
Citation: Alshudukhi, K.S.;

Khemakhem, M.A.; Eassa, F.E.; Jambi,

K.M. An Interoperable Blockchain

Security Frameworks Based on

Microservices and Smart Contract in

IoT Environment. Electronics 2023, 12,

776. https://doi.org/10.3390/

electronics12030776

Academic Editor: Dimitris Apostolou

Received: 3 January 2023

Revised: 29 January 2023

Accepted: 31 January 2023

Published: 3 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

An Interoperable Blockchain Security Frameworks Based on
Microservices and Smart Contract in IoT Environment
Khulud Salem Alshudukhi 1,2,* , Maher Ali Khemakhem 1 , Fathy Elbouraey Eassa 1 and Kamal Mansur Jambi 1

1 Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz
University, Jeddah 21589, Saudi Arabia

2 Department of Computer Science, College of Computer and Information Science, Jouf University,
Sakaka 72388, Saudi Arabia

* Correspondence: ksalshudukhi@stu.kau.edu.sa or ksalshudukhi@ju.edu.sa

Abstract: In the Internet of Things (IoT), technological developments have increased the significance
of federated cloud systems with integrated cloud providers for exchange transactions. Monolithic IoT
systems implement service-oriented architecture (SOA), which is complex for supporting scalability
and communicating transactions in a federated cloud system. One weakness of conventional security
methods is that they depend on a centralized party, which means there is a single point of failure
for the system. In contrast, blockchain (BC) and microservice (MS) technologies allow services
to split for independent tasks. In this research paper, we introduce BC security managers based
on MS technology for federated cloud systems in an IoT environment. In addition, we present
the design of the Federation Security System Manager (FSSM) MS with interoperability features.
This enables the exchange of transactions between permissioned BC managers at different cloud
providers, with some constraints. Furthermore, a security framework based on MSs and BCs is
implemented to ensure security and protect access control. The security functions are deployed based
on a smart contract between the permissioned BC managers to achieve interoperability. Finally, we
introduce the development process of the proposed framework, which allows for interoperability and
ensures the security and privacy of the participating data for a distributed IoT based on the federated
cloud system.

Keywords: blockchain; microservices; security; IoT; interoperability; smart contracts; federated
cloud system

1. Introduction

The meaning of the term “Internet of Things” (IoT) is the provision of services to users
through networks, allowing users to cooperate and interoperate with each other and to
access these services from any place at any time. [1]. In [2] reported that from 2020 to 2022,
IoT connections increased by 140% worldwide, from 8.4 billion to 20.4 billion. They also
found that numerous different types of use drove IoT connections between machines from
5.6 billion to 27 billion between 2016 and 2024.

The scaling of IoT devices may be hindered by having a centralized data center, which
is the conventional IoT model. Connected devices typically communicate using a central
system, which is accountable for collecting data, computing transactions, and sending data
and commands to other devices. As the number of IoT smart devices grows to more than
tens of billions, the central server model will no longer be viable due to its maintenance
costs, among other issues. At that point, the system will no longer be scalable [3].

In the conventional IoT environment, the development of application software is
supported by the implementation of a service-oriented architecture (SOA). The standard
SOA uses a monolithic system, which is problematic when adapting to new IoT-enabled
system requirements. This is because an SOA comprises various platform functions in an

Electronics 2023, 12, 776. https://doi.org/10.3390/electronics12030776 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12030776
https://doi.org/10.3390/electronics12030776
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-4210-1240
https://orcid.org/0000-0002-1287-1634
https://doi.org/10.3390/electronics12030776
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12030776?type=check_update&version=1


Electronics 2023, 12, 776 2 of 21

interdependent and shareable database. An SOA database features tightly coupled depen-
dencies between components and functions, which limits cross-platform interoperability,
data privacy, and the scalability of services [4].

In contrast to SOAs, microservices (MSs) are developed and deployed individually.
Development teams can work in an autonomous way, allowing for independent implemen-
tation through various teams. Generally, MSs allow for autonomous, scalable, flexible, and
agile development [5]. These important benefits of MSs allow for interoperability within a
permissioned, homogeneous blockchain (BC) network.

The interoperability of BCs can be a challenge for numerous reasons, such as the type
of BC, consensus protocols, different cryptographic methods or hash methods, and smart
contracts [6]. Interoperability achieves flexibility, application portability, and scalability.
Some solutions to improve interoperability include notary schemes, sidechains and relays,
and hashed time lock contracts (HTLCs) [7]. This research focuses on smart contract
interoperability between homogeneous BCs based on MSs. Smart contracts had a significant
impact on BCs’ architectures, converting BCs from simple ledgers into a dynamic and
flexible environment. The main aim of this research is to develop a framework based on
BC security management for an IoT environment that includes federated cloud providers.
This will allow for interoperability techniques between BC managers at different cloud
providers. MS and smart contract techniques will be used. The main contributions of our
proposed solution are as follows:

• Building an MS technique to ensure that system allows for interoperability between ho-
mogeneous BC security managers during interactions with different cloud providers.

• Developing a security manager for IoT environments with BC managers using
MS technology.

• A full architecture of the MS-based IoT environment, which is executed in hierarchical
layers of a federated cloud system in an edge, fog, aggregation, and federated layers.

• Building multiple smart contracts, which are developed and tested on a permissioned
BC network using MS technology, to ensure secure communication between different
cloud providers in the IoT environment.

The remainder of this paper is structured as follows: Section 2 provides background
information on the Ethereum BC, smart contracts, and MS technologies and a literature
review with regard to interoperability to ensure security requirements in IoT environments.
Section 3 presents the design architecture of the proposed framework. Section 4 presents
the main aspects of the experiment, the performance evaluation, and the results. Section 5
discusses the security analysis of the proposed framework. Finally, Section 6 illustrates the
conclusions and future work.

2. Literature Review
2.1. Background

In this section, we illustrate BC, Ethereum, smart contracts, security and privacy,
Access Control, and MS.

2.1.1. Blockchain

At the core of BC technology is a series of blocks, which are chronologically ordered
in a link-list data structure with distributed ledger characteristics. The committed blocks
cannot be updated, which means that the integrity of the data in the ledger remains intact.
This is because every block includes the hash value for the prior block. Additionally, a
ledger is repeated among peers in the BC environment. At the core of BCs are various
cryptographic primitives that maintain security, for example, public key infrastructure
(PKI) protocols, digital signatures, and hashing algorithms. Timestamped transactions are
usually bundled together and stored in the form of a Merkle tree. In a BC network, the key
activities are generating transactions, validating them, and storing them in the ledger [8].
There are three main types of BC, as described below [9]:



Electronics 2023, 12, 776 3 of 21

• Public BCs: These are most commonly used for decentralized transactions. They aim
to avoid the use of a third party and can be used by any client with access to the
network. Examples of public BCs are Bitcoin, IOTA, and Ethereum.

• Private BCs: Also called permission BCs or consortium BCs, these are generally used
when a permission-based network can be established amongst known and trusted
users. Commonly used by organizations, access to the system is restricted. This
can result in centralized control over access to the network to achieve data privacy.
Examples of private BCs include those created by the enterprise Ethereum, such as
Hyperledger Besu, or other private BC platforms, such as Hyperledger Fabric.

• Combination BCs: These are a hybrid of public and private BCs. Public BCs work on
the principle that all participants are part of the network, but the private network is by
permission. The benefit of a hybrid system is that there is control over which data are
shared on the public ledger and which data are kept private.

There are some key characteristics that distinguish BC technologies [10]:

• Decentralized: The essential feature of BCs is that there is no requirement for a central
node. This means that multiple systems can be used to record, store, and update data.

• Transparent: Each node can update data in the BC system, and the location of the node
that makes the changes is transparent. This makes the system more reliable.

• Open source: Anyone can check and use the BC system; records can be examined; and
users can create the applications they require.

• Autonomous: Trust from a single point in the system becomes trust in the whole
system; each node can update data securely. This is because of the basis of consensus,
which prevents anyone from intervening and overriding the system.

• Immutable: which means that records will be reserved for always.
• Secure: Transactions are anonymous, which means that trust can be maintained

between nodes. The only requirement is an individual’s BC address, which is needed
to make changes.

2.1.2. Ethereum

The fundamental characteristic of Ethereum is that it is an ecosystem with no central
authority. All nodes are capable of processing and replicating data. They also process
smart contracts for each participant. Essentially, Ethereum is a programmable BC that
allows users to create their own complex operations. This is different from the Bitcoin
BC, where user processes are constrained. Ethereum is a more comprehensive system
that extends beyond the use of cryptocurrencies such as Bitcoin [11]. The main features
of using the Ethereum BC are its improved system, ease of development, and enhanced
interoperability. In addition, developers can create an arbitrary consensus for any case or
reason in the system. Ethereum is built on a foundational layer, so anyone is permitted
to write their own smart contracts in decentralized applications. Additionally, they can
create their own arbitrary consensus, transaction, and state transition rules [12]. The code
execution level in Ethereum is Ethereum smart contracts. It is a low-level code based on a
bytecode language in the Ethereum virtual machine (EVM). The code has a series of bytes,
each of which states an operation. These operations can store three types of data: stack,
memory, and storage. The execution of the EVM code is very simple, as shown in Figure 1.
Firstly, the computational state is determined by the block_state (e.g., transaction, message,
code, memory, stack, pc, and gas). As the first argument in the tuple, block_state is the
global state for all accounts. It contains balances and storage [12]. Further, a transaction
is a signed data package that stores a message sent from an externally owned account.
These transactions include a signature that identifies who sent the message, the amount of
data sent, and who the recipient of the message is. In addition, there are two values called
STARTGAS and GASPRICE [12].



Electronics 2023, 12, 776 4 of 21

Figure 1. EVM architecture [13].

2.1.3. Smart Contracts

The need for third-party mediation is eliminated by the use of smart contracts, which
are programs that define a set of rules that automatically enforce the execution of contract
terms or a negotiation. These protocols have been developed with the approval of partici-
pants in all nodes; thus, the participants always know the result of a smart contract for any
transaction. Smart contracts are run by the BC [14]. Another feature of smart contracts is
that they can be used to enable transactions while continuing to meet the contract terms that
are written into the code. This programmability allows the node to sign each transaction
and send a smart contract with instructions for a particular functionality [3].

2.1.4. Security and Privacy

In order to encourage the continued generation of IoT devices around the world, it
is vital that the IoT ecosystem is secure and not vulnerable to privacy concerns, malware,
or unreliable communications. Today, billions of devices transfer private personal and
business information, which, if unchecked, risks eroding privacy and confidence in the
system. As the speed of innovation increases, security is too often ignored, and in its
place, functionality becomes the key driving objective. The competition to create the
most advanced devices is intense, and securing communication protocols should be of
paramount importance [15].

2.1.5. Access Control

In conventional access control systems, a single administrator manages the access
control procedures within the IoT devices. This ensures that the resource is protected
because only those with express permissions can access and control the devices. BC-based
access control systems avoid this single interface by storing the access control policies in
a ledger, which can be accessed via a smart contract, thereby automatically granting or
denying access to devices. The ability to decentralize access control is further enhanced by
BC technology, which ensures data integrity and creates a trustworthy and tamperproof
solution [16].

2.1.6. Microservices

MS architecture takes small tasks, independent running, and loosely coupled ar-
chitecture into consideration. The lowest-level development teams process the separate
codebases that include each task. Each function can be remade and redeployed inde-
pendently. Whereas traditional architecture includes data persistence at every level, in



Electronics 2023, 12, 776 5 of 21

MS architecture, all services run individually with data persistence. Hence, well-defined
application programming interfaces (APIs) are used for the services to communicate with
each other, and no one service knows the implementation details of any other service.
Moreover, the same technology stack, library, or framework does not need to be shared by
the service, i.e., MS supports polyglot programming [17]. For an IoT environment using an
MS, the main challenge is that the IoT has a smart domain with different applications and
services that use various software and platforms to collect and process data. Numerous
MS architectures have been developed based on different IoT domains, such as smart
cities, smart commerce, and smart cars. In terms of, the IoT is a distributed system. MS
technology supports this kind of architecture through autonomous tasks. Therefore, MSs
do not share data with each other, meaning that they can use different languages and
databases. Alternatively, they use representational state transfer (REST) protocols to reach
and connect with each other [5]. Hence, development managers have embraced the benefits
of MSs for the following reasons [18]:

• “Flexibility and agile deployment”: MSs form a loosely coupled architecture that
offers the developing team flexibility in determining what is necessary for their work
and what is not. Deactivating the MSs that are not required saves IoT network
resources. This means that MSs offer optimum control and flexibility over the software
deployed to run the services as well as management of all of the IoT systems, such as
the networks.

• “Resource-efficiency and portability”: IoT system resources are more efficient because
containerized MSs enable scalability. These lightweight MSs can be used indepen-
dently of each other and on or off premises to optimize the performance requirements
of the IoT environment.

• “Resilient operations and easy updates”: As each MS in the IoT system operates
independently of any other MS, their failures do not halt all working portions of the
system. This makes the system secure and flexible. The entire IoT system’s operation
can also be maintained and shutdowns avoided during maintenance cycles because
each MS has its own release protocol. The challenges related to implementing IoT
platforms are consequently minimized due to this fine-grained and loose system, and
tasks are contained in the MS.

These MS features improve IoT systems compared with using a monolithic system
(e.g., an SOA). We developed our framework using MS technology. The main advantage is
that the security functionality of each BC is separated into independent containerized MSs.
Furthermore, each BC security manager has its own working container that is designed
using a smart contract. This enhances the interoperability of our framework.

2.2. Related Work

In recent years, BC interoperability has become a significant topic among researchers.
There are many challenges to ensuring security requirements in IoT environments. MS
technology offers numerous advantages, including using loosely coupled, independent,
flexible, and agile deployment to increase the interoperability of the IoT environment in
a federated cloud. Table 1 describes the related works and their research gaps, methods,
limitations, and workloads.

Lafourcade et al. [19] demonstrated that BC interoperability is impractical according
to the classical concept of a BC. They proved that the interoperability of two BCs is equal
to the design of a “2-in-1 BC,” including both ledgers. This excludes the theoretical
concerns regarding having interoperable BCs in the first position. They also noted that all
interoperable BC frameworks currently operate by sharing already-created tokens between
two BCs and not by providing the possibility of one BC exchanging tokens with the other.
This leads to a change in the balance of total generated tokens for all BCs. This indicates
that it is only possible to provide interoperability by building a two-in-one BC containing
all ledgers.



Electronics 2023, 12, 776 6 of 21

Table 1. Comparative analysis of related works.

Research Paper Research Gap Methods Workload Limitations

Lafourcade et al. [19] Interoperability of two
blockchains.

Creating a blockchain
”2-in-1” containing

both ledgers.
Apply formalization for

this issue.

Introduce a theoretical
definition of a

blockchain and of
interoperability.

Need to give
a practical

implementation to
encourage the

theoretical.

Malomo et al. [20]

A blockchain based on
federated cloud

framework to handle
secure storage of offsite

digital assets.

BFC2: block vault
operations; digital

asset; smart contract;
participant auditors;

clients; generator;
buffers.

BFC2 system is a
permissioned federated

blockchain.

On the performance
evaluation of the

system, a
comprehensive

evaluation is needed.

Esposito et al. [21]

Cloud secure manager
on healthcare system of

management and
exchange of data.

Cloud secure manager
on healthcare systems
for management and

exchange of data based
on microservices.

Microservices deployed
in the cloud to manage

and exchange
healthcare data.

The exanimating on
specifics of the

scenario.

Cheng et al. [22]

To solve a weak of
confidentiality and lack

of performance
through integrate BC of
trustworthy execution
environments (TEEs).

“Ekiden” is a merging
blockchain within
Trusted Execution.

Environments (TEEs).

Hybrid system
integrating trusted
hardware and BC.

It has three elements in
Ekiden: clients,

compute nodes, and
consensus nodes.

Need to expand
“Ekiden” so it can

perform with a stronger
threat model.

No interoperability
management to insure

the system meets
critical requirements.

Madine et al. [23]

Lack of cross-chain
interoperability for
different kinds of

BC networks.

“AppXchain”
framework that allows
for different kinds of
BC to communicate,

sharing data and
sending requests.

Using CCHDA-cross
chain hup DAPP.

Implemented in two
hospitals based on

Ethereum, including
smart contracts.

To share an “Electronic
Medical Record (EMR)”

between different
BC networks.

“Increasing cost of
deployment.”

“Limited
upgradability.”

“Cross-industry
interoperability.”

Punathumkandi
et al. [24]

A new framework to
solve the

interoperability
problem based on

incorporating EVM
Chaincode and

Fabric VM.

By a cross-chain
protocol which

including Notary
scheme centralized.

The communication is
performed by EVM

Chaincode and
Fabric VM.

Implemented in
Ethereum and
Hyperledger
Fabric BCs.

EVMCC performs as a
smart contract.

Not generalizing the
framework for
all platforms.

Xu, Nikouei, et al. [25]

MS architecture for
security issues

deployed on edge and
fog layer nodes.

BlendMAS authorized
BC and performed

decentralized
microservices of SPS.

Implemented on a
private Ethereum BC

for secure video
stream service

running on security MS
via Docker container.

No attacker defined.

Zhang et al. [26]

By merging an edge
computing framework

with BC.
To handle edge clients

within an
authentication

algorithm.

“Edgex Foundry
framework” for
improving the

business capacity.

MC uses Hyperledger
Fabric BC.

Need to focus on
lightweight consensus

algorithms in BC.



Electronics 2023, 12, 776 7 of 21

Table 1. Cont.

Research Paper Research Gap Methods Workload Limitations

Viriyasitavat et al. [27]

Solving the
interoperability and

trust issues in
IoT services.

Merging these
technologies: BCT,
service-oriented

architecture (SoA), and
key performance
indicators (KPIs).

Implement a
blockchain based on
smart contracts for

registering devices via
a voting scheme.

PBFT uses a
permissioned BC.
PKI used for the

validator certification.

Need to extend the
interoperations on the

semantic layer.
No algorithm for

external users to trust
in the smart contract.

Peng et al. [28]

Validated data sharing
for privacy.

For authenticated data
to decentralize and

effectively validate any
part of a shared

data register.

“BlockShare”
framework based on

blockchain with a new
structure for

authenticating data.
“Dynamic data

verification,
zero-knowledge
proof design.”

Implemented a
prototype for
framework

“BlockShare” using
JavaScript and Python
for data about owner,

consumer, source.
Blockchain at Solidity.
Also used by Circom

and Snarkjs.

No more details for
rainbow attacks. Need
to cover comprehensive

defense techniques
against

malicious behavior.

Peng et al. [29]

Decreases latency via
pipelining and

increases throughput
via asynchronous

block creation.
Different security

methods are created to
make systems resistant
to malicious attempts.

“Ordering-Free
Architecture

execute-validate (EV)”.
“NeuChain” System.

Permissioned
blockchains use the EV.

They used two
benchmarks, “YCSB

and Mall Bank.”

Need to improve the
NeuChain system
for authenticated

queries in
unsecure system.

To secure the storage of the off-site digital position, Malomo et al. [20] introduced a
BC-enabled federated cloud framework. This framework identified authentication vul-
nerabilities and enhanced the early detection of cyber threats. Operational expenses were
controlled and monitored by constantly evaluating the object’s access control and resource
communication. The assessment showed evidence that their model and strategy outper-
formed conventional approaches; also, their framework design was private and highly
scalable, with access control rules.

Esposito et al. [21] ensured both security and privacy for transaction sharing and
management in healthcare systems using a new MS technology. They presented a security
management model based on the cloud for exchanging and managing data in healthcare
systems. The researchers investigated the importance of the cloud system in healthcare.
They presented their solution to interoperability, which had numerous advantages and fea-
tures, such as improving the quality of this type of system. They also created a specialized
system focusing on the client’s patients. The system reduced operational costs and errors.
Additionally, the authors examined privacy and security requirements.

Cheng et al. [22] created Ekiden, a platform that solves the limitations of a lack of
confidentiality and weak performance by merging BCs in trustworthy execution environ-
ments (TEEs). In Ekiden, they deployed a new framework that divided consensus and
execution, supporting effective TEE confidentiality using smart contracts to increase the
scale of the system.

Madine et al. [23] created the solution appXchain, which allows for different BC
networks to communicate, share data, and send requests. Their approach made use of
decentralization for applications to interact with and understand various BCs and to
distribute transaction requests and values across organizations. They used the healthcare
context to describe the modules’ requirements in an interoperable BC network. They



Electronics 2023, 12, 776 8 of 21

explained that all interactions need to share an electronic medical record between different
BC networks, with some algorithms required. The solution was implemented in two
hospitals using Ethereum smart contracts. Moreover, they presented a security analysis of
the AppXchain solution.

Punathumkandi et al. [24] presented a sustainable system that could solve the interop-
erability problem in permissioned BCs. Their infrastructure was implemented in Ethereum
and Hyperledger BCs with a 100% success rate.

Xu et al. [25] proposed the use of BlendMAS within a permissioned BC network and
the use of MSs for security issues to ensure that data access is controlled, allowing for smart
public safety. The functionality of security issues was decoupled by MSs based on smart
contracts, which were then deployed to edge and fog layer nodes.

Zhang et al. [26] proposed a trusted edge within a BC network to construct an edge
security platform to guarantee that clients’ data remained private. They designed the
platform’s architecture based on MSs to make the platform’s environment lighter. They
designed a security authentication process based on an MS. This MS was built using the
Hyperledger Fabric BC to preserve security on the edge platform.

Viriyasitavat et al. [27] discussed the issue of interoperability for IoT services and
proposed an architecture solution based on merging a BC and SOA as well as select services.
The proposed solution solved interoperability and trust problems in IoT services. The
method was validated using smart contracts.

Peng et al. [28] proposed the BlockShare system to share data while respecting privacy.
They designed a new architecture based on BCs with a new decentralized platform for
authenticating data to effectively validate any part of a shared data register. They improved
a zero-knowledge mechanism that allows the user to demonstrate a dynamic state without
revealing the particular data attribute, which improves privacy. In addition, they evaluated
the performance and efficiency of the system.

Peng et al. [29] provided an ordering-free system that executes deterministically while
making ordering implicit. The “NeuChain” system evolves into a permissioned blockchain.
They used some optimizations for improving throughput and latency, such as pipelining
and asynchronous generation. Additionally, different security methods are created to make
their system resistant to malicious attempts at “epoch servers, client proxies, block servers,
and user clients.” Moreover, “47.2–64.1 × throughput” is achieved by the “NeuChain”
system, which is better than HyperLedger Fabric. Furthermore, “1.6–12.2 × throughput” is
more advanced than that of other high-performance blockchains.

3. Materials and Methods
3.1. Design and Architecture of Proposed Solution

The proposed framework is based on a hierarchical federated system based on BC
and MS technologies. This achieves interoperability between homogeneous BC platforms
for IoT systems, as shown in Figure 2. Our solution contains hierarchical layers for a
federated system in an IoT environment, as shown in Figure 3. The sequential layers used
for processing the data, starting from the bottom, are the Edge Security Manager (ESM MS),
Fog Security Manager (FSM MS), Aggregation Security Manager (ASM MS), Federation
Security System Manager (FSSM), and, finally, Blockchain Security Manager (BCSM MS).
In addition to that, all these layers run on MS technology, as shown in Figure 4. We assume
that an IoT device in subsystem-1 wants to communicate with and exchange data with
another IoT device in subsystem-2. This integration will be carried out by the FSSM MS
(interoperability module). Therefore, our interoperability module merges transactions
between the two BCSM MS in different cloud providers. The main role of BCSM MS is
to manage and authorize the BC platform whenever there is any request from another
BC platform at a different cloud provider. These rules occur through the interoperability
module, FSSM MS. The following figures illustrate the main components of our framework.
As shown in Figure 5, this illustrates the performance of our framework and its components.



Electronics 2023, 12, 776 9 of 21

Figure 2. High-level architecture of the proposed solution.

Figure 3. The architecture design of the proposed framework.



Electronics 2023, 12, 776 10 of 21

Figure 4. Screenshot of running the MS Docker containers for all the components of our framework.

Figure 5. Sequential diagram of the execution of our framework.

3.1.1. Edge Security Manager MS (ESM MS)

The ESM MS locally manages and records IoT devices within each IoT sub-system. As
it deals with various IoT devices, each has a different protocol and a different way to work.
We implemented this on MS technology.

3.1.2. Fog Security Manager MS (FSM MS)

The FSM MS locally manages and records the data within each IoT sub-system. FSM
is generated based on MS technology. MS supports independent deployment, which makes
the data security services applicable and autonomous.

3.1.3. Aggregation Security Manager MS (AMSSM MS)

The ASM MS manages and records data exchange between different sub-systems on
different cloud providers. ASM MS deals with FSSM MS, so any requirements regarding
service security from the downward layers are deployed by this manager, while FSSM MS
executes security policies. Our system is a distributed framework, so we deployed this
manager using MS technology with flexibility and agility. MS in this layer manages the



Electronics 2023, 12, 776 11 of 21

exchange of security data functions between various cloud providers to transport them to
the FSSM MS layer.

3.1.4. Federation Security System Manager MS (FSSM MS)

FSSM MS merges transactions between two BCSM MSs with different cloud providers.
This manager, implemented using MS technology, functions as a gateway to manage
communication and secure data exchange between different subsystems in each cloud
provider. Our MS features in FSSM are loose coupling for different layers and interactions
with two managers of BC platforms. Consequently, the MS technology independently scales
the security services between the two BCSM MSs. Furthermore, this manager authorizes
any requests from different IoT subsystems through the BC manager. The smart contract
policies in this layer resolve security and privacy issues. Further, the FSSM MS uses the
HAS-256 algorithm due to its high security and interoperability between two BC managers
in a permissioned network. In addition, the permissioned network means that all systems
will be under the policy restrictions of this manager to guarantee the security and privacy
requirements. FSSM MS is in charge of determining whether the data is sensitive or not
and then sending it to BC platforms to be stored in the metadata. Sensitive data can use
BC1 for more protection and security. Otherwise, store it in BC2. In addition, FSSM MS
stores and updates all kinds of data in its storage database.

3.1.5. Blockchain Security Managers MS (BCSM MS)

The BCSM MS manages and authorizes any request sent to the BC platform from
another BC platform based on the FSSM MS. Hence, we have two BCSM MSs for each IoT
subsystem that can interact with each other. Our framework implements two important
technologies: BC and MS. Our solution uses a BC permission network, which provides
security and privacy policies. Our federated system presents peer-to-peer interaction
between different cloud providers. Therefore, this communication, which takes place under
access control policies, uses smart contracts to authorize any requests with another BC
network and carry out a secure exchange. We use MS technology as well as BS technology
for this component to promote scalability and efficiency in our framework and support
interoperability with other BCSM MSs at different cloud providers. In terms of guaranteeing
the user’s system’s security, our proposed framework implements a smart contract using
access control policies through the FSSM MS to limit the user’s access. Algorithm 1 presents
some of the rules implemented in BC1 of BCSM1MS based on FSSM MS in one subsystem
of our framework; hence, we have another BC2 in BCSM2 MS that has its own contract
registration management with the same manager as FSSM MS.

3.2. FSSM MS Algorithm

The details of the FSSM MS manager are shown in Figure 6 and Algorithm 2. If any
external request to interact with or conduct a transaction between two cloud providers is
made, this interoperability request is carried out by this manager. If IoT devices request
data from the BCSM MS in another subsystem, the BCSM MS sends this request to the
FSSM MS, which confirms the interoperability between the two BC platforms by applying
the access control policies based on the MS and smart contract. However, the main goal of
this manager is to support interoperability based on the BC platforms encapsulated in the
MS container. Moreover, two BCSM MSs can encapsulate the smart contracts in the MS
technology, which allows for a flexible and agilely executed cross-chain bridge between
the two platforms. We organized our data ledgers into two BC platforms’ metadata to
guarantee security and privacy and to support interoperability. The first one is located
in BCSM MS_1 and is for sensitive data, and the other is in BCSM MS_2 and is for non-
sensitive data. At this point, the FSSM MS authorizes the requester from the list of users
with a private key by applying the HAS 265 algorithm between the two BC platforms to
confirm the communication. The FSSM MS checks the type of data. If the data are sensitive,
then the FSSM MS sends a request regarding the data hash value with the data_ID from



Electronics 2023, 12, 776 12 of 21

the BCSM MS_1 platform. It retrieves the data hash value from the BC_1 metadata. BCSM
MS_1 returns the data hash value to the FSSM MS. If the data are not sensitive, the FSSM
MS sends the requested data with the data_ID from BCSM MS_2, which retrieves the data
from BC_2. BCSM MS_2 then returns the data to the FSSM MS. Finally, the FSSM MS
returns the data and the hash value to IoT_Subsystem_2, which validates the data.

Algorithm 1 Contract Registration in BC of BCSM MS

require: action in FSSM MS, user[_address], null
outcome: update in FSSM MS the user_event, return the userlist and status for BC, BCSM MS
1: in BC of BCSM MS if mapping (address => action) for public user
2: else private user of userList in BC
3: if action == authorized in BC of BCSM MS then require security policy of FSSM
4: MS with (address user, action, uint256)
5: in BC of BCSM MS if user[_address] == action.null or user[_address] ==
6: action.unauthorized user then user is already authorized in BC of BCSM
7: else
8: user[_address] = action. Authorized in BC of BCSM MS then require
9: security policy of FSSM MS then userList.push this (_address)
10: outcome: update in BC of BCSM MS and FSSM MS user_event has address, action.
11: authorized
12: else
13: In BC of BCSM MS if action== unauthorize user in BC then
14: user[_address] == action. authorized in BC of BCSM MS then user is already
15: unauthorized
16: else
17: user[_address] = action. unauthorized in BC of BCSM
18: outcome: update in BC of BCSM MS and FSSM MS user_event has address,
19: action. unauthorized

Figure 6. Sequential diagram of FSSM MS.



Electronics 2023, 12, 776 13 of 21

HAS-256

A one-way algorithm called a cryptographic hash mechanism produces a fixed-sized
hash result from a changeable-length plaintext input. The hash algorithm guarantees that
the original text has not been tampered with by comparing the decoded hash value to the
one that was sent [30]. The Secure Hash Algorithm (SHA) is a cryptographic algorithm that
ensures more security than others. The SHA-256 algorithm, when given a string, this hash
function generates a 256-bit hash result. This function has four parts. Firstly, the standard
length of this algorithm is 512 bits, and then it will add padding bits. Second, insert length
bits for the remaining 64 bits. Third, initialize the buffer with an 8-hash value and 63 keys.
In the 256-Hash Algorithm, the 64 keys are applied in 64 rounds. Finally, compression
steps are taken in which all messages are separated into “N” 512-bit chunks and then
used in compression function. Then, in 64 rounds, 512 bits were used. Furthermore, every
round has a 32-bit word and key as input ([31], pp. 643–655). To ensure the integrity of the
authentication system, we used SHA-256 for hashing data on the blockchain based on smart
contracts and MS. In our framework, hashing data values is performed via FSSM MS, and
then the hash value is sent to BC to be stored. The advantages of using BC are autonomy
and immutability. Hence, when based on smart contracts, their programmability improves,
making them better than regular ledgers in BC. Furthermore, the FSSM MS node will be
established in a container MS, which will improve the hash algorithm’s deployment agility.

Algorithm 2 FSSM MS

1: if IoT_Subsystem requests Data from BCSM1 MS
2: BCSM1 MS send the requests to FSSM MS
3: if Data is sensitive then
4: FSSM MS send requests to Data’s hash value from BCSM1 MS
5: BCSM1 MS retrieves Data’s hash value from BC1 MS
6: BCSM1 MS returns Data’s hash value to FSSM MS
7: else
8: FSSM MS send requests Data from BCSM 2
9: BCSM2 MS retrieves Data from BC2 MS
10: BCSM2 MS returns Data to FSSM MS
11. End if
12: FSSM MS returns Data and Data’s hash value to IoT_Subsystem
13: IoT_Subsystem receive Data
14: End if

4. Results
4.1. Implementation

This section reviews the key aspects of deployment and testing for our framework.
A system generally has a three-tier architecture, with a front end, middle end, and back
end. The first tier is the front end; this is the user interface presentation tier. The middle
tier is used for managing business, logic, and execution. The last tier, which is the back
end, usually handles database management, as shown in Figure 7. Let us now turn to our
framework. Table 2 illustrates the main tools implemented in our tiers. We tested and
evaluated two tiers: the middle end and the back end. The first part is the middle-end
tier, which holds the BC networks. MS technologies include smart contract functionality
to resolve security and privacy issues in the interoperability framework. However, we
deployed and implanted our framework in two Ethereum BCs with smart contracts, which
are permissioned networks based on a full architecture of Docker containers for MS. The
smart contracts’ written language was given solidity through the use of Remix IDE tools.
The Truffle framework was used to test and deploy smart contracts through permissioned
BCs. The back-end tier is a Mongo Database (MongoDB) for off-chain storage. This NoSQL
database is scalable and flexible. It deals with the web3.js library to connect the off-chain
module with the middle-tier BC network to achieve consistency in the data.



Electronics 2023, 12, 776 14 of 21

Figure 7. Three-tiered architecture.

Table 2. Development Tools Required.

Tier Tools Implement

Middle tier

Remix IDE To write smart solidity contracts [32].
Truffle Framework To test and deploy smart contracts [33].

Docker To run MS [34].

Ganache To create a local Ethereum blockchain for
development and testing [35].

Hyperledger Besu To build private BC [36].

Azure cloud To host a back-end server and provide the VMs
required by the private BC [37].

Back-end tier

Node.js To develop a back-end server and off-chain
components [38]

MongoDB
For off-chain storage. This is a database

platform and NoSQL document; it is also a
scalable, flexible DB [39].

In terms of overhead, we implemented our framework in two parts. First, data
size refers to the amount of data sent for each of the following: when data size sent to
ESM MS = 0.13 KB and the data size sent to FSM MS = 0.27 KB, ASM MS= 0.13 KB, FSSM
MS = 0.13 KB, BCSM MS_1 = 0.18 KB, and BCSM MS_2 = 0.13 KB. As a result, the size
of reading all the data from BC 1 = 0.18 KB and BC 2 = 0.15 KB. The second part is time
processing, which refers to completing some processing in our system. For complete
processing of the hashing algorithm, it takes 1.348618984222412 ms. In addition, when all
the data from BC 1 is read, the process is complete in 52.099485009908676 ms, and for BC2,
it is complete in 44.0608149766922 ms.

4.2. Performance Evaluation of Our Framework

In the proposed framework, a performance evaluation was conducted to assess our BC
network by utilizing Hyperledger Caliper v0.5.0, which is an open-source benchmarking
tool [40]. We tested the performance of our proposed framework using the configuration
settings shown in Table 3. We implemented four VMs running Ubuntu 20.04 in Microsoft
Azure cloud. Each VM has 4 Intel CPUs and 16 GB of memory. We used Hyperledger
Besu v22.7 to build a private BC on one validator node with three peer nodes. Further, we
used the Clique Consensus Protocol. The programming language Solidity was used in the
smart contracts, and our BC network was assessed using the Hyperledger Caliper v0.5.0
benchmarking tool.



Electronics 2023, 12, 776 15 of 21

Table 3. Testing environment for performance.

Requirements Settings

Nodes
Four VMs running Ubuntu 20.04 on Microsoft

Azure cloud. Each VM has 4 Intel CPU and
16 GB memory

Blockchain
Hyperledger Beus v22.7

1 validator node
3 peer nodes

Consensus Protocol Clique

Smart Contracts Programming Language Solidity

Benchmarking Tool Hyperledger Caliper v0.5.0

The popular metrics used to evaluate our framework are throughput and latency. Two
metrics can be split into two types related to the operations that deal with these metrics.
The two categories were read operation and write, or transaction, operation. As shown in
the following equations [41]:

Read throughput = Total read operations/total time in seconds (1)

Read latency = Time when response received − submit time (2)

Transaction throughput = Total valid transactions/total time in seconds (3)

Transaction latency = (confirmation time ∗ network threshold) − submit time (4)

As shown in Equation (1), we used it to read the throughput, which refers to the
quantity of read operations that are executed in a certain amount of time. Read latency,
as shown in Equation (2), refers to the total amount of time from the point at which the
read operation is transmitted to the point at which a reply to the request is received. The
write/transaction throughput, as shown in Equation (3), refers to the rate at which accepted
transactions are spread through the BC network over a certain period of time, represented
as transactions per second (TPS). Transaction latency, as shown in Equation (4), refers to
the time required for a transaction to become applicable throughout the network [41].

Performance Estimate Affected by Read and Write Operations Based on Various Send
Rate Values

In our experiment, the number of test rounds ranged from 1 to 9, with 1000 transactions
for each round. We also executed the send rates with different values: 110 tps, 210 tps,
310 tps, 410 tps, 510 tps, 610 tps, 710 tps, 810 tps, and 910 tps. Therefore, there are impacts
on the send rate values to test our system, especially in read and write operations. A send
rate [24] = total number of transactions sent/total time.

All 1000 transactions were successful for the two operations. Therefore, we achieved
good results in each case for latency and throughput. Figure 8 depicts how send rate values
affect throughput and latency rates in a read operation. It ranges from 110 to 910 TPS.
Overall, as the send rate increases, the throughput rate increases. However, at the first level
of the send rate, which was 110 TPS, growth was slow. Then, the bar chart dramatically
increased, from 210 to 610 TPS. The throughput rate fell slightly, from 510 to 610 TPS. Then,
the bar chart increased from 710 to 910 TPS. Finally, the maximum amount of throughput
was 138.48 TPS, the minimum amount was 93.78 TPS, and the average throughput was
127.70 TPS. In terms of transaction latency, its rate has steadily increased. While the send
rates increased, the transaction latency also dramatically increased, from 110 to 310 TPS.
However, the transaction latency gradually rose to a 910 latency rate, then fell slightly.
Finally, the maximum amount of latency was 4.10 milliseconds (ms), and the minimum
amount was 0.62 ms. The average latency was 3.08 ms.



Electronics 2023, 12, 776 16 of 21

Figure 8. Various send rates for read latency and read throughput.

Figure 9 presents the experimental values in terms of write throughput and write
latency. We used different send transaction rates ranging from 110 to 910 TPS. Overall, the
bar chart illustrates that the transaction throughput was a sequence of wavering moving
above, then down. The average throughput for write operations was 102.4 TPS, with a
minimum of 93.93 TPS and a maximum of 108.13 TPS. The transaction latency rate increased
at send rates of 110, 210, and 310 TPS. Then, latency fell slightly at the fourth point (send
rate of 410 TPS). After that, the send rate latency grew exponentially to 510, 610, and
710 TPS. Then, the latency fell to the eighth point/send rate (at 810 TPS). The average
latency was 4.02 ms, with a minimum of 2.11 ms and a maximum of 5.66 ms.

Figure 9. Various send rates for write latency and write throughput.



Electronics 2023, 12, 776 17 of 21

5. Discussions

In this section, we indicate our framework’s security requirements. In addition, we
use our security framework to protect against some attacks and compare the proposed
solution with the existing work.

5.1. Security Analysis of the Proposed Framework

The main security requirements can be classified into confidentiality, integrity, and
availability. Confidentiality implies authorized users’ access to data. Integrity protects
the transactions or data from any modification by unauthorized users. Availability means
the data are available for authenticated objects [16]. Our framework solution fulfills these
security and privacy requirements.

Authorization and Confidentiality: The smart contract manages authorization for
users and data. The lists of private keys are stored in permissioned BC1 and BC2, while
the access policies for the smart contract are implemented based on the FSSM MS. This
manages any unauthorized members.

Availability: In our solution, all layers are created by individual containers in the
Docker. Hence, every service is autonomous and independent, which means that the
system is fast and available for any other requests. Our system is based on the cross-chain
bridge between the permissioned BCs; all entities have private keys stored in metadata
in BC1 and BC2 based on a smart contract, which drops and manages any unauthorized
members. Our system is distributed using a permissioned BC, which is a decentralized
module, making it more readily available than a centralized system.

Integrity: The HAS 256 hashing algorithm is used to manage transactions between the
two permissioned BCs in BCSM1 MS and BCSM2 MS based on the FSSM MS container to
ensure integrity.

5.2. Effectiveness of Our Security Solution

We analyzed the effectiveness of our solution to critical security attacks such as denial
of service (DOS) and distributed denial of service (DDOS). The characteristics of these types
of attacks are that the targeted servers are flooded with huge numbers of unwanted requests
by the attacker. A DDOS attack occurs when a targeted server is flooded by requests from
multiple sources. The attacks are possible due to the heterogeneity and complexity of the
IoT networks; this means that the network layer of the IoT is at risk from such attacks [2].
To avoid these DDOS and DOS attacks, all traffic in both the BCSM1 and BCSM2 networks
must be authorized by the FSSM MS manager implementing the smart contracts in the MS
container. This protects the system from any malware behaviors. In other words, we built
our system using a permissioned BC network with more restrictions.

5.3. The Difference between our Proposed Framework and Related Works

Table 4 summarizes the main points of comparison with existing solutions. The main
focus when comparing our proposed system with related works is the interoperability of
the permissioned BC based on the MS when handling security issues in a federated cloud.

Our proposed framework uses MS technology to promote scalability. It can be scaled
independently while using MS technology through Docker. There are other advantages to
using MSs in the IoT environment. Because the IoT has different devices and sensors, every
object will have different protocols and functionalities. We developed our framework using
independent containers for each manager at different layers in federated clouds, starting
with the edge and fog layers, then the aggregation layer, and lastly the federated layers.
This confirms the scalability factor.



Electronics 2023, 12, 776 18 of 21

Table 4. Comparison of our framework with existing solutions.

Paper Citation MC-
Independently

Interoperability-
BC Integrity Access Control

–Smart Contact
Federated

System Scalability

[23] No Yes, heterogeneous
BC Yes Yes No Yes

[25] Yes No Yes Yes Yes edge, Fog Yes

[24] No Yes, heterogeneous
BC Yes Yes No Yes

[26] Yes No No Yes Yes edge Yes

[27] No No Yes Yes Yes edge Yes

Proposed
framework YesFF

Yes, homogeneous
BC-based on MS

and smart contracts
Yes Yes

Yes edge, Fog,
aggregation,

and federation
Yes

Our solution confirms the main objective, the interoperability of BC frameworks, by
implementing a smart contract handle using MS containers. Therefore, our framework
does not require trust in a third party to confirm transactions between the BCSM1 MS
and BCSM2 MS in each subsystem. It applies an interoperability framework using smart
contracts to every BC cluster. They can be classified, decentralized, and made transparent.

In terms of security and privacy issues, our proposed solution uses a permissioned
BC to handle all types of data and confirm the privacy and security requirements for each
subsystem. In addition, it uses the HAS 256 hashing algorithm to resolve integrity issues
based on FSSM MS containers while managing the interoperability transaction between the
two permissioned BCs (BCSM1 MS and BCSM2 MS). In order to guarantee the system’s
security, our proposed framework implements a smart contract using access control policies
through FSSM MS to limit data access between each subsystem. Figure 10 shows some of
the rules between BCSM1 and BCSM2 implemented in the FSSM MS.

Figure 10. Screenshot of some restricted functionality in FSSM MS.

The MS contains a bound context so that each security issue implements its own func-
tionality through smart contracts. The registration function in each BCSM MS framework
is performed without complexity and without being merged with other security services,
which reduces the overhead execution time for each transaction. Some other benefits of
interoperable BC are reduced costs for networks. As we have two subsystems, each with
its own BC network, each subsystem has its own functions for sending and receiving
transactions in its cluster, which reduces the costs of the networks of our entire system.



Electronics 2023, 12, 776 19 of 21

Moreover, our framework reduced overhead management, which is achieved in the FSSM
MS manager based on MS functionality in a loose architecture.

6. Conclusions

The key challenges in SOAs and conventional security strategies for IoT systems are a
lack of security and privacy, overly complex systems, a single point of failure, and the lack
of a federated cloud framework. In this research paper, we built a framework to ensure
the security and privacy of the IoT environment. Our solution is an interoperable system
between homogeneous BC managers for security and scalability. We used decentralized
BCSM-based MS containers to manage and authorize the BC platforms for any request.
Hence, we achieved interoperability between two BCSM MSs in different cloud providers
using the FSSM MS manager, which merged the transactions. Moreover, we built multiple
smart contracts based on BCs and MSs to ensure secure communication between the
different cloud providers in the IoT environment. The proposed framework was deployed
on a permissioned, homogeneous BC (Ethereum platform) based on Docker containers to
deploy the MS technology. Hyperledger Caliper was used to test the performance of our
solution regarding the special metrics of throughput and latency, as well as read and write
operations based on smart contract functionality. The performance evaluation results were
affected by the different send rate values. Overall, all the transactions in each test round
were successful and efficient, without any failures. In future work, we will develop our
solution for a heterogeneous BC network; in addition, we will extend our framework by
combining artificial intelligence and high-performance computing to improve the latency
and throughput of the BC.

Author Contributions: Conceptualization, K.S.A., M.A.K. and F.E.E.; methodology, K.S.A., M.A.K.,
F.E.E. and K.M.J.; software, K.S.A.; validation, M.A.K., F.E.E. and K.M.J.; writing—original draft
preparation, K.S.A.; writing—review and editing, K.S.A., M.A.K. and F.E.E.; supervision, M.A.K.,
F.E.E. and K.M.J. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sen, A.A.A.; Basahel, A.M. A comparative study between security and privacy. In Proceedings of the 2019 6th International

Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 13–15 March 2019; pp. 1282–1286.
2. Hassija, V.; Chamola, V.; Saxena, V.; Jain, D.; Goyal, P.; Sikdar, B. A Survey on IoT Security: Application Areas, Security Threats,

and Solution Architectures. IEEE Access 2019, 7, 82721–82743. [CrossRef]
3. Jiang, Y.; Wang, C.; Wang, Y.; Gao, L. A Survey on IoT Security: Application Areas, Security Threats, and Solution ArchitecturesA

cross-chain solution to integrating multiple blockchains for IoT data management. Sensors 2019, 19, 2042. [CrossRef] [PubMed]
4. Xu, R.; Ramachandran, G.S.; Chen, Y.; Krishnamachari, B. BlendSM-DDM: BLockchain-ENabled secure microservices for

decentralized data marketplaces. In Proceedings of the 2019 IEEE International Smart Cities Conference (ISC2), Casablanca,
Morocco, 14–17 October 2019. [CrossRef]

5. Vural, H.; Koyuncu, M.; Guney, S. A Systematic Literature Review on Microservices. In Computational Science and Its Applications–
ICCSA 2017: 17th International Conference, Trieste, Italy, 3–6 July 2017, Proceedings, Part VI 17; Springer International Publishing:
Berlin/Heidelberg, Germany, 2017; pp. 203–217. [CrossRef]

6. Khan, S.; Amin, M.B.; Azar, A.T.; Aslam, S. Towards Interoperable Blockchains: A Survey on the Role of Smart Contracts in
Blockchain Interoperability. IEEE Access 2021, 9, 116672–116691. [CrossRef]

7. Pang, Y. A New Consensus Protocol for Blockchain Interoperability Architecture. IEEE Access 2020, 8, 153719–153730. [CrossRef]
8. Lal, C.; Marijan, D. Blockchain Testing: Challenges, Techniques, and Research Directions. 2021. Available online: http://arxiv.

org/abs/2103.10074 (accessed on 18 March 2021).
9. Attaran, M.; Gunasekaran, A. (Eds.) Blockchain Principles, Qualities, and Business Applications BT—Applications of Blockchain

Technology in Business: Challenges and Opportunities; Springer International Publishing: Cham, Switzerland, 2019; pp. 13–20.
[CrossRef]

10. Niranjanamurthy, M.; Nithya, B.N.; Jagannatha, S. Analysis of Blockchain technology: Pros, cons and SWOT. Clust. Comput. 2019,
22, 14743–14757. [CrossRef]

http://doi.org/10.1109/ACCESS.2019.2924045
http://doi.org/10.3390/s19092042
http://www.ncbi.nlm.nih.gov/pubmed/31052380
http://doi.org/10.1109/ISC246665.2019.9071766
http://doi.org/10.1007/978-3-319-62407-5_14
http://doi.org/10.1109/ACCESS.2021.3106384
http://doi.org/10.1109/ACCESS.2020.3017549
http://arxiv.org/abs/2103.10074
http://arxiv.org/abs/2103.10074
http://doi.org/10.1007/978-3-030-27798-7_3
http://doi.org/10.1007/s10586-018-2387-5


Electronics 2023, 12, 776 20 of 21

11. Panarello, A.; Tapas, N.; Merlino, G.; Longo, F.; Puliafito, A. Blockchain and iot integration: A systematic survey. Sensors 2018, 18,
2575. [CrossRef] [PubMed]

12. Buterin and Vitalik, Ethereum White Paper: A Next Generation Smart Contract & Decentralized Application Platform. Etherum,
January 2014. pp. 1–36. Available online: https://github.com/ethereum/wiki/wiki/White-Paper (accessed on 2 January 2023).

13. Ethereum Virtual Machine (EVM)|Ethereum.org. Available online: https://ethereum.org/en/developers/docs/evm/ (accessed
on 2 January 2023).

14. Sahay, R.; Geethakumari, G.; Mitra, B. A novel blockchain based framework to secure IoT-LLNs against routing attacks. Computing
2020, 102, 2445–2470. [CrossRef]

15. Patel, C.; Vyas, S.; Kalariya, D.; Parmar, N.; Saikia, P.; Patel, S. A Futuristic Survey on Learning Techniques for Inter-
net of Things (IoT) Security: Developments, Applications, and Challenges. TechRxiv. Preprint. 2022. Available online:
https://www.techrxiv.org/articles/preprint/A_Futuristic_Survey_on_Learning_Techniques_for_Internet_of_Things_IoT_
Security_Developments_Applications_and_Challenges/19642977/1 (accessed on 2 January 2023).

16. Abdi, A.I.; Eassa, F.E.; Jambi, K.; Almarhabi, K.; Khemakhem, M.; Basuhail, A.; Yamin, M. Hierarchical Blockchain-Based
Multi-Chaincode Access Control for Securing IoT Systems. Electron 2022, 11, 711. [CrossRef]

17. Microservice Architecture Style—Azure Architecture Center|Microsoft Learn. Available online: https://learn.microsoft.com/en-
us/azure/architecture/guide/architecture-styles/microservices (accessed on 9 November 2022).

18. Driss, M.; Hasan, D.; Boulila, W.; Ahmad, J. Microservices in IoT security: Current solutions, research challenges, and future
directions. Procedia Comput. Sci. 2021, 192, 2385–2395. [CrossRef]

19. Lafourcade, P.; Lombard-Platet, M. About blockchain interoperability. Inf. Process. Lett. 2020, 161, 105976. [CrossRef]
20. Malomo, O.; Rawat, D.; Garuba, M. Security through block vault in a blockchain enabled federated cloud framework. Appl. Netw.

Sci. 2020, 5, 16. [CrossRef]
21. Esposito, C.; Castiglione, A.; Tudorica, C.A.; Pop, F. Security and Privacy for Cloud-Based Data Management in the Health

Network Service Chain: A Microservice Approach. IEEE Commun. Mag. 2017, 55, 102–108. [CrossRef]
22. Cheng, R.; Zhang, F.; Kos, J.; He, W.; Hynes, N.; Johnson, N.; Juels, A.; Miller, A.; Song, D. Ekiden: A platform for confidentiality-

preserving, trustworthy, and performant smart contracts. In Proceedings of the 2019 IEEE European Symposium on Security and
Privacy (EuroS&P), Stockholm, Sweden, 17–19 June 2019; pp. 185–200. [CrossRef]

23. Madine, M.; Salah, K.; Jayaraman, R.; Al-Hammadi, Y.; Arshad, J.; Yaqoob, I. AppxChain: Application-level interoperability for
blockchain networks. IEEE Access 2021, 9, 87777–87791. [CrossRef]

24. Punathumkandi, S.; Sundaram, V.M.; Panneer, P. Interoperable permissioned-blockchain with sustainable performance. Sustain-
ability 2021, 13, 11132. [CrossRef]

25. Xu, R.; Nikouei, S.Y.; Chen, Y.; Blasch, E.; Aved, A. BlendMAS: A blockchain-enabled decentralized microservices architecture for
smart public safety. In Proceedings of the 2019 IEEE International Conference on Blockchain (Blockchain), Atlanta, GA, USA,
14–17 July 2019; pp. 564–571. [CrossRef]

26. Zhang, J.; Lu, C.; Cheng, G.; Guo, T.; Kang, J.; Zhang, X.; Yuan, X.; Yan, X. A blockchain-based trusted edge platform in edge
computing environment. Sensors 2021, 21, 2126. [CrossRef] [PubMed]

27. Viriyasitavat, W.; Da Xu, L.; Bi, Z.; Sapsomboon, A. New blockchain-based architecture for service interoperations in internet of
things. IEEE Trans. Comput. Soc. Syst. 2019, 6, 739–748. [CrossRef]

28. Peng, Z.; Xu, J.; Hu, H.; Chen, L.; Kong, H. BlockShare: A Blockchain Empowered System for Privacy-Preserving Verifiable Data
Sharing. Bull. IEEE Comput. Soc. Tech. Comm. Data Eng. 2022, 1, 14–24.

29. Peng, Z.; Zhang, Y.; Xu, Q.; Liu, H.; Gao, Y.; Li, X.; Yu, G. NeuChain: A Fast Permissioned Blockchain System with Deterministic
Ordering. Proc. VLDB Endow. 2022, 15, 2585–2598. [CrossRef]

30. Hambouz, A.; Shaheen, Y.; Manna, A.; Al-Fayoumi, M.; Tedmori, S. Achieving Data Integrity and Confidentiality Using Image
Steganography and Hashing Techniques. In Proceedings of the 2019 2nd International Conference on New Trends in Computing
Sciences (ICTCS), Amman, Jordan, 9–11 October 2019; pp. 1–6. [CrossRef]

31. Reddy, G.P.; Narayana, A.; Keerthan, P.K.; Vineetha, B.; Honnavalli, P. Multiple hashing using SHA-256 and MD5. In Advances in
Computing and Network Communications: Proceedings of CoCoNet 2020; Springer: Singapore, 2021; Volume 1, pp. 643–655.

32. Remix—Ethereum IDE. Available online: https://remix-ide.readthedocs.io/en/latest/ (accessed on 15 November 2022).
33. Truffle—Truffle Suite. Available online: https://trufflesuite.com/truffle/ (accessed on 15 November 2022).
34. Home—Docker. Available online: https://www.docker.com/ (accessed on 15 November 2022).
35. Ganache. Available online: https://trufflesuite.com/ganache/ (accessed on 15 November 2022).
36. Hyperledger Besu. Available online: https://www.hyperledger.org/use/besu (accessed on 15 November 2022).
37. Cloud Computing Services|Microsoft Azure. Available online: https://azure.microsoft.com/en-us/ (accessed on 15 Novem-

ber 2022).
38. Node.js. Available online: https://nodejs.org/en/ (accessed on 15 November 2022).
39. MongoDB. Available online: https://www.mongodb.com/features (accessed on 15 November 2022).

http://doi.org/10.3390/s18082575
http://www.ncbi.nlm.nih.gov/pubmed/30082633
https://github.com/ethereum/wiki/wiki/White-Paper
https://ethereum.org/en/developers/docs/evm/
http://doi.org/10.1007/s00607-020-00823-8
https://www.techrxiv.org/articles/preprint/A_Futuristic_Survey_on_Learning_Techniques_for_Internet_of_Things_IoT_Security_Developments_Applications_and_Challenges/19642977/1
https://www.techrxiv.org/articles/preprint/A_Futuristic_Survey_on_Learning_Techniques_for_Internet_of_Things_IoT_Security_Developments_Applications_and_Challenges/19642977/1
http://doi.org/10.3390/electronics11050711
https://learn.microsoft.com/en-us/azure/architecture/guide/architecture-styles/microservices
https://learn.microsoft.com/en-us/azure/architecture/guide/architecture-styles/microservices
http://doi.org/10.1016/j.procs.2021.09.007
http://doi.org/10.1016/j.ipl.2020.105976
http://doi.org/10.1007/s41109-020-00256-4
http://doi.org/10.1109/MCOM.2017.1700089
http://doi.org/10.1109/EuroSP.2019.00023
http://doi.org/10.1109/ACCESS.2021.3089603
http://doi.org/10.3390/su132011132
http://doi.org/10.1109/Blockchain.2019.00082
http://doi.org/10.3390/s21062126
http://www.ncbi.nlm.nih.gov/pubmed/33803561
http://doi.org/10.1109/TCSS.2019.2924442
http://doi.org/10.14778/3551793.3551816
http://doi.org/10.1109/ICTCS.2019.8923060
https://remix-ide.readthedocs.io/en/latest/
https://trufflesuite.com/truffle/
https://www.docker.com/
https://trufflesuite.com/ganache/
https://www.hyperledger.org/use/besu
https://azure.microsoft.com/en-us/
https://nodejs.org/en/
https://www.mongodb.com/features


Electronics 2023, 12, 776 21 of 21

40. Hyperledger Caliper. Available online: https://hyperledger.github.io/caliper/ (accessed on 15 November 2022).
41. Hyperledger Blockchain Performance Metrics White Paper. Available online: https://www.hyperledger.org/learn/publications/

blockchain-performance-metrics (accessed on 15 November 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://hyperledger.github.io/caliper/
https://www.hyperledger.org/learn/publications/blockchain-performance-metrics
https://www.hyperledger.org/learn/publications/blockchain-performance-metrics

	Introduction 
	Literature Review 
	Background 
	Blockchain 
	Ethereum 
	Smart Contracts 
	Security and Privacy 
	Access Control 
	Microservices 

	Related Work 

	Materials and Methods 
	Design and Architecture of Proposed Solution 
	Edge Security Manager MS (ESM MS) 
	Fog Security Manager MS (FSM MS) 
	Aggregation Security Manager MS (AMSSM MS) 
	Federation Security System Manager MS (FSSM MS) 
	Blockchain Security Managers MS (BCSM MS) 

	FSSM MS Algorithm 

	Results 
	Implementation 
	Performance Evaluation of Our Framework 

	Discussions 
	Security Analysis of the Proposed Framework 
	Effectiveness of Our Security Solution 
	The Difference between our Proposed Framework and Related Works 

	Conclusions 
	References

