based approaches
mentioned above. Templates restrict the solution space of the optimization problem. They
are a special kind of constraint for specifying the floorplan and sometimes the routing of
analog blocks in a knowledge-based way. The underlying method of template description,
its implementation, and solving strategy (e.g., by evolutionary approaches) is the subject
of research [26–30]. As an example, the framework AIDA [13] utilizes templates and
combines many academic works, from optimization algorithms to layout automation used
for various designs. Commercially, templates are used both by Jedat Inc. (Tokyo, Japan)
for the automation of analog component layouts and basic building blocks [31] and by
Synopsys® in their “Visually-Assisted Automation (VAA)” [32].

Across the literature, however, the template methods differ. Therefore, [33] first ex-
plicitly distinguished symbolic and geometrical templates. Symbolic templates are explicit
geometric constraints, whereas geometric templates correspond to a parameterizable proce-
dure (or “procedural generator”). According to the definition of our work, the geometric
templates correspond to procedural generators. In ref. [16], for example, the term “tem-
plate” is used for a complex PCell with a pre-defined (programmed) arrangement. There,
the template is merely the (graphical) representation of the layout arrangement implicitly
programmed by an expert into the procedural generator code. Thus, we would classify it
as a procedural generator that implements a static template.

2.3. Procedural Generators

In contrast to optimization-based approaches, the expert knowledge contained in
procedural generators is not available explicitly (i.e., it is not machine-readable), e.g., in the
form of constraints. The expert knowledge is implicitly “hidden” in the procedural source
code (Figure 2). Procedural generators are, therefore, interpretable and executable, but
the (implicit) decision paths they contain—the expert knowledge—are executed directly
without being interpreted by the machine. The procedural generator, thus, does not
“understand” the intention of the source code. With this implicit way of implementing
generators, it is hardly possible to identify the described structure other than by analyzing
the generator source code with a “keen eye”. If not using a dedicated API such as in
refs. [6,7], there is no possibility to automatically extract abstract information of the layout
arrangement from the procedural source code (e.g., as a return value of a method).

Furthermore, the (many) parameters used are very diverse and allow flexibility only
according to the pre-programmed sequence, e.g., with respect to topology variants, sizing,
or layout specifications. The complexity of the source code required for such flexibility
quickly leads to high development efforts and costs, while such generators are difficult
to maintain. For this reason, several methods were proposed that would diminish this
shortcoming. On the schematic level, PCDS [34] reduces the number of code lines that lead
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to the intended schematic creation results. For optimization, LAYGEN II improves device-
level generation [26]. With the Berkeley Analog Generator (BAG) [4], a first open-source
attempt covering a variety of target PDKs was presented. A second version of the BAG
followed [35], and new layout engines such as MESH [8] for regular array-style layouts or
LAYGO [36] to especially support gridded FinFET layout styles were proposed.

The underlying trend we observe is that the level of abstraction increases through
additional layers of ever more high-level layout description. This way, details are encap-
sulated, and rather the “what” than the “how” is implemented, i.e., we see a transition
from implicit procedural approaches toward more explicit declarative approaches. We
believe that in the long run, this is the pathway to combine procedural generators with
optimization towards comprehensive synthesis methods.

3. Materials and Methods

Some of the underlying materials and methods used are covered by NDAs with
semiconductor manufacturers. This includes details such as layout design rules, detailed
layout information, or device parameters. In addition, the generator tool presented is
proprietary. However, it can be made available upon request, for example, together with
the technology setup available for the GPDK45 from the Cadence® support website [37].

Following, we describe the materials and methods used. For further detail, Figure A1
in Appendix A shows an excerpt of the automatically created generator code.

3.1. Generator Approach
3.1.1. Generator Framework

Details of the generator framework used are covered in ref. [7]. The underlying concept
is that persistent DRC-clean and LVS-clean cells are automatically generated from a single
source generator through parametric and procedural code. Thus, a generator creates at
least schematic, symbol, and layout for any given (building) block.

Key extensions towards (matrix-style) templates have been presented in refs. [8,10], of
which the latter also creates generator code automatically for non-hierarchical matrix-style
blocks. These extensions have been further developed in the presented work and now
support both hierarchical blocks and further template styles.

3.1.2. Building Block Generators

The building block generators used are still implemented in an entirely procedural
fashion. This means they do not yet rely on template-based generator code and are,
thus, based on comprehensive source code developed by expert generator developers.
Our library of building blocks especially contains blocks for (1) transistor arrangements,
(2) capacitor arrangements, and (3) resistor arrangements. Examples of generated transistor
building blocks for both a current mirror and a differential pair are shown in Figure 3.
All generators can be parameterized not only regarding device sizing but also regarding
both topology variants (e.g., differential pair vs. current mirror) and layout arrangement
(e.g., number of rows, placement pattern, routing options, or dummy devices) in a relatively
flexible way. As the generators cover all relevant views (schematic, symbol, and layout),
schematic-level design entry using generators already provides parameterized building
block layouts.

3.2. Generator-Embedded Templates

Our new approach embeds templates into generators, especially at higher hierarchy
levels. In this paper, template stands for the machine-readable and symbolic representation of
a layout, independent of the concrete (computational) representation. A template, thus,
does not exactly replicate the actual layout but specifies the constraints for its design.
So, templates are abstract specifications for layout and, thus, independent of a specific
technology. Figure 4 shows an example of a template represented by both a floorplan and a
slicing tree, which have already been used in “template”-based analog layout synthesis [16].
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Slicing trees model slicing floorplans using binary trees. These trees are graphs that fan out
from the “root” towards the “leaves”, as often used in EDA [38].
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technology (the views were converted to SVG files from original design data, thus, minor variations
can appear). Above, the (a) schematic, (b) symbol, and (c) layout views of a current mirror with two
branches and dummies are shown with a unit transistor sizing of two fingers, a width of 3 µm, and a
length of 900 nm. Below, a differential pair is depicted in (d–f), respectively without dummies and
unit devices with four fingers, a width of 8 µm, and a length of 300 nm, each.
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Castro-Lopez, R. et al. An Integrated Layout-Synthesis Approach for Analog ICs, IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 2008.

Specifically, we propose two major templates, which we believe can cover a majority
of layout arrangements when utilized hierarchically. They represent layout arrangements
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in a matrix style as well as in a street style. While the matrix style represents arrangements
using mathematical matrices, the street style implements an upper instance row and a
lower instance row connected via a central routing bus. The latter is represented by tuples
of instance identifiers as well as net names.

Besides such regular templates, non-regular (more flexible) templates can be defined.
They can be categorized into slicing floor plans and non-slicing floor plans [38–40]. How-
ever, either of them is not considered in the design methodology presented in this paper.
The reason is that by using regular templates, we can (1) implement the templates straight-
forwardly using object-oriented source code without the need of a solver, as in ref. [30],
and (2) we can easily include routing channels represented as placeable pseudo instances
in an object-oriented way that allows flexible adaptation of their size through hierarchi-
cal composition using the composite design pattern. The template styles are depicted
in Figure 5.
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B. Layout-Generatoren für den Analogentwurf in kleinen Technologieknoten; Fortschritt-Berichte
VDI, Reihe 20, Nummer 478; Dissertation, TU Dresden, Dresden: Germany, 2022.

3.3. Generator Code Creation

Designing generators is time-consuming and can, depending on the circuit size, easily
require weeks to months of programming. Thus, we developed automatic creation of
generator code with the schematic and symbol as the input. As output, a generator (i.e., its
source code) is automatically created that parametrically (re-)creates the input views. In
addition, it also creates a layout view. Thereby, the layout creation process is controlled by
the template system which is embedded into the generator code.

3.3.1. The Generator Programming Interface (API)

The generator programming interface implements generators in a common way that
inherits from a generator parent class. Each generator follows the same structure and imple-
ments the following methods (see an excerpt of the generated code for a high-pass filter (HPF)
example in Appendix A which contains the following methods and instance identifiers):

The procedure param_check() is used to define all parameters shown in the user in-
terface. For this purpose, initial instances of objects might also be defined, including
default settings for parameters. Each parameter has constraints attached, including choice
constraints or range constraints.

The checking of parameters in the context of others happens in method param_check().
Here, callbacks are defined that run at any parameter change in order to, e.g., derive
parameter values from each other, (de)activate parameter entry, or raise error messages to
send hints to the user interface so that users can react.

In order to unify the parameters across the views, method prepare() collects view-
overarching information such as instances, nets, or terminals (pins). This way, subsequent
procedures can use the pre-defined information via methods which systematically reduces
the likelihood of LVS issues.
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The actual view definitions of the cell to be generated are provided in methods with the
respective view name. Thus, schematic, symbol, and layout are implemented in individual
methods. They might be deselected by the user in order to exclude them from the generator
run if not required.

Please note that the integration of the templates is implemented via the object instance
self.tpl (see Figure A1 in Appendix A) already defined in the method param_check(). This
allows for user-driven interaction and immediate feedback (e.g., matching patterns or error
messages). Once the parameters are defined and the user runs the generator, the template
responses to the instance details that are available after instance generation. This way, the
template adapts and executes placement and routing of the subblocks.

3.3.2. The Generator Creator Flow

The Generator Creator translates a given hierarchical schematic-level design into a
hierarchical template-based generator which also generates the layout view. The flow with
its major steps is shown in Figure 6. From a user’s perspective, a separate tool is run,
whose default settings are set in such a way that the behavior presented in this paper is
immediately executed. Further options, for example, allow instances to be handled as they
are (i.e., they are not converted into a sub generator).
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Figure 6. Flow chart of the Generator Creator flow. Given a design as the input, the Generator
Creator analyzes and abstracts the given information through the Generator Framework. In this step,
also the PDK-related information is mapped to a generic representation. With the generator code
automatically created, the user can immediately run the generator. The generation procedure also
includes the layout view which is parameterized through the template system.

3.4. Result Quantification Approach

A major challenge in comparing analog EDA approaches is the lack of benchmarks. To
the best of our knowledge, there is no common quantification measure defined that allows
for comparing our method against other methods. Therefore, we combine quantitative
measures, including the number of code lines, generator run time, and the number of
circuit instances with qualitative measures, such as the nature of the method, properties
of the method, and usability aspects. Despite not being optimal, we believe that this is
the best attempt to treat the lack of benchmarks (as well as the heavily NDA-restricted
environment). Future work should elaborate further on the aforementioned limitations.

4. The Method and Results
4.1. The Example Circuit

In order to demonstrate the method, we selected a simple high-pass filter (HPF) as the
input schematic. As the filter behavior depends on the parameters of the passive devices,
this is likely a good example of a recurrent and parametric design task. Other relevant
circuits could be blocks such as LDOs for various loads, different pipeline stages for data
converters, or operational amplifiers.
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The example circuit consists of a simple first-order RC high-pass followed by an
amplifier with resistive feedback. It is implemented with the building block generator
approach mentioned in Section 3.1, resulting in the schematic given in Figure 7 (with a
block diagram given, too). The amplifier in the HPF is also implemented using generators.
As all building block generators create the corresponding layouts (besides schematic and
symbol), the respective building block layouts are already immediately available during
the schematic design entry. At this stage, they are still unconnected when changing to the
layout view (Figure 8). Nevertheless, the generators encapsulate device-level details such
as matching placement patterns, routing layers, wire sizes, and substrate connections.
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graphic which is derived from the actual design view) and the initial, unconnected layout with full 

building block layouts is depicted on the right (manually placed according to the schematic posi-
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according to user inputs regarding placement pattern (within the limits of the template 

selected) and routing parameters (i.e., layers, widths, and spacings). This flow from sche-

matic to new generator is fully automated and does not require any programming. The 

steps of the generator-creator flow are depicted in Figure 9 (which refines Figure 1). In 

order to reach a LVS-clean result, a few generator runs might be required in order to fine-

tune the parameters of both the building block generators and the top-level placement. 

The steps of the whole process are as follows: 

1. First, the schematic entry is completed in a manual design fashion, starting with an 

empty schematic. Generators are used to encapsulate basic building blocks that also 

allow defining details of the building blocks mainly including device sizing. In 

addition, it also includes proper parameterization of the layout generation process 

Figure 7. Topology of the simple high-pass filter (HPF) consisting of an amplifier, resistors, and a
capacitor. The block diagram is depicted on the left and the corresponding schematic diagram (vector
graphic which is derived from the actual design view), that includes generated building blocks for
both amplifier and the passives, is shown on the right.
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Figure 8. Amplifier with the building blocks generated. The schematic is depicted on the left (vector
graphic which is derived from the actual design view) and the initial, unconnected layout with full
building block layouts is depicted on the right (manually placed according to the schematic positions).
All building block layouts are automated by generators based on layout parameters that can be
controlled already during schematic-level design entry.

4.2. The Generator Creation Process

Given the generator-based hierarchical schematic with automated building blocks
described in Section 4.1, the Generator Creator flow is executed. It creates a new top-level
generator based on the schematic input. In addition, this generator embeds the template
method described in Section 3.2. As a result, a new generator is available which not only
parametrically (re-)generates the input schematic but also generates an LVS-clean layout
according to user inputs regarding placement pattern (within the limits of the template
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selected) and routing parameters (i.e., layers, widths, and spacings). This flow from
schematic to new generator is fully automated and does not require any programming.
The steps of the generator-creator flow are depicted in Figure 9 (which refines Figure 1).
In order to reach a LVS-clean result, a few generator runs might be required in order to
fine-tune the parameters of both the building block generators and the top-level placement.
The steps of the whole process are as follows:

1. First, the schematic entry is completed in a manual design fashion, starting with
an empty schematic. Generators are used to encapsulate basic building blocks that
also allow defining details of the building blocks mainly including device sizing. In
addition, it also includes proper parameterization of the layout generation process
such that the shapes of the building blocks, their rotation with respect to instance pins
as well routing options are prepared for block assembly on the level above.

2. Second, the actual code creation step is executed via a user interface that is accessible
in the design environment (here: Cadence® (San Jose, CA, USA), Virtuoso® (San Jose,
CA, USA)). The code creation step automatically runs the following steps:

a. Fetching both schematic and symbol information.
b. Mapping of technology-related information to a generic representation using

technology abstraction [6].
c. Stepwise creation of the generator code sections according to the common

generator structure given in Section 3.3.1. Here, the PDK-agnostic technology
abstraction layer mentioned above is used, and the instances found are assigned
to the template system (see Section 3.2) such that the templates are both acces-
sible from the generator’s user interface as well as used to control the layout
generation routine.

d. Creation of the whole generator file and write-back into a user-accessible gener-
ator library.

3. Thid, in order to create the layout, the automatically created generator can be run
immediately to use it in a similar way as the building block generators before:

a. The new generator inherits the parameters of the sub-generators and, thus,
provides full parametric control across the hierarchy.

b. Each hierarchy level incorporates templates for placement and routing options
in order to flexibly define placement patterns, e.g., the order of wires in the
routing channel.

c. The actual layout, including schematic and symbol, is (re)generated according
to the user’s inputs.
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Figure 9. Depiction of the Generator Creator flow. The basic steps include generator-based schematic
entry, automatic code creation, and automatic layout generation. During these steps, both already
existing procedural building block generators and flexible templates are utilized. Based on the
generated results, iterations might be required in order to adapt (sub) generator parameters.
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4.3. User Interface and Generator Parameterization of the Placement Pattern

When running the automatically created generator, various parameters across the
generator hierarchy can be defined. Besides device-level details such as sizing, placement,
and routing, these can be controlled through the user interface. The basis for this is the
flexibility of the respective template that was selected (here: street).

The relation between parameters, template, and user interface is illustrated in Figure 10.
The hierarchies of both amplifier “I_Amp” and high-pass filter (HPF) (both indicated by
colors) can be edited through the top-level GUI. For example, the lower hierarchy level of
the amplifier can be adjusted regarding the placement pattern by providing another tuple
of lists for both placement rows in the street template. Similarly, the top-level pattern can
be edited while the amplifier generates a hierarchy level below. In addition, various details
of all building blocks can be changed (see Section 3.1.2).
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Figure 10. GUI of the hierarchical template-based generator (left) and the corresponding representa-
tion with illustrated hierarchy (right). Based on the hierarchical parameters for placement method
(placeMethod, here the template called “street”), instance place pattern (placePattern), wire names
(wire_names), and rotation pattern (rotPattern), the abstract template illustrated on the right is fully
represented. Upon generation, the building blocks are generated and the predefined template controls
the layout placement and routing process starting from the lower level generators including the
amplifier towards the top-level generator.

4.4. Layout Variant Generation and Simulation

Using the automatically created generator, we generated different layout variants
of the amplifier and a simple HPF that includes these amplifiers. The HPF placement is
defined according to the abstract arrangement given in Section 4.3. All placement variants
are intended to test both the layout-level flexibility and the hierarchy support of the method.
Additionally, it is to identify the runtime as well as the limitations of both the building
block generators (that do not yet utilize the presented template method but full procedural
programming) and the automated generator.

The amplifier variants implemented are based on two different parameter sets: low
power, “LP”, and higher bandwidth, “Speed”. Layout details of the amplifiers are shown
in Appendix B. There, it can be seen that both the sizing and arrangement patterns of
the building blocks as well as the overall arrangement can be controlled by the generator
in a flexible way (trough adapting the template). While Figure A2a,c show the street
arrangement with two rows (note that in these cases the arrangement is rotated by 90◦,
thus, the rows of the templates appear as columns), Figure A2b,d show each of them with
one row.

Even though this paper does not focus on the particular circuit but on the EDA method,
simulations were run in order to help evaluate the method. The generated amplifier layouts
were simulated post-layout and compared with the schematic level. Table 1 lists these
simulation results and shows the deviations of the layout variants related to the respective
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schematic. However, it is not possible to derive generalized statements from it, as analog
circuit performances largely depend on the context in which they are used.

Table 1. Comparison of schematic-level and post-layout simulations of the amplifier variants.

Variant LP,
Schematic

LP,
Layout 1

LP,
Layout 2

Speed,
Schematic

Speed,
Layout 1

Speed,
Layout 2Measure

DC Gain (dB) 42.15 42.74 42.55 34.6 32.89 32.11
Deviation 1.40% 0.95% −4.94% −7.20%

3dB BW (MHz) 0.770 0.781 0.777 2.20 2.19 2.30
Deviation 1.36% 0.88% −0.45% 4.17%

Phase Margin (◦) 78.56 75.71 74.45 83.4 83.17 83.45
Deviation −3.63% −5.23% −0.28% 0.06%

DC Current (µA) 89.5 92.2 91.5 253 248 259
Deviation 2.93% 2.16% −2.09% 2.29%

Settling, rise (ns) 162 160 152 110 111 112
Deviation −1.54% −6.11% 1.27% 2.27%

Settling, fall (ns) 123 144 152 106 110 110
Deviation 16.88% 23.13% 3.40% 3.96%

Offset (mV) 0.812 0.930 0.753 5.83 19.2 25.9
Deviation 14.57% −7.25% 228.76% 344.29%

In order to further evaluate the hierarchical approach, both generated sizing variants
of the amplifier were applied to the aforementioned HPF example from Section 4.1. Using
the abstract placement pattern from Section 4.3, two layout variants were generated with
the automatically created generator. The resulting layouts are shown in Figure 11. One can
see both the different amplifiers at the upper left of the layouts as well as differences in the
sizing of the capacitance arrays at the bottom, which is intended to get a more rectangular
overall shape.
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Figure 11. Generated layout examples of the HPF in a 22 nm technology based on the placement
pattern given in Section 4.3 (vector graphic exports from the actual layouts, thus slight deviations
might occur). While (a) includes the amplifier variant “LP”, (b) instantiates the amplifier variant
“Speed”. In order to get a rectangular shape, the capacitor arrangement at the bottom was generated
with adapted unit device sizing.
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Both layouts were simulated. The frequency behavior is given in Figure 12, and further
performances are listed and compared in Table 2.
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“Speed”. Each variant was simulated both on schematic level and post-layout. It can be seen that
the speed variant produces less gain but achieves a higher upper corner frequency. After extraction,
about 5.7 dB and about 4.3 dB gain is reduced for variant “LP” and variant “Speed”, respectively.

Table 2. Comparison of schematic-level and post-layout simulations of the HPF variants.

Variant HPF with Amp
LP, Schematic

HPF with Amp
LP, Layout

HPF with Amp
Speed, Schematic

HPF with Amp
Speed, LayoutMeasure

DC Current (µA) 774.7 776.7 928.3 925
Deviation 0.26% −0.36%

Input capacitance (fF) 989 1025 1060 1067
Deviation 3.68% 0.66%

PSRR @ DC (dB) 23.35 20.37 34.31 34.35
Deviation 16.88% 3.40%

PSRR @ worst case (dB) 23.09 20.36 28.28 26.74
Deviation 14.57% 228.76%

4.5. Quantitative and Qualitative Measures of the EDA Method

As mentioned in Section 3.4, comparing analog EDA methods is very limited. To
the best of our knowledge, there are no benchmarks available for analog EDA. Thus,
we evaluate the following aspects of the method: type of the generator, flexibility of
the generator, lines of generator code, time to generator code, and cumulative generator
runtime. The evaluation results are given in Table 3. All investigated runtimes were carried
out on a server with a Xeon E5-2637v3 CPU.

While creating the test circuits, the parametrization of generators allows to both resize
the building blocks and adapt their aspect ratios in a matter of seconds. On the level of the
amplifier, this accounts for about 40 s, and the whole HPF takes about 120 s.

Running and adapting the generators works well when changing the placement
pattern or sizing values. Limitations, however, occur if topology parameters are changed
during the generation process (e.g., number of branches of a current mirror block). The
reason for this is the change of the netlist, which is not yet flexible in the generator after
automatic code creation. Therefore, the user cannot edit the netlist via parameters and, thus,
either has to adapt the generator code or—more user-friendly—has to rerun the Generator
Creator so that an updated generator is available with a new topology and netlist.
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Table 3. Quantitative and qualitative comparison of the generators used.

Generator Type Flexibility
(Selection)

Approx. Code
Lines

Time to
Generator

Typical Runtime
(Xeon E5-2637v3)

MosArray/
CapArray

Procedural;
manually

programmed

Transistor and Capacitor
topologies; matching style

& arrangements;
layout details

5500/2900 Months
(manually)

About
5–10 s

(varies with
arrays size)

ResArray
Procedural;
manually

programmed

Resistor series and parallel
circuits; routing width 1950 Weeks

(manually)
About

15 s

Amplifier

Template-based
procedural;

automatically
created

Hierarchical block
generation incl. sub

generator parameters;
P&R pattern

4800
Seconds

(this work:
automatically)

About
40 s

HPF

Template-based
procedural;

automatically
created

Hierarchical block
generation incl. sub

generator parameters;
P&R pattern

5700
Seconds

(this work:
automatically)

About
120 s

4.6. Comparison with other EDA Methods

Comparing analog EDA methods is challenging, as, to the best of our knowledge,
there are no benchmarks available yet (which would be a valuable contribution). Thus, we
compare our method qualitatively with other existing analog EDA methods in order to get
a picture of its features.

Procedural approach: Our method is a procedural generator-based approach comparable
to the Berkeley Analog Generator (BAG) [4,35] when considering building block generators.
Our method also allows the development of more complex generators [7], but the initial
effort of generator development turned out to be critically large for large designs.

Template approach: Our method also incorporates the template approach in order to
diminish the limitations of pure procedural approaches. Thus, the definition of the arrange-
ment is comparable to the placement definition in AIDA [18] or the Layout Description
Script LDS [28]. However, in contrast to AIDA and LDS, we do not utilize optimization
to find a placement solution but rather heavily constrain the placement by the template.
The template patterns “street” and the matrix style MESH [8] are implemented by the
object-oriented composite design pattern such that all abstract positions can be directly
addressed and instances attached. Depending on the instance sizes, the template elements
are adapted, which aggregate along rows and columns from lower hierarchy levels to
upper levels. Thus, all placements are inherently legalized, and routing is enabled by the
pre-defined and also flexible routing channel. The hierarchical approach effectively forms a
slicing tree.

Optimization: The presented method does not apply optimization. It is rather intended
to be controlled by the user. Optimizers, such as WiCkeD™ from MunEDA (Unterhaching,
Germany) [11], or sizing exploration, such as from Intento Design [12], could, however, be
utilized by the user. Users can setup their individual optimization flows with scripts that
parameterize the generator via the command line (which is another mode besides the GUI
mode).

5. Discussion

The problem class: The presented work addressed the problem of the initial efforts
required to set up analog integrated design automation. From the major analog EDA
directions, namely synthesis and procedural generators, the latter was investigated in order
to reduce the initial programming efforts.
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The solution concept: The presented approach combines several existing methods into
a novel user-driven flow. This differentiates our method from work that solely focusses
on programming schemes or algorithms as support for EDA programmers. We attempt to
solve the problem by using automatic code creation constrained by pre-defined templates.

The scalability: The templates can be selected flexibly via the user interface, which is
automatically generated. In addition, they are implemented in a separate template system.
This way, extensions in functionality do not require changes in the generator but only
centralized updates in the template system. When utilized across a variety of generators,
all (new) template functionalities (e.g., new template styles or algorithms for P&R) are
automatically available across these generators. The code for typical layout design tasks
is, therefore, well reusable, and maintenance is significantly eased by means of proper
separation of data and procedure.

The potential EDA community effect: Through the separation of data and procedures, it is
possible to provide the template interface definitions and related algorithms as open-source
code. If adopted by the community, a (quasi) standard can evolve through a variety of
individual contributions. This way, a library of templates can evolve, and benchmarks
could be defined in a machine-readable way across EDA tools.

The potential in analog IC design: A major limitation of former analog layout generators
is their initial development time. This often leads to the economically driven decision not
to adapt them for productive design projects. To the best of our knowledge, our presented
approach is the first to propose a fully user-driven way of creating hierarchical and flexible
generators to overcome the need for programming generator code (which is sometimes
also realized in a graphical way such as in ref. [42]). This sets the entry barrier for utilizing
procedural generators significantly lower: in an iterative process, design engineers can
design schematics using building block generators, parameterize them, and then run the
Generator Creator to get a hierarchical generator immediately. By parameterizing the
new generator’s layout pattern, rapid layout prototyping is enabled, and early parasitic
extraction will help design engineers taking decisions fast.

The limitation to analog IC design: So far, the approach cannot provide every possible
placement or routing pattern, as it is limited to the capabilities the templates provide. Thus,
specific requests of designers might not be covered yet, and manual edits based on the
generated results will still be necessary. In order to improve the quality of the generated
layout, the library of templates must be extended, ideally using a community effect. We
strongly suggest to establish an analog EDA community for sharing automation attempts
and actual code in order to join efforts on common ground that allows broader re-usability
and adoption.

The next steps: Future research should refine the approach regarding the following
aspects:

• The proposed method works best with schematics that, ideally, include generated
building blocks. This, however, is in contrast with the “flat” schematic level design
approach. Thus, user-driven conversion of flat designs into ones with generated
building blocks instead should be considered.

• A source design might already contain a layout (e.g., when whole IPs are migrated).
Therefore, algorithms should be investigated that translate static input layouts into
abstract template representations. These templates would then guide the hierarchical
layout generator automatically.

• The given set of templates is still limited and should be extended to include further
styles. In order to ease the creation of a template library, an open approach should be
provided, e.g., by providing an open-accessible API description.

• The presented routing scheme follows a straight-forward row-based pattern with a list
of net names as the input. Algorithms that allow automatic and analog-aware routing
are, thus, desirable and, ideally, open-access.
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6. Conclusions and Outlook

This work presents a novel approach to combining procedural generators, flexible
templates, and automatic generator code creation in a hierarchical way. As a prerequisite, a
template-based approach for the explicit and flexible top-down description of generators
was developed. Currently, two basic template styles are available, and further ones will
be the topic of future work. The template approach increases the flexibility of otherwise
relatively structure-static procedural generators, as respective strengths are supplemented
and the weaknesses compensated. While procedural generators create layout details and
also realize entire analog basic blocks automatically, templates allow flexible and abstract
layout description and processing. The new combination of these methods allows both user-
driven description and automation of hierarchical layouts in a fashion that does not require
programming any code. With this method, the otherwise time-consuming programming
of generators can be automated entirely, enabling rapid parasitic extraction early in the
design process.

Our approach does not yet claim to produce best-in-class layouts. The focus, however,
is on rapid generator code creation to provide designers early layout insights by means
of almost instant layout automation. With this, clean layouts and parasitic extraction can
be achieved in a matter of about 10 minutes to a few hours (when generators are used
for schematic entry and both topology and initial sizing are available). In addition, the
post-layout simulations show reasonable performance for the selected examples. Thus, we
believe that our approach will enable designers both to improve decision-making in the
early (schematic-level) design phase and to automate layout design steps.

As the templates are organized independently of the concrete generators, updates in
the template system can be deployed to existing generators. This means that new algorithms
at the level of templates will gradually improve the generated results (e.g., other placement
and routing schemes, algorithms for parameter optimization, or estimation methods; in our
example above, the routing scheme was updated this way). So, abstract and PDK-agnostic
templates should become available to the research community in order to better spread
knowledge in this comparably small and also highly NDA-restricted community and pave
the way for more closely linked EDA research and developments.
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# this is iiplib.imported.hpf 
import iip…   # API 

import iiplib…   # sub-generators 

class Generator(iip.gen.HierBlock): 

    # define parameters, their constraints, and init dependent class members 

    # executed once when creating this generator object 

    def param_spec(self): 

        … 

        # add sub-generators with default instance name and initial parameter values 

        self.generators.add("I_cap", iiplib.base.CapArray, Params(w="1u", l="1u", …)) 

self.generators.add("I_Amp", iiplib.std.OtaDemo1, Params(placeMethod="STREET", nRows=2, …)) 

        … 

        # add constrained parameters 

        #               param name      default value     doc string                 optional constraints 

        self.params.add("placeMethod",  "side-by-side",   "layout template type",    ChoiceConstraint(( 

            "side-by-side", "source", "MESH", "STREET"))) 

        self.params.add("nRows",        2,                "number of template rows", RangeConstraint(1, 2)) 

        self.params.add("placePattern", ((1,2,3,4,5,6),), "pattern of instance ids within template") 

        self.params.add("cut_wires",    False,            "cut the routing channel wires at the last branch") 

        … 

        # add proxy parameters from sub-generators (hierarchical parameter propagation) 

        self.params.add_proxy("I_Amp_nRows", self.generators.I_Amp.params.nRows) 

        … 

    # handle parameter dependencies, executed per parameter change 

    def param_check(self): 

        # configure layout template 

        if self.params.placeMethod.v == "STREET": 

            self.tpl = iip.placeroute.PlaceTemplateStreet(ncols=(3,3), route_opt=…) 

            # assign existing instances, generator objects or placeholders to the template cells 

            # doing this already here enables early area and aspect ratio estimation 

            # even before generating layout data 

            self.tpl.assign_elem(pos=(0,0), elem=self.generators.I_Amp) 

            self.tpl.assign_elem(pos=(1,0), elem=PlaceTemplateElem("I_cap", width=5.0, height=5.0) 

        … 

    # common data for all views, executed once per generator run 

    def prepare(self): 

        # e.g. describe circuit structure/topology 

        # correspondence of schematic and layout instance names 

        #                      id      generator or master   sch inst name  lay inst name  iterated inst spec 

        self.instnamespecs.add("I_cap", self.generators.I_cap, sch="I_cap",  lay="I_cap",  bus=None) 

        … 

        # net definition and port binding (netlist) 

        #                 netname, (instname, instpinname), …            (termname), signal type,  bus spec 

        self.netspecs.add("VDD",   ("I_cap", "VDD"), ("I_Amp", "VDD"), …, ("VDD",),   type="power", bus=None) 

        … 

        # terminal definitions 

        self.termspecs.add("VDD", TermType.In, bus=None) 

        … 

    # schematic view description, executed once per generator run 

    def schematic(self, cv):  # cv is the target schematic cellview 

        # create instances 

        i_cap = self.instnamespecs.I_cap.master.instantiate(cv, pos=Dot(0,0), rot=RotationType.R0, …) 

        … 

        # create wiring, pins, labels 

        pin_vdd = cv.create_pin(self.termspecs.VDD, …) 

        cv.create_wire(points=(pin_vdd, i_cap.find_pin("VDD")), routingType=RoutingType.ho_ve, 

                       net=self.netspecs.VDD, …)  # rather explicit description, more generic are available 

        … 

    # layout view description, executed once per generator run 

    def layout(self, cv):  # cv is the target layout cellview 

        # create instances 

        i_cap = self.instnamespecs.I_cap.master.instantiate(cv, …)  # instance of a generated block 

        master = self.open_cellview("mylib", "mycell", "layout") 

        i_2 = cv.create_instance(master, "I2", parameters=[…])  # instance of an existing (p)cell 

        … 

        # update the template with the real layout instances 

        self.tpl.assign_elem(pos=(0,0), elem=i_cap) 

        self.tpl.assign_elem(pos=(0,1), elem=i_2) 

        … 

        # draw to layout view 

        self.tpl.draw(cv, …) 

        … 

Figure A1. Representative and simplified selection of the generator code that was automatically
created by the method presented in this work. Note that the template self.tpl connects parameter
entries of the user (method param_check()) with layout generation (method layout()).
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Appendix B

Example Layouts Generated by the Amplifier Generator
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Figure A2. Generated layout examples (in a 22 nm technology) of amplifier variants by utilizing the
presented method of template-based automatic generator code creation. Results for sizing “LP” are
shown in (a,b) and results for sizing “Speed” are shown in (c,d). Besides sizing, the generated layouts
are varied regarding placement patterns (street with one row and once with simpler routing vs. two
rows and different arrangements each) and rotation patterns.
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