
Citation: Prautsch, B.; Eichler, U.;

Hatnik, U. Generating the Generator:

A User-Driven and Template-Based

Approach towards Analog Layout

Automation. Electronics 2023, 12, 1047.

https://doi.org/10.3390/electronics

12041047

Academic Editors: Fábio Passos,

Nuno Lourenço and Ricardo Martins

Received: 1 December 2022

Revised: 23 January 2023

Accepted: 25 January 2023

Published: 20 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Generating the Generator: A User-Driven and Template-Based
Approach towards Analog Layout Automation
Benjamin Prautsch * , Uwe Eichler and Uwe Hatnik

Fraunhofer IIS/EAS, Institute for Integrated Circuits, Division Engineering of Adaptive Systems,
01187 Dresden, Germany
* Correspondence: benjamin.prautsch@eas.iis.fraunhofer.de; Tel.: +49-351-45691-280

Abstract: Various analog design automation attempts have addressed the shortcomings of the still
largely manual and, thus, inefficient and risky analog design approach. These methods can roughly
be divided into synthesis and procedural generation. An important key aspect has, however, rarely
been considered: usability. While synthesis requires sophisticated constraints, procedural generators
require expert programmers. Both prevent users from adopting the respective method. Thus, we
propose a new approach to automatically create procedural generators in a user-driven way. First,
analog generators, which also create symbols and layouts, are utilized during schematic entry to
encapsulate common analog building blocks. Second, automatic code creation builds a hierarchical
generator for all views with the schematic as input. Third, the approach links the building block
generators with the layout through an object-oriented template library that is accessible through
generator parameters, allowing the user to control the arrangement. No programming is required to
reach this state. We believe that our approach will significantly ease the transition of analog designers
to procedural generation. At the same time, the templates allow for a “bridge” to open frameworks
and synthesis approaches so that the methodologies can be both better spread and combined. This
way, comprehensive frameworks of both synthesis-based and procedural-based analog automation
methods can be built in a user-driven way, and designers are enabled to gain early layout insight and
ease IP reusability.

Keywords: IC design; analog layout; reuse; EDA; design automation; generators; templates; usability;
code generation

1. Introduction

Analog IC design still relies on largely manual design entry and manual design itera-
tions. Despite a variety of automation attempts that have been demonstrated, only a few
have found their way into the broadly accepted industrial design environments. Simu-
lation and schematic-level optimization is mainstream. Procedural generators automate
device-level layouts and layout tools support designers interactively during manual design
entry, e.g., by schematic-driven design or on-line design rule checking. All these tools,
however, do not automate actual design or help with reusing circuitry but rather accelerate
individual design steps. The lack of comprehensive automation, such as in the digital
domain, still sets analog design productivity far behind.

In order to overcome this shortcoming, we propose a new method that enables analog
design engineers to create procedural generators on their own and, thus, ease IP reuse. The
method is based on procedural automation that utilizes generators at hierarchy levels far
above device level. In addition, we overcome the need for programming generator code by
means of automatic code generation. This enables designers to get a flexible generator in
a matter of minutes. This way, parametric layout automation is made available without
the former need to wait for expert generator programmers. We believe that this approach
will significantly lower the entry barrier for utilizing analog generators by diminishing the

Electronics 2023, 12, 1047. https://doi.org/10.3390/electronics12041047 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12041047
https://doi.org/10.3390/electronics12041047
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-1051-6209
https://doi.org/10.3390/electronics12041047
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12041047?type=check_update&version=1

Electronics 2023, 12, 1047 2 of 20

former hurdle of initial generator programming. As a result, analog design engineers are
enabled to leverage themselves and their individual analog designs.

1.1. Context of the Presented Work

Analog IC design can be broken down into many separate design steps that, however,
are closely linked with each other. Much research has been conducted across these levels
that would exceed the scope of this paper. Thus, we first clarify this work’s scope.

Figure 1 shows the simplified analog design flow and depicts this work’s focus on both
schematic-level design entry and layout design. The automation approach is generator-
based and, thus, is to be distinguished from synthesis methods (see below). While syn-
thesis requires a sophisticated and complete set of constraints, generators must initially
be programmed by EDA experts. Both constraints management and dedicated generator
programming are significant entry barriers to the respective automation method. As an
example, complex constraint management becomes adherent to enable synthesis meth-
ods [1–3], while generator development requires significant development time. The latter
was even considered a “paradigm shift” by the Berkeley Analog Generator (BAG) working
group [4].

Electronics 2023, 12, x FOR PEER REVIEW 2 of 21

approach will significantly lower the entry barrier for utilizing analog generators by di-

minishing the former hurdle of initial generator programming. As a result, analog design

engineers are enabled to leverage themselves and their individual analog designs.

1.1. Context of the Presented Work

Analog IC design can be broken down into many separate design steps that, how-

ever, are closely linked with each other. Much research has been conducted across these

levels that would exceed the scope of this paper. Thus, we first clarify this work’s scope.

Figure 1 shows the simplified analog design flow and depicts this work’s focus on

both schematic-level design entry and layout design. The automation approach is gener-

ator-based and, thus, is to be distinguished from synthesis methods (see below). While

synthesis requires a sophisticated and complete set of constraints, generators must ini-

tially be programmed by EDA experts. Both constraints management and dedicated gen-

erator programming are significant entry barriers to the respective automation method.

As an example, complex constraint management becomes adherent to enable synthesis

methods [1–3], while generator development requires significant development time. The

latter was even considered a “paradigm shift” by the Berkeley Analog Generator (BAG)

working group [4].

Information protection classificationPage 1 12/1/2022 © Fraunhofer IIS/EAS

Architecture Design

Schematic-Level Design

Schematic Simulations

Layout Design

Post-Layout Simulations

Specification

Sign-Off & Tapeout

Scope of this

work

Generator-Based Schematic Design

Automatic Code Creation

Generators

Templates

Automatic Layout Generation

Scope of

this Work

Figure 1. Scope of this Work. From the usual design flow, this work focusses on both schematic and

layout design as well as the connection of them in a systematic and reusable way.

We believe that a combined approach of both synthesis methods and procedural au-

tomation will pave the way towards full analog automation—in accordance with [5]. As

a step towards this goal, we address automatic code generation of procedural generators

that automate layouts (plus schematic and symbol views) in a user-driven way, based on

existing designs. In addition, we support various PDKs through abstraction of technology

data [6].

1.2. Our Contribution

We pursue increased flexibility of otherwise structurally relatively static analog lay-

out generators. Former generators can only be adapted to new requirements by time-con-

suming programming. This work combines several recent advances in generator-based

layout automation and implements a user-driven method that allows automatic generator

creation in a matter of seconds. The new method utilizes the following recent advances:

• Generator-based schematic design entry and cellview generation of building blocks

that include the views symbol, schematic, and layout [7],

• Template-based extensions of generators in a matrix style [8],

• Template-based extensions of generators in a “street” style [9],

Figure 1. Scope of this Work. From the usual design flow, this work focusses on both schematic and
layout design as well as the connection of them in a systematic and reusable way.

We believe that a combined approach of both synthesis methods and procedural
automation will pave the way towards full analog automation—in accordance with [5]. As
a step towards this goal, we address automatic code generation of procedural generators
that automate layouts (plus schematic and symbol views) in a user-driven way, based on
existing designs. In addition, we support various PDKs through abstraction of technology
data [6].

1.2. Our Contribution

We pursue increased flexibility of otherwise structurally relatively static analog layout
generators. Former generators can only be adapted to new requirements by time-consuming
programming. This work combines several recent advances in generator-based layout
automation and implements a user-driven method that allows automatic generator creation
in a matter of seconds. The new method utilizes the following recent advances:

• Generator-based schematic design entry and cellview generation of building blocks
that include the views symbol, schematic, and layout [7],

• Template-based extensions of generators in a matrix style [8],
• Template-based extensions of generators in a “street” style [9],
• Automatic generator code creation with a schematic as the input that allows immediate

generation of non-hierarchical matrix-style layouts [10].

Electronics 2023, 12, 1047 3 of 20

Based on the previous advances mentioned above, the key contributions of this work
are the following:

• The new method creates generator code from an input schematic and automatically
links layout instances to a variety of templates in order to control them.

• Via a parameter mask, placement patterns, instance rotation, and routing channels can
be defined by the user through adapting (template) parameters.

• The new method creates hierarchical generators, each of which incorporates the
aforementioned templates to ease layout flexibility through hierarchical composition.

As a result, our presented method allows the translation of a hierarchical schematic
into an executable and hierarchical generator, which immediately provides several place
and route options among a set of pre-defined place and route templates.

This way, early layout extraction can be carried out in order to analyze layout behavior
very early in the design flow and accelerate design. Further manual rework of the gener-
ated layouts is fully supported, as the approach creates persistent cells and views in the
design library.

2. State of the Art

This chapter presents a brief overview of the state of the art in the automation of analog
IC design. A distinction is made between optimization-based top-down and procedural
generator-based bottom-up approaches [5] (We adopted the notations top-down and bottom-
up from [5], as this summarizes the methods’ natures in a concise form. However, it should
be noted that these terms address the major nature while either of the methods might still
utilize elements of the respective other approach.). We believe that templates are promising
because they combine both methodologies (Figure 2). The respective advantages and
disadvantages are discussed in the following subchapters.

Electronics 2023, 12, x FOR PEER REVIEW 3 of 21

• Automatic generator code creation with a schematic as the input that allows

immediate generation of non-hierarchical matrix-style layouts [10].

Based on the previous advances mentioned above, the key contributions of this work

are the following:

• The new method creates generator code from an input schematic and automatically

links layout instances to a variety of templates in order to control them.

• Via a parameter mask, placement patterns, instance rotation, and routing channels

can be defined by the user through adapting (template) parameters.

• The new method creates hierarchical generators, each of which incorporates the

aforementioned templates to ease layout flexibility through hierarchical composition.

As a result, our presented method allows the translation of a hierarchical schematic

into an executable and hierarchical generator, which immediately provides several place

and route options among a set of pre-defined place and route templates.

This way, early layout extraction can be carried out in order to analyze layout behav-

ior very early in the design flow and accelerate design. Further manual rework of the gen-

erated layouts is fully supported, as the approach creates persistent cells and views in the

design library.

2. State of the Art

This chapter presents a brief overview of the state of the art in the automation of

analog IC design. A distinction is made between optimization-based top-down and proce-

dural generator-based bottom-up approaches [5] (We adopted the notations top-down and

bottom-up from [5], as this summarizes the methods’ natures in a concise form. However,

it should be noted that these terms address the major nature while either of the methods

might still utilize elements of the respective other approach.). We believe that templates

are promising because they combine both methodologies (Figure 2). The respective ad-

vantages and disadvantages are discussed in the following subchapters.

Information protection classificationPage 1

Optimization-based Methods (top-down)

2/14/2023 © Fraunhofer IIS/EAS

Candidate Generation

Evaluation

Optimization Goals

Schematic & Layout

Scope of this

work

Next Step/

Exit Criteria
Candidate

Procedural Generator Methods (bottom-up)

Procedural Process

Design Parameters

Schematic & Layout

Implicit

Source Code

Sub

Processes

Expert

Knowledge

Explicit Constraints

Templates

Figure 2. Comparison of top-down optimization (left) and bottom-up procedural generation (right).

While optimization-based approaches search a solution that fulfills the given set of constraints and

that improves the performance, procedural approaches execute a pre-defined design strategy in

form of generator source code that is based on expert knowledge. This figure is adapted from both

[5,6] to which we added templates as our proposal to link both methods with each other.

2.1. Optimization

Optimization-based approaches are already available in commercial design environ-

ments for schematic sizing. Major design software vendors such as Cadence® (San Jose,

CA, USA), Synopsys® (Mountain View, CA, USA), and Siemens EDA (Munich, Germany,

former Mentor Graphics®) offer tools that specifically “try” sizing variants of manually

designed circuit topologies and, thus, automatically optimize them. In addition, compa-

nies such as MunEDA (Unterhaching, Germany) [11] and Intento Design (Paris, France)

Figure 2. Comparison of top-down optimization (left) and bottom-up procedural generation (right).
While optimization-based approaches search a solution that fulfills the given set of constraints and
that improves the performance, procedural approaches execute a pre-defined design strategy in form
of generator source code that is based on expert knowledge. This figure is adapted from both [5,6] to
which we added templates as our proposal to link both methods with each other.

2.1. Optimization

Optimization-based approaches are already available in commercial design environ-
ments for schematic sizing. Major design software vendors such as Cadence® (San Jose,
CA, USA), Synopsys® (Mountain View, CA, USA), and Siemens EDA (Munich, Germany,
former Mentor Graphics®) offer tools that specifically “try” sizing variants of manually
designed circuit topologies and, thus, automatically optimize them. In addition, companies
such as MunEDA (Unterhaching, Germany) [11] and Intento Design (Paris, France) [12]
have specialized in circuit optimization and analysis, respectively. In practice, optimization
methods tend to be applied to smaller building blocks and components (e.g., standard
cells or operational amplifiers), since larger circuits such as converters require too much

Electronics 2023, 12, 1047 4 of 20

computation time when optimized. Approaches to more systematic and multi-disciplinary
design approaches are, therefore, the subject of further research [5,13–15].

In the area of optimization-based layout automation, there is still mostly academic
work. In some cases, these are part of larger frameworks and, thus, also consider parasitic
layout effects during circuit sizing (often called “layout-aware sizing”). Such approaches use
so-called templates (see next subsection) [16–19], explore templates during runtime [20,21],
or even synthesize layouts without the help of templates [3]. In refs. [22,23], SWARM
is presented which is an iterative method of self-organization for layout placement and
wiring based on explicit and implicit specifications. With the recent rapid development of
machine learning (ML), there are also ML-based optimization methods that can provide
better results than previous optimization-based algorithms even at fewer iterations [24].
Pulsic Animate™ (Bristol, UK) [25] is a commercial tool for (partial) automatic layout
synthesis based on a given hierarchical schematic. The typical circuit complexity is mostly
in the spectrum of components, such as operational amplifiers or smaller building blocks.

2.2. Templates

Template-based layout methods are often used in the optimization-based approaches
mentioned above. Templates restrict the solution space of the optimization problem. They
are a special kind of constraint for specifying the floorplan and sometimes the routing of
analog blocks in a knowledge-based way. The underlying method of template description,
its implementation, and solving strategy (e.g., by evolutionary approaches) is the subject
of research [26–30]. As an example, the framework AIDA [13] utilizes templates and
combines many academic works, from optimization algorithms to layout automation used
for various designs. Commercially, templates are used both by Jedat Inc. (Tokyo, Japan)
for the automation of analog component layouts and basic building blocks [31] and by
Synopsys® in their “Visually-Assisted Automation (VAA)” [32].

Across the literature, however, the template methods differ. Therefore, [33] first ex-
plicitly distinguished symbolic and geometrical templates. Symbolic templates are explicit
geometric constraints, whereas geometric templates correspond to a parameterizable proce-
dure (or “procedural generator”). According to the definition of our work, the geometric
templates correspond to procedural generators. In ref. [16], for example, the term “tem-
plate” is used for a complex PCell with a pre-defined (programmed) arrangement. There,
the template is merely the (graphical) representation of the layout arrangement implicitly
programmed by an expert into the procedural generator code. Thus, we would classify it
as a procedural generator that implements a static template.

2.3. Procedural Generators

In contrast to optimization-based approaches, the expert knowledge contained in
procedural generators is not available explicitly (i.e., it is not machine-readable), e.g., in the
form of constraints. The expert knowledge is implicitly “hidden” in the procedural source
code (Figure 2). Procedural generators are, therefore, interpretable and executable, but
the (implicit) decision paths they contain—the expert knowledge—are executed directly
without being interpreted by the machine. The procedural generator, thus, does not
“understand” the intention of the source code. With this implicit way of implementing
generators, it is hardly possible to identify the described structure other than by analyzing
the generator source code with a “keen eye”. If not using a dedicated API such as in
refs. [6,7], there is no possibility to automatically extract abstract information of the layout
arrangement from the procedural source code (e.g., as a return value of a method).

Furthermore, the (many) parameters used are very diverse and allow flexibility only
according to the pre-programmed sequence, e.g., with respect to topology variants, sizing,
or layout specifications. The complexity of the source code required for such flexibility
quickly leads to high development efforts and costs, while such generators are difficult
to maintain. For this reason, several methods were proposed that would diminish this
shortcoming. On the schematic level, PCDS [34] reduces the number of code lines that lead

Electronics 2023, 12, 1047 5 of 20

to the intended schematic creation results. For optimization, LAYGEN II improves device-
level generation [26]. With the Berkeley Analog Generator (BAG) [4], a first open-source
attempt covering a variety of target PDKs was presented. A second version of the BAG
followed [35], and new layout engines such as MESH [8] for regular array-style layouts or
LAYGO [36] to especially support gridded FinFET layout styles were proposed.

The underlying trend we observe is that the level of abstraction increases through
additional layers of ever more high-level layout description. This way, details are encap-
sulated, and rather the “what” than the “how” is implemented, i.e., we see a transition
from implicit procedural approaches toward more explicit declarative approaches. We
believe that in the long run, this is the pathway to combine procedural generators with
optimization towards comprehensive synthesis methods.

3. Materials and Methods

Some of the underlying materials and methods used are covered by NDAs with
semiconductor manufacturers. This includes details such as layout design rules, detailed
layout information, or device parameters. In addition, the generator tool presented is
proprietary. However, it can be made available upon request, for example, together with
the technology setup available for the GPDK45 from the Cadence® support website [37].

Following, we describe the materials and methods used. For further detail, Figure A1
in Appendix A shows an excerpt of the automatically created generator code.

3.1. Generator Approach
3.1.1. Generator Framework

Details of the generator framework used are covered in ref. [7]. The underlying concept
is that persistent DRC-clean and LVS-clean cells are automatically generated from a single
source generator through parametric and procedural code. Thus, a generator creates at
least schematic, symbol, and layout for any given (building) block.

Key extensions towards (matrix-style) templates have been presented in refs. [8,10], of
which the latter also creates generator code automatically for non-hierarchical matrix-style
blocks. These extensions have been further developed in the presented work and now
support both hierarchical blocks and further template styles.

3.1.2. Building Block Generators

The building block generators used are still implemented in an entirely procedural
fashion. This means they do not yet rely on template-based generator code and are,
thus, based on comprehensive source code developed by expert generator developers.
Our library of building blocks especially contains blocks for (1) transistor arrangements,
(2) capacitor arrangements, and (3) resistor arrangements. Examples of generated transistor
building blocks for both a current mirror and a differential pair are shown in Figure 3.
All generators can be parameterized not only regarding device sizing but also regarding
both topology variants (e.g., differential pair vs. current mirror) and layout arrangement
(e.g., number of rows, placement pattern, routing options, or dummy devices) in a relatively
flexible way. As the generators cover all relevant views (schematic, symbol, and layout),
schematic-level design entry using generators already provides parameterized building
block layouts.

3.2. Generator-Embedded Templates

Our new approach embeds templates into generators, especially at higher hierarchy
levels. In this paper, template stands for the machine-readable and symbolic representation of
a layout, independent of the concrete (computational) representation. A template, thus,
does not exactly replicate the actual layout but specifies the constraints for its design.
So, templates are abstract specifications for layout and, thus, independent of a specific
technology. Figure 4 shows an example of a template represented by both a floorplan and a
slicing tree, which have already been used in “template”-based analog layout synthesis [16].

Electronics 2023, 12, 1047 6 of 20

Slicing trees model slicing floorplans using binary trees. These trees are graphs that fan out
from the “root” towards the “leaves”, as often used in EDA [38].

Electronics 2023, 12, x FOR PEER REVIEW 6 of 21

(a)

(b)

(c)

(d)

(e)

(f)

Figure 3. Examples of views of building blocks generated by procedural generators in a 22 nm tech-

nology (the views were converted to SVG files from original design data, thus, minor variations can

appear). Above, the (a) schematic, (b) symbol, and (c) layout views of a current mirror with two

branches and dummies are shown with a unit transistor sizing of two fingers, a width of 3 µm, and

a length of 900 nm. Below, a differential pair is depicted in (d–f), respectively without dummies and

unit devices with four fingers, a width of 8 µm, and a length of 300 nm, each.

3.2. Generator-Embedded Templates

Our new approach embeds templates into generators, especially at higher hierarchy

levels. In this paper, template stands for the machine-readable and symbolic representation

of a layout, independent of the concrete (computational) representation. A template, thus,

does not exactly replicate the actual layout but specifies the constraints for its design. So,

templates are abstract specifications for layout and, thus, independent of a specific tech-

nology. Figure 4 shows an example of a template represented by both a floorplan and a

slicing tree, which have already been used in “template”-based analog layout synthesis

[16]. Slicing trees model slicing floorplans using binary trees. These trees are graphs that

fan out from the “root” towards the “leaves”, as often used in EDA [38].

Figure 3. Examples of views of building blocks generated by procedural generators in a 22 nm
technology (the views were converted to SVG files from original design data, thus, minor variations
can appear). Above, the (a) schematic, (b) symbol, and (c) layout views of a current mirror with two
branches and dummies are shown with a unit transistor sizing of two fingers, a width of 3 µm, and a
length of 900 nm. Below, a differential pair is depicted in (d–f), respectively without dummies and
unit devices with four fingers, a width of 8 µm, and a length of 300 nm, each.

Electronics 2023, 12, x FOR PEER REVIEW 7 of 21

A

B
C

E F G

D

root

h

h

v

v h

vE

F G
AB

CD

Figure 4. Representation variants of a template example. The right representation shows a floorplan,

while the left one depicts the associated slicing tree. In addition, differently dashed lines indicate

corresponding hierarchy levels and the colors of the horizontal cuts (h) show how both representa-

tions map to each other. The figure is adapted from [16]. © 2008 IEEE. Reprinted, with permission,

from Castro-Lopez, R. et al. An Integrated Layout-Synthesis Approach for Analog ICs, IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems, 2008.

Specifically, we propose two major templates, which we believe can cover a majority

of layout arrangements when utilized hierarchically. They represent layout arrangements

in a matrix style as well as in a street style. While the matrix style represents arrangements

using mathematical matrices, the street style implements an upper instance row and a

lower instance row connected via a central routing bus. The latter is represented by tuples

of instance identifiers as well as net names.

Besides such regular templates, non-regular (more flexible) templates can be defined.

They can be categorized into slicing floor plans and non-slicing floor plans [38–40]. How-

ever, either of them is not considered in the design methodology presented in this paper.

The reason is that by using regular templates, we can (1) implement the templates straight-

forwardly using object-oriented source code without the need of a solver, as in ref. [30],

and (2) we can easily include routing channels represented as placeable pseudo instances

in an object-oriented way that allows flexible adaptation of their size through hierarchical

composition using the composite design pattern. The template styles are depicted in Fig-

ure 5.

Regular Matrix

2,1

1,1 1,2

M,1

1,n

m,n

…

…

…

…

A1 AmA2

Routing

B1 BnB2 …

… 1

2

3

4

5

6

Regular Street Non-regular (slicing)

Figure 5. Comparison of exemplary template styles. The matrix and street templates are very spe-

cific and can, therefore, be addressed by means of indices. Non-regular templates, on the other hand,

can specify almost any arrangement (here: slicing arrangement), but they require a method to re-

solve the abstract placement definition. Reprinted from [41], with permission from VDI Verlag, from

Prautsch, B. Layout-Generatoren für den Analogentwurf in kleinen Technologieknoten; Fortschritt-

Berichte VDI, Reihe 20, Nummer 478; Dissertation, TU Dresden, Dresden: Germany, 2022.

3.3. Generator Code Creation

Designing generators is time-consuming and can, depending on the circuit size, eas-

ily require weeks to months of programming. Thus, we developed automatic creation of

generator code with the schematic and symbol as the input. As output, a generator (i.e.,

its source code) is automatically created that parametrically (re-)creates the input views.

Figure 4. Representation variants of a template example. The right representation shows a floorplan,
while the left one depicts the associated slicing tree. In addition, differently dashed lines indicate
corresponding hierarchy levels and the colors of the horizontal cuts (h) show how both representations
map to each other. The figure is adapted from [16]. © 2008 IEEE. Reprinted, with permission, from
Castro-Lopez, R. et al. An Integrated Layout-Synthesis Approach for Analog ICs, IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 2008.

Specifically, we propose two major templates, which we believe can cover a majority
of layout arrangements when utilized hierarchically. They represent layout arrangements

Electronics 2023, 12, 1047 7 of 20

in a matrix style as well as in a street style. While the matrix style represents arrangements
using mathematical matrices, the street style implements an upper instance row and a
lower instance row connected via a central routing bus. The latter is represented by tuples
of instance identifiers as well as net names.

Besides such regular templates, non-regular (more flexible) templates can be defined.
They can be categorized into slicing floor plans and non-slicing floor plans [38–40]. How-
ever, either of them is not considered in the design methodology presented in this paper.
The reason is that by using regular templates, we can (1) implement the templates straight-
forwardly using object-oriented source code without the need of a solver, as in ref. [30],
and (2) we can easily include routing channels represented as placeable pseudo instances
in an object-oriented way that allows flexible adaptation of their size through hierarchi-
cal composition using the composite design pattern. The template styles are depicted
in Figure 5.

Electronics 2023, 12, x FOR PEER REVIEW 7 of 21

A

B
C

E F G

D

root

h

h

v

v h

vE

F G
AB

CD

Figure 4. Representation variants of a template example. The right representation shows a floorplan,

while the left one depicts the associated slicing tree. In addition, differently dashed lines indicate

corresponding hierarchy levels and the colors of the horizontal cuts (h) show how both representa-

tions map to each other. The figure is adapted from [16]. © 2008 IEEE. Reprinted, with permission,

from Castro-Lopez, R. et al. An Integrated Layout-Synthesis Approach for Analog ICs, IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems, 2008.

Specifically, we propose two major templates, which we believe can cover a majority

of layout arrangements when utilized hierarchically. They represent layout arrangements

in a matrix style as well as in a street style. While the matrix style represents arrangements

using mathematical matrices, the street style implements an upper instance row and a

lower instance row connected via a central routing bus. The latter is represented by tuples

of instance identifiers as well as net names.

Besides such regular templates, non-regular (more flexible) templates can be defined.

They can be categorized into slicing floor plans and non-slicing floor plans [38–40]. How-

ever, either of them is not considered in the design methodology presented in this paper.

The reason is that by using regular templates, we can (1) implement the templates straight-

forwardly using object-oriented source code without the need of a solver, as in ref. [30],

and (2) we can easily include routing channels represented as placeable pseudo instances

in an object-oriented way that allows flexible adaptation of their size through hierarchical

composition using the composite design pattern. The template styles are depicted in Fig-

ure 5.

Regular Matrix

2,1

1,1 1,2

M,1

1,n

m,n

…

…

…
…

A1 AmA2

Routing

B1 BnB2 …

… 1

2

3

4

5

6

Regular Street Non-regular (slicing)

Figure 5. Comparison of exemplary template styles. The matrix and street templates are very spe-

cific and can, therefore, be addressed by means of indices. Non-regular templates, on the other hand,

can specify almost any arrangement (here: slicing arrangement), but they require a method to re-

solve the abstract placement definition. Reprinted from [41], with permission from VDI Verlag, from

Prautsch, B. Layout-Generatoren für den Analogentwurf in kleinen Technologieknoten; Fortschritt-

Berichte VDI, Reihe 20, Nummer 478; Dissertation, TU Dresden, Dresden: Germany, 2022.

3.3. Generator Code Creation

Designing generators is time-consuming and can, depending on the circuit size, eas-

ily require weeks to months of programming. Thus, we developed automatic creation of

generator code with the schematic and symbol as the input. As output, a generator (i.e.,

its source code) is automatically created that parametrically (re-)creates the input views.

Figure 5. Comparison of exemplary template styles. The matrix and street templates are very specific
and can, therefore, be addressed by means of indices. Non-regular templates, on the other hand, can
specify almost any arrangement (here: slicing arrangement), but they require a method to resolve the
abstract placement definition. Reprinted from [41], with permission from VDI Verlag, from Prautsch,
B. Layout-Generatoren für den Analogentwurf in kleinen Technologieknoten; Fortschritt-Berichte
VDI, Reihe 20, Nummer 478; Dissertation, TU Dresden, Dresden: Germany, 2022.

3.3. Generator Code Creation

Designing generators is time-consuming and can, depending on the circuit size, easily
require weeks to months of programming. Thus, we developed automatic creation of
generator code with the schematic and symbol as the input. As output, a generator (i.e., its
source code) is automatically created that parametrically (re-)creates the input views. In
addition, it also creates a layout view. Thereby, the layout creation process is controlled by
the template system which is embedded into the generator code.

3.3.1. The Generator Programming Interface (API)

The generator programming interface implements generators in a common way that
inherits from a generator parent class. Each generator follows the same structure and imple-
ments the following methods (see an excerpt of the generated code for a high-pass filter (HPF)
example in Appendix A which contains the following methods and instance identifiers):

The procedure param_check() is used to define all parameters shown in the user in-
terface. For this purpose, initial instances of objects might also be defined, including
default settings for parameters. Each parameter has constraints attached, including choice
constraints or range constraints.

The checking of parameters in the context of others happens in method param_check().
Here, callbacks are defined that run at any parameter change in order to, e.g., derive
parameter values from each other, (de)activate parameter entry, or raise error messages to
send hints to the user interface so that users can react.

In order to unify the parameters across the views, method prepare() collects view-
overarching information such as instances, nets, or terminals (pins). This way, subsequent
procedures can use the pre-defined information via methods which systematically reduces
the likelihood of LVS issues.

Electronics 2023, 12, 1047 8 of 20

The actual view definitions of the cell to be generated are provided in methods with the
respective view name. Thus, schematic, symbol, and layout are implemented in individual
methods. They might be deselected by the user in order to exclude them from the generator
run if not required.

Please note that the integration of the templates is implemented via the object instance
self.tpl (see Figure A1 in Appendix A) already defined in the method param_check(). This
allows for user-driven interaction and immediate feedback (e.g., matching patterns or error
messages). Once the parameters are defined and the user runs the generator, the template
responses to the instance details that are available after instance generation. This way, the
template adapts and executes placement and routing of the subblocks.

3.3.2. The Generator Creator Flow

The Generator Creator translates a given hierarchical schematic-level design into a
hierarchical template-based generator which also generates the layout view. The flow with
its major steps is shown in Figure 6. From a user’s perspective, a separate tool is run,
whose default settings are set in such a way that the behavior presented in this paper is
immediately executed. Further options, for example, allow instances to be handled as they
are (i.e., they are not converted into a sub generator).

Electronics 2023, 12, x FOR PEER REVIEW 9 of 21

IIP Generator Framework

Layout Symbol

Symbol Schematic

Schematic

Replace basic

structures by

IIP blocks

Generator

Creator

Flexible

Generator

Optional:

manually

adapt code

Generic Tech Interface

Basic

Generators

PDK

Generic DE Interface

Classes for Layout Templates, Design Database Access,

 …

Basic

Generators
Basic

Generators

Layout Symbol SchematicLayout Symbol SchematicLayout Symbol Schematic

Flexible

Generator

User

Parameters

Design Environment (DE)

Original Design Generated Design(s)

Layout

Figure 6. Flow chart of the Generator Creator flow. Given a design as the input, the Generator Cre-

ator analyzes and abstracts the given information through the Generator Framework. In this step,

also the PDK-related information is mapped to a generic representation. With the generator code

automatically created, the user can immediately run the generator. The generation procedure also

includes the layout view which is parameterized through the template system.

3.4. Result Quantification Approach

A major challenge in comparing analog EDA approaches is the lack of benchmarks.

To the best of our knowledge, there is no common quantification measure defined that

allows for comparing our method against other methods. Therefore, we combine quanti-

tative measures, including the number of code lines, generator run time, and the number

of circuit instances with qualitative measures, such as the nature of the method, properties

of the method, and usability aspects. Despite not being optimal, we believe that this is the

best attempt to treat the lack of benchmarks (as well as the heavily NDA-restricted envi-

ronment). Future work should elaborate further on the aforementioned limitations.

4. The Method and Results

4.1. The Example Circuit

In order to demonstrate the method, we selected a simple high-pass filter (HPF) as

the input schematic. As the filter behavior depends on the parameters of the passive de-

vices, this is likely a good example of a recurrent and parametric design task. Other rele-

vant circuits could be blocks such as LDOs for various loads, different pipeline stages for

data converters, or operational amplifiers.

The example circuit consists of a simple first-order RC high-pass followed by an am-

plifier with resistive feedback. It is implemented with the building block generator ap-

proach mentioned in Section 3.1, resulting in the schematic given in Figure 7 (with a block

diagram given, too). The amplifier in the HPF is also implemented using generators. As

all building block generators create the corresponding layouts (besides schematic and

symbol), the respective building block layouts are already immediately available during

the schematic design entry. At this stage, they are still unconnected when changing to the

layout view (Figure 8). Nevertheless, the generators encapsulate device-level details such

as matching placement patterns, routing layers, wire sizes, and substrate connections.

Figure 6. Flow chart of the Generator Creator flow. Given a design as the input, the Generator
Creator analyzes and abstracts the given information through the Generator Framework. In this step,
also the PDK-related information is mapped to a generic representation. With the generator code
automatically created, the user can immediately run the generator. The generation procedure also
includes the layout view which is parameterized through the template system.

3.4. Result Quantification Approach

A major challenge in comparing analog EDA approaches is the lack of benchmarks. To
the best of our knowledge, there is no common quantification measure defined that allows
for comparing our method against other methods. Therefore, we combine quantitative
measures, including the number of code lines, generator run time, and the number of
circuit instances with qualitative measures, such as the nature of the method, properties
of the method, and usability aspects. Despite not being optimal, we believe that this is
the best attempt to treat the lack of benchmarks (as well as the heavily NDA-restricted
environment). Future work should elaborate further on the aforementioned limitations.

4. The Method and Results
4.1. The Example Circuit

In order to demonstrate the method, we selected a simple high-pass filter (HPF) as the
input schematic. As the filter behavior depends on the parameters of the passive devices,
this is likely a good example of a recurrent and parametric design task. Other relevant
circuits could be blocks such as LDOs for various loads, different pipeline stages for data
converters, or operational amplifiers.

Electronics 2023, 12, 1047 9 of 20

The example circuit consists of a simple first-order RC high-pass followed by an
amplifier with resistive feedback. It is implemented with the building block generator
approach mentioned in Section 3.1, resulting in the schematic given in Figure 7 (with a
block diagram given, too). The amplifier in the HPF is also implemented using generators.
As all building block generators create the corresponding layouts (besides schematic and
symbol), the respective building block layouts are already immediately available during
the schematic design entry. At this stage, they are still unconnected when changing to the
layout view (Figure 8). Nevertheless, the generators encapsulate device-level details such
as matching placement patterns, routing layers, wire sizes, and substrate connections.

Electronics 2023, 12, x FOR PEER REVIEW 10 of 21

Information protection classificationPage 1

in

1/5/2023 © Fraunhofer IIS/EAS

+

–
R2

R1

out
C

R

Figure 7. Topology of the simple high-pass filter (HPF) consisting of an amplifier, resistors, and a

capacitor. The block diagram is depicted on the left and the corresponding schematic diagram (vec-

tor graphic which is derived from the actual design view), that includes generated building blocks

for both amplifier and the passives, is shown on the right.

Figure 8. Amplifier with the building blocks generated. The schematic is depicted on the left (vector

graphic which is derived from the actual design view) and the initial, unconnected layout with full

building block layouts is depicted on the right (manually placed according to the schematic posi-

tions). All building block layouts are automated by generators based on layout parameters that can

be controlled already during schematic-level design entry.

4.2. The Generator Creation Process

Given the generator-based hierarchical schematic with automated building blocks

described in Section 4.1, the Generator Creator flow is executed. It creates a new top-level

generator based on the schematic input. In addition, this generator embeds the template

method described in Section 3.2. As a result, a new generator is available which not only

parametrically (re-)generates the input schematic but also generates an LVS-clean layout

according to user inputs regarding placement pattern (within the limits of the template

selected) and routing parameters (i.e., layers, widths, and spacings). This flow from sche-

matic to new generator is fully automated and does not require any programming. The

steps of the generator-creator flow are depicted in Figure 9 (which refines Figure 1). In

order to reach a LVS-clean result, a few generator runs might be required in order to fine-

tune the parameters of both the building block generators and the top-level placement.

The steps of the whole process are as follows:

1. First, the schematic entry is completed in a manual design fashion, starting with an

empty schematic. Generators are used to encapsulate basic building blocks that also

allow defining details of the building blocks mainly including device sizing. In

addition, it also includes proper parameterization of the layout generation process

Figure 7. Topology of the simple high-pass filter (HPF) consisting of an amplifier, resistors, and a
capacitor. The block diagram is depicted on the left and the corresponding schematic diagram (vector
graphic which is derived from the actual design view), that includes generated building blocks for
both amplifier and the passives, is shown on the right.

Electronics 2023, 12, x FOR PEER REVIEW 10 of 21

Information protection classificationPage 1

in

1/5/2023 © Fraunhofer IIS/EAS

+

–
R2

R1

out
C

R

Figure 7. Topology of the simple high-pass filter (HPF) consisting of an amplifier, resistors, and a

capacitor. The block diagram is depicted on the left and the corresponding schematic diagram (vec-

tor graphic which is derived from the actual design view), that includes generated building blocks

for both amplifier and the passives, is shown on the right.

Figure 8. Amplifier with the building blocks generated. The schematic is depicted on the left (vector

graphic which is derived from the actual design view) and the initial, unconnected layout with full

building block layouts is depicted on the right (manually placed according to the schematic posi-

tions). All building block layouts are automated by generators based on layout parameters that can

be controlled already during schematic-level design entry.

4.2. The Generator Creation Process

Given the generator-based hierarchical schematic with automated building blocks

described in Section 4.1, the Generator Creator flow is executed. It creates a new top-level

generator based on the schematic input. In addition, this generator embeds the template

method described in Section 3.2. As a result, a new generator is available which not only

parametrically (re-)generates the input schematic but also generates an LVS-clean layout

according to user inputs regarding placement pattern (within the limits of the template

selected) and routing parameters (i.e., layers, widths, and spacings). This flow from sche-

matic to new generator is fully automated and does not require any programming. The

steps of the generator-creator flow are depicted in Figure 9 (which refines Figure 1). In

order to reach a LVS-clean result, a few generator runs might be required in order to fine-

tune the parameters of both the building block generators and the top-level placement.

The steps of the whole process are as follows:

1. First, the schematic entry is completed in a manual design fashion, starting with an

empty schematic. Generators are used to encapsulate basic building blocks that also

allow defining details of the building blocks mainly including device sizing. In

addition, it also includes proper parameterization of the layout generation process

Figure 8. Amplifier with the building blocks generated. The schematic is depicted on the left (vector
graphic which is derived from the actual design view) and the initial, unconnected layout with full
building block layouts is depicted on the right (manually placed according to the schematic positions).
All building block layouts are automated by generators based on layout parameters that can be
controlled already during schematic-level design entry.

4.2. The Generator Creation Process

Given the generator-based hierarchical schematic with automated building blocks
described in Section 4.1, the Generator Creator flow is executed. It creates a new top-level
generator based on the schematic input. In addition, this generator embeds the template
method described in Section 3.2. As a result, a new generator is available which not only
parametrically (re-)generates the input schematic but also generates an LVS-clean layout
according to user inputs regarding placement pattern (within the limits of the template

Electronics 2023, 12, 1047 10 of 20

selected) and routing parameters (i.e., layers, widths, and spacings). This flow from
schematic to new generator is fully automated and does not require any programming.
The steps of the generator-creator flow are depicted in Figure 9 (which refines Figure 1).
In order to reach a LVS-clean result, a few generator runs might be required in order to
fine-tune the parameters of both the building block generators and the top-level placement.
The steps of the whole process are as follows:

1. First, the schematic entry is completed in a manual design fashion, starting with
an empty schematic. Generators are used to encapsulate basic building blocks that
also allow defining details of the building blocks mainly including device sizing. In
addition, it also includes proper parameterization of the layout generation process
such that the shapes of the building blocks, their rotation with respect to instance pins
as well routing options are prepared for block assembly on the level above.

2. Second, the actual code creation step is executed via a user interface that is accessible
in the design environment (here: Cadence® (San Jose, CA, USA), Virtuoso® (San Jose,
CA, USA)). The code creation step automatically runs the following steps:

a. Fetching both schematic and symbol information.
b. Mapping of technology-related information to a generic representation using

technology abstraction [6].
c. Stepwise creation of the generator code sections according to the common

generator structure given in Section 3.3.1. Here, the PDK-agnostic technology
abstraction layer mentioned above is used, and the instances found are assigned
to the template system (see Section 3.2) such that the templates are both acces-
sible from the generator’s user interface as well as used to control the layout
generation routine.

d. Creation of the whole generator file and write-back into a user-accessible gener-
ator library.

3. Thid, in order to create the layout, the automatically created generator can be run
immediately to use it in a similar way as the building block generators before:

a. The new generator inherits the parameters of the sub-generators and, thus,
provides full parametric control across the hierarchy.

b. Each hierarchy level incorporates templates for placement and routing options
in order to flexibly define placement patterns, e.g., the order of wires in the
routing channel.

c. The actual layout, including schematic and symbol, is (re)generated according
to the user’s inputs.

Electronics 2023, 12, x FOR PEER REVIEW 11 of 21

such that the shapes of the building blocks, their rotation with respect to instance

pins as well routing options are prepared for block assembly on the level above.

2. Second, the actual code creation step is executed via a user interface that is accessible

in the design environment (here: Cadence® (San Jose, CA, USA), Virtuoso® (San Jose,

CA, USA)). The code creation step automatically runs the following steps:

a. Fetching both schematic and symbol information.

b. Mapping of technology-related information to a generic representation using

technology abstraction [6].

c. Stepwise creation of the generator code sections according to the common

generator structure given in Section 3.3.1. Here, the PDK-agnostic technology

abstraction layer mentioned above is used, and the instances found are assigned

to the template system (see Section 3.2) such that the templates are both

accessible from the generator’s user interface as well as used to control the layout

generation routine.

d. Creation of the whole generator file and write-back into a user-accessible

generator library.

3. Third, in order to create the layout, the automatically created generator can be run

immediately to use it in a similar way as the building block generators before:

a. The new generator inherits the parameters of the sub-generators and, thus,

provides full parametric control across the hierarchy.

b. Each hierarchy level incorporates templates for placement and routing options

in order to flexibly define placement patterns, e.g., the order of wires in the

routing channel.

c. The actual layout, including schematic and symbol, is (re)generated according to

the user’s inputs.

Information protection classificationPage 1 1/6/2023 © Fraunhofer IIS/EAS

1) Generator-based Schematic Design

2) Automatic Code Creation

Generators

Templates

3) Automatic Layout Generation

Parameterization

Building Block Layout Generation

Layout Verification & Parasitics

I
t

e
 r

 a
 t

 i
o
 n

 s

G
 e

 n
 e

 r
 a

 t
 o

 r

C
 r

 e
 a

 t
 o

r
 F

 l
 o

 w

Figure 9. Depiction of the Generator Creator flow. The basic steps include generator-based sche-

matic entry, automatic code creation, and automatic layout generation. During these steps, both

already existing procedural building block generators and flexible templates are utilized. Based on

the generated results, iterations might be required in order to adapt (sub) generator parameters.

4.3. User Interface and Generator Parameterization of the Placement Pattern

When running the automatically created generator, various parameters across the

generator hierarchy can be defined. Besides device-level details such as sizing, placement,

and routing, these can be controlled through the user interface. The basis for this is the

flexibility of the respective template that was selected (here: street).

The relation between parameters, template, and user interface is illustrated in Figure

10. The hierarchies of both amplifier “I_Amp” and high-pass filter (HPF) (both indicated

by colors) can be edited through the top-level GUI. For example, the lower hierarchy level

Figure 9. Depiction of the Generator Creator flow. The basic steps include generator-based schematic
entry, automatic code creation, and automatic layout generation. During these steps, both already
existing procedural building block generators and flexible templates are utilized. Based on the
generated results, iterations might be required in order to adapt (sub) generator parameters.

Electronics 2023, 12, 1047 11 of 20

4.3. User Interface and Generator Parameterization of the Placement Pattern

When running the automatically created generator, various parameters across the
generator hierarchy can be defined. Besides device-level details such as sizing, placement,
and routing, these can be controlled through the user interface. The basis for this is the
flexibility of the respective template that was selected (here: street).

The relation between parameters, template, and user interface is illustrated in Figure 10.
The hierarchies of both amplifier “I_Amp” and high-pass filter (HPF) (both indicated by
colors) can be edited through the top-level GUI. For example, the lower hierarchy level of
the amplifier can be adjusted regarding the placement pattern by providing another tuple
of lists for both placement rows in the street template. Similarly, the top-level pattern can
be edited while the amplifier generates a hierarchy level below. In addition, various details
of all building blocks can be changed (see Section 3.1.2).

Electronics 2023, 12, x FOR PEER REVIEW 12 of 21

of the amplifier can be adjusted regarding the placement pattern by providing another

tuple of lists for both placement rows in the street template. Similarly, the top-level pattern

can be edited while the amplifier generates a hierarchy level below. In addition, various

details of all building blocks can be changed (see Section 3.1.2).

• Top Level (HPF):
• Placement pattern (placePattern):

(('I_Amp', 'I_res', 'I_res1', 'I_res2'),
('I_cap',))

• Rotation (rotPattern):
(('R90', 'R270', 'R270', 'R270’),
('R90', 'R0', 'R0', 'R0'))

• Level below (Amplifier):
• Placement pattern (placePattern):

(('XDIFF', 'XBIAS_P', 'XMIRR_P', 'EN_P', 'EN_N'),
('XBIAS_N', 'XCASC_N'))

• Rotation (rotPattern):
(('R0', 'R0', 'R0', 'R0', 'R0'),
('R0', 'R0', 'R0', 'R0', 'R0'))

I_res I_res1

Routing (Level 2)

I_cap

I_res2

X
D

IF
F

X
B

IA
S_

P

R
ou

ti
ng

 (
Le

ve
l 1

)

X
B

IA
S_

N
XC

A
SC

_NX
M

IR
R

_P
EN

_P
EN

_N

Figure 10. GUI of the hierarchical template-based generator (left) and the corresponding represen-

tation with illustrated hierarchy (right). Based on the hierarchical parameters for placement method

(placeMethod, here the template called “street”), instance place pattern (placePattern), wire names

(wire_names), and rotation pattern (rotPattern), the abstract template illustrated on the right is fully

represented. Upon generation, the building blocks are generated and the predefined template con-

trols the layout placement and routing process starting from the lower level generators including

the amplifier towards the top-level generator.

4.4. Layout Variant Generation and Simulation

Using the automatically created generator, we generated different layout variants of

the amplifier and a simple HPF that includes these amplifiers. The HPF placement is de-

fined according to the abstract arrangement given in Section 4.3. All placement variants

are intended to test both the layout-level flexibility and the hierarchy support of the

method. Additionally, it is to identify the runtime as well as the limitations of both the

building block generators (that do not yet utilize the presented template method but full

procedural programming) and the automated generator.

The amplifier variants implemented are based on two different parameter sets: low

power, “LP”, and higher bandwidth, “Speed”. Layout details of the amplifiers are shown

in Appendix B. There, it can be seen that both the sizing and arrangement patterns of the

building blocks as well as the overall arrangement can be controlled by the generator in a

flexible way (trough adapting the template). While Figure A2a,c show the street arrange-

ment with two rows (note that in these cases the arrangement is rotated by 90°, thus, the

rows of the templates appear as columns), Figure A2b,d show each of them with one row.

Even though this paper does not focus on the particular circuit but on the EDA

method, simulations were run in order to help evaluate the method. The generated am-

plifier layouts were simulated post-layout and compared with the schematic level. Table

1 lists these simulation results and shows the deviations of the layout variants related to

the respective schematic. However, it is not possible to derive generalized statements from

it, as analog circuit performances largely depend on the context in which they are used.

Figure 10. GUI of the hierarchical template-based generator (left) and the corresponding representa-
tion with illustrated hierarchy (right). Based on the hierarchical parameters for placement method
(placeMethod, here the template called “street”), instance place pattern (placePattern), wire names
(wire_names), and rotation pattern (rotPattern), the abstract template illustrated on the right is fully
represented. Upon generation, the building blocks are generated and the predefined template controls
the layout placement and routing process starting from the lower level generators including the
amplifier towards the top-level generator.

4.4. Layout Variant Generation and Simulation

Using the automatically created generator, we generated different layout variants
of the amplifier and a simple HPF that includes these amplifiers. The HPF placement is
defined according to the abstract arrangement given in Section 4.3. All placement variants
are intended to test both the layout-level flexibility and the hierarchy support of the method.
Additionally, it is to identify the runtime as well as the limitations of both the building
block generators (that do not yet utilize the presented template method but full procedural
programming) and the automated generator.

The amplifier variants implemented are based on two different parameter sets: low
power, “LP”, and higher bandwidth, “Speed”. Layout details of the amplifiers are shown
in Appendix B. There, it can be seen that both the sizing and arrangement patterns of
the building blocks as well as the overall arrangement can be controlled by the generator
in a flexible way (trough adapting the template). While Figure A2a,c show the street
arrangement with two rows (note that in these cases the arrangement is rotated by 90◦,
thus, the rows of the templates appear as columns), Figure A2b,d show each of them with
one row.

Even though this paper does not focus on the particular circuit but on the EDA method,
simulations were run in order to help evaluate the method. The generated amplifier layouts
were simulated post-layout and compared with the schematic level. Table 1 lists these
simulation results and shows the deviations of the layout variants related to the respective

Electronics 2023, 12, 1047 12 of 20

schematic. However, it is not possible to derive generalized statements from it, as analog
circuit performances largely depend on the context in which they are used.

Table 1. Comparison of schematic-level and post-layout simulations of the amplifier variants.

Variant LP,
Schematic

LP,
Layout 1

LP,
Layout 2

Speed,
Schematic

Speed,
Layout 1

Speed,
Layout 2Measure

DC Gain (dB) 42.15 42.74 42.55 34.6 32.89 32.11
Deviation 1.40% 0.95% −4.94% −7.20%

3dB BW (MHz) 0.770 0.781 0.777 2.20 2.19 2.30
Deviation 1.36% 0.88% −0.45% 4.17%

Phase Margin (◦) 78.56 75.71 74.45 83.4 83.17 83.45
Deviation −3.63% −5.23% −0.28% 0.06%

DC Current (µA) 89.5 92.2 91.5 253 248 259
Deviation 2.93% 2.16% −2.09% 2.29%

Settling, rise (ns) 162 160 152 110 111 112
Deviation −1.54% −6.11% 1.27% 2.27%

Settling, fall (ns) 123 144 152 106 110 110
Deviation 16.88% 23.13% 3.40% 3.96%

Offset (mV) 0.812 0.930 0.753 5.83 19.2 25.9
Deviation 14.57% −7.25% 228.76% 344.29%

In order to further evaluate the hierarchical approach, both generated sizing variants
of the amplifier were applied to the aforementioned HPF example from Section 4.1. Using
the abstract placement pattern from Section 4.3, two layout variants were generated with
the automatically created generator. The resulting layouts are shown in Figure 11. One can
see both the different amplifiers at the upper left of the layouts as well as differences in the
sizing of the capacitance arrays at the bottom, which is intended to get a more rectangular
overall shape.

Electronics 2023, 12, x FOR PEER REVIEW 13 of 21

Table 1. Comparison of schematic-level and post-layout simulations of the amplifier variants.

Variant

Measure

LP,

Schematic

LP,

Layout 1

LP,

Layout 2

Speed,

Schematic

Speed,

Layout 1

Speed,

Layout 2

DC Gain (dB) 42.15 42.74 42.55 34.6 32.89 32.11

Deviation 1.40% 0.95% −4.94% −7.20%

3dB BW (MHz) 0.770 0.781 0.777 2.20 2.19 2.30

Deviation 1.36% 0.88% −0.45% 4.17%

Phase Margin (°) 78.56 75.71 74.45 83.4 83.17 83.45

Deviation −3.63% −5.23% −0.28% 0.06%

DC Current (µA) 89.5 92.2 91.5 253 248 259

Deviation 2.93% 2.16% −2.09% 2.29%

Settling, rise (ns) 162 160 152 110 111 112

Deviation −1.54% −6.11% 1.27% 2.27%

Settling, fall (ns) 123 144 152 106 110 110

Deviation 16.88% 23.13% 3.40% 3.96%

Offset (mV) 0.812 0.930 0.753 5.83 19.2 25.9

Deviation 14.57% −7.25% 228.76% 344.29%

In order to further evaluate the hierarchical approach, both generated sizing variants

of the amplifier were applied to the aforementioned HPF example from Section 4.1. Using

the abstract placement pattern from Section 4.3, two layout variants were generated with

the automatically created generator. The resulting layouts are shown in Figure 11. One

can see both the different amplifiers at the upper left of the layouts as well as differences

in the sizing of the capacitance arrays at the bottom, which is intended to get a more rec-

tangular overall shape.

Both layouts were simulated. The frequency behavior is given in Figure 12, and fur-

ther performances are listed and compared in Table 2.

(a) (b)

Figure 11. Generated layout examples of the HPF in a 22 nm technology based on the placement

pattern given in Section 4.3 (vector graphic exports from the actual layouts, thus slight deviations

might occur). While (a) includes the amplifier variant “LP”, (b) instantiates the amplifier variant

“Speed”. In order to get a rectangular shape, the capacitor arrangement at the bottom was generated

with adapted unit device sizing.

Figure 11. Generated layout examples of the HPF in a 22 nm technology based on the placement
pattern given in Section 4.3 (vector graphic exports from the actual layouts, thus slight deviations
might occur). While (a) includes the amplifier variant “LP”, (b) instantiates the amplifier variant
“Speed”. In order to get a rectangular shape, the capacitor arrangement at the bottom was generated
with adapted unit device sizing.

Electronics 2023, 12, 1047 13 of 20

Both layouts were simulated. The frequency behavior is given in Figure 12, and further
performances are listed and compared in Table 2.

Electronics 2023, 12, x FOR PEER REVIEW 14 of 21

–80

–70

–60

–50

–40

–30

–20

–10

(0)

1E3 1E4 1E5 1E6 1E7 1E8 1E9

G
ai

n
(d

B
)

Frequency (Hz)

Frequency behavior of the HPF variants

LP
Schematic

Speed
Schematic

LP Layout

Speed
Layout

103 104 105 106 107 108 109

Figure 12. Frequency behavior of the HPF variants when using the amplifier variants “LP” and

“Speed”. Each variant was simulated both on schematic level and post-layout. It can be seen that

the speed variant produces less gain but achieves a higher upper corner frequency. After extraction,

about 5.7 dB and about 4.3 dB gain is reduced for variant “LP” and variant “Speed”, respectively.

Table 2. Comparison of schematic-level and post-layout simulations of the HPF variants.

Variant

Measure

HPF with Amp

LP, Schematic

HPF with Amp

LP, Layout

HPF with Amp

Speed, Schematic

HPF with Amp

Speed, Layout

DC Current (µA) 774.7 776.7 928.3 925

Deviation 0.26% −0.36%

Input capacitance (fF) 989 1025 1060 1067

Deviation 3.68% 0.66%

PSRR @ DC (dB) 23.35 20.37 34.31 34.35

Deviation 16.88% 3.40%

PSRR @ worst case (dB) 23.09 20.36 28.28 26.74

Deviation 14.57% 228.76%

4.5. Quantitative and Qualitative Measures of the EDA Method

As mentioned in Section 3.4, comparing analog EDA methods is very limited. To the

best of our knowledge, there are no benchmarks available for analog EDA. Thus, we eval-

uate the following aspects of the method: type of the generator, flexibility of the generator,

lines of generator code, time to generator code, and cumulative generator runtime. The

evaluation results are given in Table 3. All investigated runtimes were carried out on a

server with a Xeon E5-2637v3 CPU.

While creating the test circuits, the parametrization of generators allows to both

resize the building blocks and adapt their aspect ratios in a matter of seconds. On the level

of the amplifier, this accounts for about 40 s, and the whole HPF takes about 120 s.

Running and adapting the generators works well when changing the placement pat-

tern or sizing values. Limitations, however, occur if topology parameters are changed

during the generation process (e.g., number of branches of a current mirror block). The

reason for this is the change of the netlist, which is not yet flexible in the generator after

automatic code creation. Therefore, the user cannot edit the netlist via parameters and,

thus, either has to adapt the generator code or—more user-friendly—has to rerun the Gen-

erator Creator so that an updated generator is available with a new topology and netlist.

Figure 12. Frequency behavior of the HPF variants when using the amplifier variants “LP” and
“Speed”. Each variant was simulated both on schematic level and post-layout. It can be seen that
the speed variant produces less gain but achieves a higher upper corner frequency. After extraction,
about 5.7 dB and about 4.3 dB gain is reduced for variant “LP” and variant “Speed”, respectively.

Table 2. Comparison of schematic-level and post-layout simulations of the HPF variants.

Variant HPF with Amp
LP, Schematic

HPF with Amp
LP, Layout

HPF with Amp
Speed, Schematic

HPF with Amp
Speed, LayoutMeasure

DC Current (µA) 774.7 776.7 928.3 925
Deviation 0.26% −0.36%

Input capacitance (fF) 989 1025 1060 1067
Deviation 3.68% 0.66%

PSRR @ DC (dB) 23.35 20.37 34.31 34.35
Deviation 16.88% 3.40%

PSRR @ worst case (dB) 23.09 20.36 28.28 26.74
Deviation 14.57% 228.76%

4.5. Quantitative and Qualitative Measures of the EDA Method

As mentioned in Section 3.4, comparing analog EDA methods is very limited. To
the best of our knowledge, there are no benchmarks available for analog EDA. Thus,
we evaluate the following aspects of the method: type of the generator, flexibility of
the generator, lines of generator code, time to generator code, and cumulative generator
runtime. The evaluation results are given in Table 3. All investigated runtimes were carried
out on a server with a Xeon E5-2637v3 CPU.

While creating the test circuits, the parametrization of generators allows to both resize
the building blocks and adapt their aspect ratios in a matter of seconds. On the level of the
amplifier, this accounts for about 40 s, and the whole HPF takes about 120 s.

Running and adapting the generators works well when changing the placement
pattern or sizing values. Limitations, however, occur if topology parameters are changed
during the generation process (e.g., number of branches of a current mirror block). The
reason for this is the change of the netlist, which is not yet flexible in the generator after
automatic code creation. Therefore, the user cannot edit the netlist via parameters and, thus,
either has to adapt the generator code or—more user-friendly—has to rerun the Generator
Creator so that an updated generator is available with a new topology and netlist.

Electronics 2023, 12, 1047 14 of 20

Table 3. Quantitative and qualitative comparison of the generators used.

Generator Type Flexibility
(Selection)

Approx. Code
Lines

Time to
Generator

Typical Runtime
(Xeon E5-2637v3)

MosArray/
CapArray

Procedural;
manually

programmed

Transistor and Capacitor
topologies; matching style

& arrangements;
layout details

5500/2900 Months
(manually)

About
5–10 s

(varies with
arrays size)

ResArray
Procedural;
manually

programmed

Resistor series and parallel
circuits; routing width 1950 Weeks

(manually)
About

15 s

Amplifier

Template-based
procedural;

automatically
created

Hierarchical block
generation incl. sub

generator parameters;
P&R pattern

4800
Seconds

(this work:
automatically)

About
40 s

HPF

Template-based
procedural;

automatically
created

Hierarchical block
generation incl. sub

generator parameters;
P&R pattern

5700
Seconds

(this work:
automatically)

About
120 s

4.6. Comparison with other EDA Methods

Comparing analog EDA methods is challenging, as, to the best of our knowledge,
there are no benchmarks available yet (which would be a valuable contribution). Thus, we
compare our method qualitatively with other existing analog EDA methods in order to get
a picture of its features.

Procedural approach: Our method is a procedural generator-based approach comparable
to the Berkeley Analog Generator (BAG) [4,35] when considering building block generators.
Our method also allows the development of more complex generators [7], but the initial
effort of generator development turned out to be critically large for large designs.

Template approach: Our method also incorporates the template approach in order to
diminish the limitations of pure procedural approaches. Thus, the definition of the arrange-
ment is comparable to the placement definition in AIDA [18] or the Layout Description
Script LDS [28]. However, in contrast to AIDA and LDS, we do not utilize optimization
to find a placement solution but rather heavily constrain the placement by the template.
The template patterns “street” and the matrix style MESH [8] are implemented by the
object-oriented composite design pattern such that all abstract positions can be directly
addressed and instances attached. Depending on the instance sizes, the template elements
are adapted, which aggregate along rows and columns from lower hierarchy levels to
upper levels. Thus, all placements are inherently legalized, and routing is enabled by the
pre-defined and also flexible routing channel. The hierarchical approach effectively forms a
slicing tree.

Optimization: The presented method does not apply optimization. It is rather intended
to be controlled by the user. Optimizers, such as WiCkeD™ from MunEDA (Unterhaching,
Germany) [11], or sizing exploration, such as from Intento Design [12], could, however, be
utilized by the user. Users can setup their individual optimization flows with scripts that
parameterize the generator via the command line (which is another mode besides the GUI
mode).

5. Discussion

The problem class: The presented work addressed the problem of the initial efforts
required to set up analog integrated design automation. From the major analog EDA
directions, namely synthesis and procedural generators, the latter was investigated in order
to reduce the initial programming efforts.

Electronics 2023, 12, 1047 15 of 20

The solution concept: The presented approach combines several existing methods into
a novel user-driven flow. This differentiates our method from work that solely focusses
on programming schemes or algorithms as support for EDA programmers. We attempt to
solve the problem by using automatic code creation constrained by pre-defined templates.

The scalability: The templates can be selected flexibly via the user interface, which is
automatically generated. In addition, they are implemented in a separate template system.
This way, extensions in functionality do not require changes in the generator but only
centralized updates in the template system. When utilized across a variety of generators,
all (new) template functionalities (e.g., new template styles or algorithms for P&R) are
automatically available across these generators. The code for typical layout design tasks
is, therefore, well reusable, and maintenance is significantly eased by means of proper
separation of data and procedure.

The potential EDA community effect: Through the separation of data and procedures, it is
possible to provide the template interface definitions and related algorithms as open-source
code. If adopted by the community, a (quasi) standard can evolve through a variety of
individual contributions. This way, a library of templates can evolve, and benchmarks
could be defined in a machine-readable way across EDA tools.

The potential in analog IC design: A major limitation of former analog layout generators
is their initial development time. This often leads to the economically driven decision not
to adapt them for productive design projects. To the best of our knowledge, our presented
approach is the first to propose a fully user-driven way of creating hierarchical and flexible
generators to overcome the need for programming generator code (which is sometimes
also realized in a graphical way such as in ref. [42]). This sets the entry barrier for utilizing
procedural generators significantly lower: in an iterative process, design engineers can
design schematics using building block generators, parameterize them, and then run the
Generator Creator to get a hierarchical generator immediately. By parameterizing the
new generator’s layout pattern, rapid layout prototyping is enabled, and early parasitic
extraction will help design engineers taking decisions fast.

The limitation to analog IC design: So far, the approach cannot provide every possible
placement or routing pattern, as it is limited to the capabilities the templates provide. Thus,
specific requests of designers might not be covered yet, and manual edits based on the
generated results will still be necessary. In order to improve the quality of the generated
layout, the library of templates must be extended, ideally using a community effect. We
strongly suggest to establish an analog EDA community for sharing automation attempts
and actual code in order to join efforts on common ground that allows broader re-usability
and adoption.

The next steps: Future research should refine the approach regarding the following
aspects:

• The proposed method works best with schematics that, ideally, include generated
building blocks. This, however, is in contrast with the “flat” schematic level design
approach. Thus, user-driven conversion of flat designs into ones with generated
building blocks instead should be considered.

• A source design might already contain a layout (e.g., when whole IPs are migrated).
Therefore, algorithms should be investigated that translate static input layouts into
abstract template representations. These templates would then guide the hierarchical
layout generator automatically.

• The given set of templates is still limited and should be extended to include further
styles. In order to ease the creation of a template library, an open approach should be
provided, e.g., by providing an open-accessible API description.

• The presented routing scheme follows a straight-forward row-based pattern with a list
of net names as the input. Algorithms that allow automatic and analog-aware routing
are, thus, desirable and, ideally, open-access.

Electronics 2023, 12, 1047 16 of 20

6. Conclusions and Outlook

This work presents a novel approach to combining procedural generators, flexible
templates, and automatic generator code creation in a hierarchical way. As a prerequisite, a
template-based approach for the explicit and flexible top-down description of generators
was developed. Currently, two basic template styles are available, and further ones will
be the topic of future work. The template approach increases the flexibility of otherwise
relatively structure-static procedural generators, as respective strengths are supplemented
and the weaknesses compensated. While procedural generators create layout details and
also realize entire analog basic blocks automatically, templates allow flexible and abstract
layout description and processing. The new combination of these methods allows both user-
driven description and automation of hierarchical layouts in a fashion that does not require
programming any code. With this method, the otherwise time-consuming programming
of generators can be automated entirely, enabling rapid parasitic extraction early in the
design process.

Our approach does not yet claim to produce best-in-class layouts. The focus, however,
is on rapid generator code creation to provide designers early layout insights by means
of almost instant layout automation. With this, clean layouts and parasitic extraction can
be achieved in a matter of about 10 minutes to a few hours (when generators are used
for schematic entry and both topology and initial sizing are available). In addition, the
post-layout simulations show reasonable performance for the selected examples. Thus, we
believe that our approach will enable designers both to improve decision-making in the
early (schematic-level) design phase and to automate layout design steps.

As the templates are organized independently of the concrete generators, updates in
the template system can be deployed to existing generators. This means that new algorithms
at the level of templates will gradually improve the generated results (e.g., other placement
and routing schemes, algorithms for parameter optimization, or estimation methods; in our
example above, the routing scheme was updated this way). So, abstract and PDK-agnostic
templates should become available to the research community in order to better spread
knowledge in this comparably small and also highly NDA-restricted community and pave
the way for more closely linked EDA research and developments.

Author Contributions: Conceptualization, B.P.; methodology, B.P., U.E., U.H.; software, U.E., B.P.;
validation, U.E., B.P.; formal analysis, B.P.; investigation, B.P., U.E.; data curation, U.E., B.P.; writing—
original draft preparation, B.P.; writing—review and editing, U.H., U.E., B.P.; visualization, B.P., U.E.;
supervision, B.P.; project administration, B.P.; funding acquisition, B.P. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the German Federal Ministry of Education and Research
(BMBF) within the frame of the HoLoDEC project, grant number 16ME0700. The article processing
charge (APC) was funded by the Fraunhofer-Gesellschaft.

Data Availability Statement: Not applicable. In general, IC design is both very NDA-restricted and
based on special closed-source design tools. Current activities towards open access IC design and
EDA are, however, evolving and will be considered in future.

Acknowledgments: We would like to thank all our colleagues that contributed to the development
of the former Generator Creator version which we extended such that it now supports templates.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Electronics 2023, 12, 1047 17 of 20

Appendix A

Simplified Selection of the Automatically Created Code of the HPF Generator

Electronics 2023, 12, x FOR PEER REVIEW 18 of 21

Appendix A

Simplified Selection of the Automatically Created Code of the HPF Generator

Figure A1. Representative and simplified selection of the generator code that was automatically

created by the method presented in this work. Note that the template self.tpl connects parameter

entries of the user (method param_check()) with layout generation (method layout()).

this is iiplib.imported.hpf
import iip… # API

import iiplib… # sub-generators

class Generator(iip.gen.HierBlock):

 # define parameters, their constraints, and init dependent class members

 # executed once when creating this generator object

 def param_spec(self):

 …

 # add sub-generators with default instance name and initial parameter values

 self.generators.add("I_cap", iiplib.base.CapArray, Params(w="1u", l="1u", …))

self.generators.add("I_Amp", iiplib.std.OtaDemo1, Params(placeMethod="STREET", nRows=2, …))

 …

 # add constrained parameters

 # param name default value doc string optional constraints

 self.params.add("placeMethod", "side-by-side", "layout template type", ChoiceConstraint((

 "side-by-side", "source", "MESH", "STREET")))

 self.params.add("nRows", 2, "number of template rows", RangeConstraint(1, 2))

 self.params.add("placePattern", ((1,2,3,4,5,6),), "pattern of instance ids within template")

 self.params.add("cut_wires", False, "cut the routing channel wires at the last branch")

 …

 # add proxy parameters from sub-generators (hierarchical parameter propagation)

 self.params.add_proxy("I_Amp_nRows", self.generators.I_Amp.params.nRows)

 …

 # handle parameter dependencies, executed per parameter change

 def param_check(self):

 # configure layout template

 if self.params.placeMethod.v == "STREET":

 self.tpl = iip.placeroute.PlaceTemplateStreet(ncols=(3,3), route_opt=…)

 # assign existing instances, generator objects or placeholders to the template cells

 # doing this already here enables early area and aspect ratio estimation

 # even before generating layout data

 self.tpl.assign_elem(pos=(0,0), elem=self.generators.I_Amp)

 self.tpl.assign_elem(pos=(1,0), elem=PlaceTemplateElem("I_cap", width=5.0, height=5.0)

 …

 # common data for all views, executed once per generator run

 def prepare(self):

 # e.g. describe circuit structure/topology

 # correspondence of schematic and layout instance names

 # id generator or master sch inst name lay inst name iterated inst spec

 self.instnamespecs.add("I_cap", self.generators.I_cap, sch="I_cap", lay="I_cap", bus=None)

 …

 # net definition and port binding (netlist)

 # netname, (instname, instpinname), … (termname), signal type, bus spec

 self.netspecs.add("VDD", ("I_cap", "VDD"), ("I_Amp", "VDD"), …, ("VDD",), type="power", bus=None)

 …

 # terminal definitions

 self.termspecs.add("VDD", TermType.In, bus=None)

 …

 # schematic view description, executed once per generator run

 def schematic(self, cv): # cv is the target schematic cellview

 # create instances

 i_cap = self.instnamespecs.I_cap.master.instantiate(cv, pos=Dot(0,0), rot=RotationType.R0, …)

 …

 # create wiring, pins, labels

 pin_vdd = cv.create_pin(self.termspecs.VDD, …)

 cv.create_wire(points=(pin_vdd, i_cap.find_pin("VDD")), routingType=RoutingType.ho_ve,

 net=self.netspecs.VDD, …) # rather explicit description, more generic are available

 …

 # layout view description, executed once per generator run

 def layout(self, cv): # cv is the target layout cellview

 # create instances

 i_cap = self.instnamespecs.I_cap.master.instantiate(cv, …) # instance of a generated block

 master = self.open_cellview("mylib", "mycell", "layout")

 i_2 = cv.create_instance(master, "I2", parameters=[…]) # instance of an existing (p)cell

 …

 # update the template with the real layout instances

 self.tpl.assign_elem(pos=(0,0), elem=i_cap)

 self.tpl.assign_elem(pos=(0,1), elem=i_2)

 …

 # draw to layout view

 self.tpl.draw(cv, …)

 …

Figure A1. Representative and simplified selection of the generator code that was automatically
created by the method presented in this work. Note that the template self.tpl connects parameter
entries of the user (method param_check()) with layout generation (method layout()).

Electronics 2023, 12, 1047 18 of 20

Appendix B

Example Layouts Generated by the Amplifier Generator

Electronics 2023, 12, x FOR PEER REVIEW 19 of 21

Appendix B

Example Layouts Generated by the Amplifier Generator

XDIFF

XBIAS_P

R
o

u
ti

n
g

XBIAS_N

XCASC_N

XMIRR_P

XBIAS_EN_P

XBIAS_EN_N

(a)

XBIAS_EN_P XBIAS_P XBIAS_N XCASC_NXMIRR_PXDIFF XBIAS_EN_N

Routing

(b)

XDIFF

XBIAS_P R
o

u
ti

n
g

XBIAS_N

XCASC_N

XMIRR_P

XBIAS_EN_P

XBIAS_EN
_N

(c)

XDIFF XBIAS_P XBIAS_NXCASC_NXMIRR_PXBIAS_EN_P XBIAS_EN_N

Routing

(d)

Figure A2. Generated layout examples (in a 22 nm technology) of amplifier variants by utilizing the

presented method of template-based automatic generator code creation. Results for sizing “LP” are

shown in (a,b) and results for sizing “Speed” are shown in (c,d). Besides sizing, the generated lay-

outs are varied regarding placement patterns (street with one row and once with simpler routing

vs. two rows and different arrangements each) and rotation patterns.

Figure A2. Generated layout examples (in a 22 nm technology) of amplifier variants by utilizing the
presented method of template-based automatic generator code creation. Results for sizing “LP” are
shown in (a,b) and results for sizing “Speed” are shown in (c,d). Besides sizing, the generated layouts
are varied regarding placement patterns (street with one row and once with simpler routing vs. two
rows and different arrangements each) and rotation patterns.

Electronics 2023, 12, 1047 19 of 20

References
1. Krinke, A.; Horst, T.; Glaser, G.; Grabmann, M.; Markus, T.; Prautsch, B.; Hatnik, U.; Lienig, J. From Constraints to Tape-Out:

Towards a Continuous AMS Design Flow. In Proceedings of the 2019 IEEE 22nd International Symposium on Design and
Diagnostics of Electronic Circuits & Systems (DDECS), Cluj-Napoca, Romania, 24–26 April 2019; pp. 1–10.

2. Krinke, A. Constraint Propagation for Analog and Mixed-Signal Integrated Circuit Design; Fortschritt-Berichte VDI, Reihe 20, Nummer
474; Dissertation, TU Dresden: Dresden, Germany, 2020; ISBN 978-3-18-347420-2.

3. Habal, H.; Graeb, H. Constraint-Based Layout-Driven Sizing of Analog Circuits. IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst. 2011, 30, 1089–1102. [CrossRef]

4. Crossley, J.; Puggelli, A.; Le, H.-P.; Yang, B.; Nancollas, R.; Jung, K.; Kong, L.; Narevsky, N.; Lu, Y.; Sutardja, N.; et al. BAG: A
Designer-Oriented Integrated Framework for the Development of AMS Circuit Generators. In Proceedings of the 2013 IEEE/ACM
Int. Conf. on Computer-Aided Design (ICCAD), San Jose, CA, USA, 18–21 November 2013; pp. 74–81. [CrossRef]

5. Scheible, J.; Lienig, J. Automation of Analog IC Layout—Challenges and Solutions. In Proceedings of the 2015 Symposium on
International Symposium on Physical Design (ISPD’15), Monterey, CA, USA, 29 March–1 April 2015; pp. 33–40. [CrossRef]

6. Prautsch, B.; Eichler, U.; Reich, T.; Puppala, A.; Lienig, J. Abstract Technology Handling for Generator-Based Analog Circuit
Design. In Proceedings of the GMM-Fachbericht 83, Reliability by Design (ZuE 2015), Siegen, Germany, 21–23 September 2015;
pp. 56–61, ISBN: 9783800740710.

7. Prautsch, B.; Eichler, U.; Rao, S.; Zeugmann, B.; Puppala, A.; Reich, T.; Lienig, J. IIP Framework: A Tool for Reuse-Centric Analog
Circuit Design. In Proceedings of the 13th International Conference on Synthesis, Modeling, Analysis and Simulation Methods
and Applications to Circuit Design (SMACD 2016), Lisbon, Portugal, 27–30 June 2016; pp. 1–4, ISBN: 978-1-5090-0490-4.

8. Prautsch, B.; Eichler, U.; Reich, T.; Lienig, J. MESH: Explicit and Flexible Generation of Analog Arrays. In Proceedings of the 2017
14th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design
(SMACD), Giardini Naxos, Italy, 12–15 June 2017; pp. 1–4. [CrossRef]

9. Eichler, U.; Prautsch, B.; Reich, T. Automated Creation of Reusable Generators for Analog IC Design with the Intelligent IP
Method. In Proceedings of the DVCon Europe, Munich, Germany, 7 December 2022.

10. Prautsch, B.; Wittmannm, R.; Eichler, U.; Hatnik, U.; Lienig, J. Generators, Templates, and Code Generation for Flexible
Automation of Array-Style Layouts. In Proceedings of the International Conference on Synthesis, Modeling, Analysis and
Simulation Methods and Applications to Circuit Design (SMACD 2021), Online, 19–22 July 2021; pp. 180–183.

11. MunEDA. Circuit Sizing & Tuning With MunEDA WiCkeD (TM). Available online: https://www.muneda.com/circuit-sizing-
and-optimization-tools/ (accessed on 24 January 2023).

12. Intento Design. ID-Xplore. Available online: https://www.intento-design.com/products/id-xplore/ (accessed on 24 January 2023).
13. AIDASoft. Analog Integrated Circuit Design Automation. Available online: https://www.aidasoft.com/Home (accessed on

24 January 2023).
14. Prautsch, B.; Dornelas, H.; Wittmann, R.; Henkel, F.; Schenkel, F.; Koelsch, J.; Grimm, C.; Strube, G. AnastASICA—Towards

Structured and Automated Analog/Mixed-Signal IC Design for Automotive Electronics. In Proceedings of the ANALOG 2020;
17th ITG/GMM-Symposium, Online, 28–30 September 2020; pp. 1–6, ISBN: 978-3-8007-5335-2.

15. Martins, R.; Lourenco, N.; Horta, N.; Yin, J.; Mak, P.-I.; Martins, R.P. Many-Objective Sizing Optimization of a Class-C/D VCO for
Ultralow-Power IoT and Ultralow-Phase-Noise Cellular Applications. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2019, 27,
69–82. [CrossRef]

16. Castro-Lopez, R.; Guerra, O.; Roca, E.; Fernandez, F.V. An Integrated Layout-Synthesis Approach for Analog ICs. IEEE Trans.
Comput. -Aided Des. Integr. Circuits Syst. 2008, 27, 1179–1189. [CrossRef]

17. Lourenço, N.; Martins, R.; Horta, N. Layout-Aware Sizing of Analog ICs Using Floorplan & Routing Estimates for Parasitic
Extraction. In Proceedings of the 2015 Design, Automation Test in Europe Conf. Exhibition (DATE), Grenoble, France, 9–13 March
2015; pp. 1156–1161.

18. Martins, R.; Lourenco, N.; Canelas, A.; Povoa, R.; Horta, N. AIDA: Robust Layout-Aware Synthesis of Analog ICs Including Sizing
and Layout Generation. In Proceedings of the 2015 International Conference on Synthesis, Modeling, Analysis and Simulation
Methods and Applications to Circuit Design (SMACD), Istanbul, Turkey, 7–9 September 2015; pp. 1–4. [CrossRef]

19. Chang, H.; Chen, Y.; Yeh, C.; Liu, C.J. Layout-Aware Analog Synthesis Environment with Yield Consideration. In Proceedings
of the Sixteenth International Symposium on Quality Electronic Design, Santa Clara, CA, USA, 2–4 March 2015; pp. 589–593.
[CrossRef]

20. Martins, R.; Canelas, A.; Lourenço, N.; Horta, N. On-the-Fly Exploration of Placement Templates for Analog IC Layout-Aware
Sizing Methodologies. In Proceedings of the 2016 13th International Conference on Synthesis, Modeling, Analysis and Simulation
Methods and Applications to Circuit Design (SMACD), Lisbon, Portugal, 27–30 June 2016; pp. 1–4. [CrossRef]

21. Jangkrajarng, N.; Zhang, L.; Bhattacharya, S.; Kohagen, N.; Shi, C.-J.R. Template-Based Parasitic-Aware Optimization and
Retargeting of Analog and RF Integrated Circuit Layouts. In Proceedings of the 2006 IEEE/ACM International Conference on
Computer-Aided Design ICCAD ’06, San Jose, CA, USA, 5–9 November 2006; pp. 342–348. [CrossRef]

22. Marolt, D.; Scheible, J.; Jerke, G.; Marolt, V. SWARM: A Multi-Agent System for Layout Automation in Analog Integrated Circuit
Design. In Agent and Multi-Agent Systems: Technology and Applications; Springer International Publishing: Cham, Switzerland,
2016; pp. 15–31. ISBN 978-3-319-39883-9.

http://doi.org/10.1109/TCAD.2011.2158732
http://doi.org/10.1109/ICCAD.2013.6691100
http://doi.org/10.1145/2717764.2717781
http://doi.org/10.1109/SMACD.2017.7981572
https://www.muneda.com/circuit-sizing-and-optimization-tools/
https://www.muneda.com/circuit-sizing-and-optimization-tools/
https://www.intento-design.com/products/id-xplore/
https://www.aidasoft.com/Home
http://doi.org/10.1109/TVLSI.2018.2872410
http://doi.org/10.1109/TCAD.2008.923417
http://doi.org/10.1109/SMACD.2015.7301703
http://doi.org/10.1109/ISQED.2015.7085493
http://doi.org/10.1109/SMACD.2016.7520731
http://doi.org/10.1145/1233501.1233570

Electronics 2023, 12, 1047 20 of 20

23. Marolt, D. SWARM: A Novel Methodology for Integrrated Circuit Layout Automation Based on Principles of Self-Organization; Fortschritt-
Berichte VDI: Düsseldorf, Germany, 2020; Reihe 20, Nr. 475; ISBN 978-3-18-347520-9.

24. Huang, G.; Hu, J.; He, Y.; Liu, J.; Ma, M.; Shen, Z.; Wu, J.; Xu, Y.; Zhang, H.; Zhong, K.; et al. Machine Learning for Electronic
Design Automation: A Survey. ACM Trans. Des. Autom. Electron. Syst. 2021, 26, 1–46. [CrossRef]

25. Pulsic, Pulsic Animate™. Available online: https://pulsic.com/animate/ (accessed on 24 January 2023).
26. Martins, R.; Lourenco, N.; Horta, N. LAYGEN II—Automatic Layout Generation of Analog Integrated Circuits. IEEE Trans.

Comput.-Aided Des. Integr. Circuits Syst. 2013, 32, 1641–1654. [CrossRef]
27. Unutulmaz, A.; Dundar, G.; Fernandez, F.V. A Template Router. In Proceedings of the 2011 20th European Conference on Circuit

Theory and Design (ECCTD), Linkoping, Sweden, 29–31 August 2011; pp. 334–337. [CrossRef]
28. Unutulmaz, A.; Dundar, G.; Fernandez, F.V. LDS—A Description Script for Layout Templates. In Proceedings of the 2011 20th

European Conference on Circuit Theory and Design (ECCTD), Linkoping, Sweden, 29–31 August 2011; pp. 857–860. [CrossRef]
29. Pan, P.-C.; Chin, C.-Y.; Chen, H.-M.; Chen, T.-C.; Lee, C.-C.; Lin, J.-C. A Fast Prototyping Framework for Analog Layout Migration

With Planar Preservation. IEEE Trans. Comput. -Aided Des. Integr. Circuits Syst. 2015, 34, 1373–1386. [CrossRef]
30. Prautsch, B.; Hatnik, U.; Eichler, U.; Lienig, J. Template-Driven Analog Layout Generators for Improved Technology Independence.

In Proceedings of the ANALOG 2018; 16th GMM/ITG-Symposium, Munich/Neubiberg, Germany, 13–14 September 2018;
pp. 156–161, ISBN: 978-3-8007-4754-2.

31. Jedat Inc. LSI Design Solution. Available online: https://www.jedat.co.jp/en/products/semi_design/semi_layout_design/
(accessed on 24 January 2023).

32. Synopsys®. Custom Compiler. Available online: https://www.synopsys.com/implementation-and-signoff/custom-design-
platform/custom-compiler.html (accessed on 24 January 2023).

33. Jangkrajarng, N.; Bhattacharya, S.; Hartono, R.; Shi, C.-J.R. IPRAIL—Intellectual Property Reuse-Based Analog IC Layout
Automation. Integr. VLSI J. 2003, 36, 237–262. [CrossRef]

34. Marolt, D.; Greif, M.; Scheible, J.; Jerke, G. PCDS: A New Approach for the Development of Circuit Generators in Analog IC
Design. In Proceedings of the 22nd Austrian Workshop on Microelectronics (Austrochip), Graz, Austria, 9 October 2014; pp. 1–6.
[CrossRef]

35. Chang, E.; Han, J.; Bae, W.; Wang, Z.; Narevsky, N.; NikoliC, B.; Alon, E. BAG2: A Process-portable Framework for Generator-
based AMS Circuit Design. In Proceedings of the 2018 IEEE Custom Integrated Circuits Conference (CICC), San Diego, CA, USA,
8–11 April 2018; pp. 1–8. [CrossRef]

36. Han, J.; Bae, W.; Chang, E.; Wang, Z.; Nikolic, B.; Alon, E. LAYGO: A Template-and-Grid-Based Layout Generation Engine for
Advanced CMOS Technologies. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 1012–1022. [CrossRef]

37. Cadence. Intelligent IP (IIP) Layout Generator Tool, TechSetup GPDK45 for the Intelligent IP Layout Generator Tool. Available
online: https://support.cadence.com/apex/ArticleAttachmentPortal?id=a1O3w000009F0AGEA0 (accessed on 24 January 2023).

38. Kahng, A.B.; Lienig, J.; Markov, I.L.; Hu, J. VLSI Physical Design: From Graph Partitioning to Timing Closure, 2nd ed.; Springer:
Cham, Switzerland, 2022; ISBN 978-3-030-96414-6. [CrossRef]

39. Strasser, M.; Eick, M.; Grab, H.; Schlichtmann, U.; Johannes, F.M. Deterministic Analog Circuit Placement using Hierarchically
Bounded Enumeration and Enhanced Shape Functions. In Proceedings of the 2008 IEEE/ACM International Conference on
Computer-Aided Design, San Jose, CA, USA, 10–13 November 2008; pp. 306–313. [CrossRef]

40. Strasser, M. Deterministische Hierarchische Platzierung Analoger Integrierter. Schaltungen. Dissertation, Technische Universität
München, Munich, Germany, 2011.

41. Prautsch, B. Layout-Generatoren für den Analogentwurf in kleinen Technologieknoten; Fortschritt-Berichte VDI, Reihe 20, Nummer 478;
Dissertation, TU Dresden: Dresden, Germany, 2022; ISBN 978-3-18-347820-0.

42. Cadence. Cadence PCell Designer, Visual Programming Tool for Virtuoso PCell Developers. 2020. Available online: https://
www.cadence.com/content/dam/cadence-www/global/en_US/documents/services/cadence-vcad-pcell-ds.pdf (accessed on
24 January 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1145/3451179
https://pulsic.com/animate/
http://doi.org/10.1109/TCAD.2013.2269050
http://doi.org/10.1109/ECCTD.2011.6043354
http://doi.org/10.1109/ECCTD.2011.6043824
http://doi.org/10.1109/TCAD.2015.2418312
https://www.jedat.co.jp/en/products/semi_design/semi_layout_design/
https://www.synopsys.com/implementation-and-signoff/custom-design-platform/custom-compiler.html
https://www.synopsys.com/implementation-and-signoff/custom-design-platform/custom-compiler.html
http://doi.org/10.1016/j.vlsi.2003.08.004
http://doi.org/10.1109/Austrochip.2014.6946310
http://doi.org/10.1109/CICC.2018.8357061
http://doi.org/10.1109/TCSI.2020.3046524
https://support.cadence.com/apex/ArticleAttachmentPortal?id=a1O3w000009F0AGEA0
http://doi.org/10.1007/978-3-030-96415-3
http://doi.org/10.1109/ICCAD.2008.4681591
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/services/cadence-vcad-pcell-ds.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/services/cadence-vcad-pcell-ds.pdf

	Introduction
	Context of the Presented Work
	Our Contribution

	State of the Art
	Optimization
	Templates
	Procedural Generators

	Materials and Methods
	Generator Approach
	Generator Framework
	Building Block Generators

	Generator-Embedded Templates
	Generator Code Creation
	The Generator Programming Interface (API)
	The Generator Creator Flow

	Result Quantification Approach

	The Method and Results
	The Example Circuit
	The Generator Creation Process
	User Interface and Generator Parameterization of the Placement Pattern
	Layout Variant Generation and Simulation
	Quantitative and Qualitative Measures of the EDA Method
	Comparison with other EDA Methods

	Discussion
	Conclusions and Outlook
	Appendix A
	Appendix B
	References

