
Citation: Zhang, T.; Zhu, X.; Wu, C.

Reinforcement-Learning- Based

Software-Defined Edge Task

Allocation Algorithm. Electronics

2023, 12, 773. https://doi.org/

10.3390/electronics12030773

Academic Editor: Jeha Ryu

Received: 11 January 2023

Revised: 28 January 2023

Accepted: 1 February 2023

Published: 3 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Reinforcement-Learning-Based Software-Defined Edge Task
Allocation Algorithm
Tianhao Zhang * , Xiaojuan Zhu and Cai Wu

School of Computer Science and Engineering, Anhui University of Science and Technology,
Huainan 232000, China
* Correspondence: iamzth@126.com

Abstract: With the rapid growth in the number of IoT devices at the edge of the network, fast, flexible
and secure edge computing has emerged, but the disadvantage of the insufficient computing power
of edge servers is evident when dealing with massive computing tasks. To address this situation,
firstly, a software-defined edge-computing architecture (SDEC) is proposed, merging the control
layer of the software-defined architecture with the edge layer of edge computing, where multiple
controllers share global information about the network state through an east–west message exchange,
providing global state for the collaboration of edge servers. Secondly, a reinforcement-learning-based
software-defined edge task allocation algorithm (RL-SDETA) is proposed in the software-defined
IoT, which enables controllers to allocate computational tasks to the most appropriate edge servers
for execution based on the global network information they have obtained. Simulation results show
that the RL-SDETA algorithm can effectively reduce the finding cost of the optimal edge server and
reduce the task completion time and its energy consumption compared to various task allocation
methods such as random and uniform.

Keywords: edge computing; software-defined; task allocation; reinforcement learning

1. Introduction

The quantity of data generated by IoT devices has increased significantly in recent
years. As these IoT devices usually have limited computational power, there is a need to
offload computational tasks from the resource-constrained device side to edge servers with
more computational power to meet the demand for low latency and bandwidth savings [1].
However, compared to cloud servers, edge servers also have limited computing resources.
As more and more data and information need to be analysed, processed and stored on edge
servers, tasks can be distributed across multiple edge servers to meet the rapid processing
of massive tasks. The advantage of the software-defined network (SDN) architecture is
the flexibility to define and extend the functionality of the entire system [2]. Based on the
characteristics of a software-defined architecture, the control layer can schedule and control
the network as a whole without touching the low-level configuration [3].

Typically, applications for edge-computing runtime can be divided into multiple steps,
and each step can specifically be divided into multiple tasks [4]. For the problem of edge
servers’ computational capacity, an operational mechanism is needed to support latency-
sensitive edge-computing tasks, enabling edge servers to collaborate with each other to
execute the tasks. The divided subtasks are assigned to different edge servers for execution,
and the results are passed back after execution.

In this paper, computing resources are allocated on-demand through a software-
defined architecture, with the aim of enabling multiple edge servers to work together on
tasks in a highly automated and intelligent manner. Software-defined edge computing
as an open IoT system architecture decouples upper-layer IoT applications from the un-
derlying physical resources at the edge and builds dynamically reconfigurable intelligent

Electronics 2023, 12, 773. https://doi.org/10.3390/electronics12030773 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12030773
https://doi.org/10.3390/electronics12030773
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-0713-9526
https://doi.org/10.3390/electronics12030773
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12030773?type=check_update&version=1

Electronics 2023, 12, 773 2 of 21

edge services [5]. The advantage of this new architecture is the ability to achieve logical
and centralised control of distributed network nodes as well as IoT devices. SDN has been
extensively studied in terms of controller deployment in software definition [6,7], controller
scalability [8] and SDN applications [9]. However, to our knowledge, collaborative pro-
cessing of edge-computing tasks in the IoT environment has been rarely addressed. To
this end, this paper proposes a software-defined edge-based architecture, which allows
the controller to collect information from edge servers and sense the network state from
a global perspective by separating the control plane from the data plane. Based on the
decisions made by the SDN controller after sensing, it determines whether the current task
is to be executed on the current edge server or whether some or all of the tasks are to be
distributed to other edge servers for coprocessing.

In order to minimise the task completion time and the energy consumption of the
sensor network, this paper proposes a reinforcement-learning-based software-defined edge
task allocation algorithm. The strategy aims to obtain an efficient solution for the computa-
tional resource allocation and task layout. In this regard, we evaluate the performance of
the task allocation scheme proposed in this paper under the SDEC architecture and compare
it with the random and uniform allocation schemes. The experimental results show that the
scheme can effectively improve the efficiency of the task allocation and reduce the energy
consumption in the late iteration. The main contributions of this paper include:

1. The synchronisation of the state information between edge servers is addressed
through the east–west architecture of SDNs.

2. A software-defined edge-computing architecture is proposed. By fusing the control
layer with the edge layer, global information about edge servers, network states and
tasks can be obtained, thus enabling multiple edge servers to perform tasks together
in an edge environment.

3. A reinforcement-learning-based edge task allocation algorithm in software-defined
IoT is proposed, which can effectively reduce the cost of finding the optimal edge
server, lower the task completion time and reduce energy consumption. We conduct
extensive experiments to evaluate the performance of the scheme. The experimental
results show that the algorithm can reduce task completion time as well as energy
consumption compared to random and uniform task computation offloading.

The paper is organised as follows: Section 2 briefly discusses related work. Section 3
presents the software-defined edge-computing architecture. Section 4 presents the reinforcement-
learning-based software-defined edge task allocation algorithm. We conduct extensive
experiments to evaluate the algorithm and present the evaluation results in Section 5.
Section 6 concludes the paper.

2. Related Work
2.1. Distributed Controller Architecture

When SDN architectures are deployed in today’s real networks, some of the larger
networks are usually divided into several smaller subnets, each with an SDN controller
that can only store the local network view [8]. To address this, Lin et al. proposed a
high-performance network view exchange mechanism for multidomain networks [10],
laying the groundwork for an east–west architecture for SDNs.

The east–west architectures of SDNs can currently be divided into two main categories,
namely hierarchical and horizontal architectures [11–14]. Hierarchical architectures are
characterised by the fact that no east–west interfaces are erected between regional con-
trollers, and the data interaction between them is done through an upper layer of controllers.
The core of this approach is to convert the east–west interface into a north–south interface,
mainly represented by the open exchange protocol (OXP), an east–west SDN architecture
for SDN mobile self-assembly proposed by Yang et al. [11]. The difference between the
horizontal architecture and the hierarchical architecture is that the data interaction between
controllers no longer needs to be done by an upper-layer controller, but there is an east–west
interface between each of them to complete the necessary data interaction. A communica-

Electronics 2023, 12, 773 3 of 21

tion interface for distributed control plane (CIDC) for a distributed control plane proposed
by Benamrane et al. [12] is typical of this architecture, but this communication interface
is limited to small-scale network environment; the effective west–east control association
network (WECAN) [13] proposed by Yu et al. can effectively control network entities to
communicate in a large-scale network environment. In addition, for the application of
distributed controller framework in the IoT environment, the UbiFlow system [14] pro-
posed by Wu et al. is oriented towards traffic control and mobility management in the IoT
environment, and the system achieves distributed control of IoT traffic.

With a distributed controller architecture, the controller is able to obtain global view
information in multiple SDN domains. In this paper, we use the global view informa-
tion in the controller to perform reinforcement learning and find the optimal edge task
allocation scheme.

2.2. Allocation of Edge Tasks

Task allocation and offloading is one of the main research elements in edge computing,
which makes up for the shortage in computing power and storage resources of end devices
and improves the ability of task processing in edge computing [15,16]. Due to the limited
computing capacity of edge servers, when the edge server enters a high load state in the
face of a large number of offload requests, it needs to allocate tasks to other edge servers or
to federate cloud centres for processing. Based on edge cloud architectures, a number of
architectures already exist to manage and coordinate computing resources at the edge and
in the cloud, and the potential benefits in dynamic scenarios have been evaluated [17,18].
There are also current research directions based on three-tier offload architectures; for
example, Wu et al. proposed a three-tier offload computing architecture for federating
cloud centres to offload some of the edge tasks with low latency requirements to cloud
centres for execution through energy latency awareness [19].

In contrast, assigning tasks to other edge servers means that the tasks are not offloaded
to the cloud, and multiple edge servers at the edge are used to perform the tasks together.
When one edge server is unable to handle the impact of a large number of IoT devices
in a timely manner, multiple edge servers are required to work together to complete
the tasks, thereby increasing the task-processing capacity at the edge [20–22]. There are
two main directions from the existing task allocation schemes, which are security and
energy efficiency considerations. From the perspective of security, Angelo et al. provided
a trusted collaboration between edge servers through a blockchain framework, mainly
from the perspective of security, to consider distributing tasks to other edge servers for
processing [23]; from the perspective of energy efficiency, Ramtin et al. proposed an EEDOS
collaboration-based allocation scheme for edge-computing tasks from the perspective of
energy efficiency and latency awareness that greatly improved energy efficiency [24].

In addition, the global optimisation brought by SDNs also provides a lot of room for
improving the effect of edge task allocation. Bassem et al. proposed a method for dynamic
task scheduling based on SDNs [25], which solved the problem of resource allocation and
energy awareness in edge computing by means of reinforcement learning. Zhang et al.
built an SDN-based in-vehicle MEC architecture [26], which solved the task-offloading
and resource allocation problems in in-vehicle networks by sensing the global state of
the network and improved the operational efficiency of in-vehicle networks. From an
application perspective, Jieun et al. proposed an intelligent task-offloading model for edge
computing for a series of forest fire scenarios, which attempted to solve the problem of
prediction and rapid response to forest fires by preventing individual edge nodes from
being overloaded through a task collaboration between edge nodes and responding quickly
to potential hazards in emergency situations [27].

3. Software-Defined Edge-Computing Architecture

The SDEC architecture proposed in this paper enables a global information transfer in
the edge environment through the east–west interface of SDNs, which mainly takes advan-

Electronics 2023, 12, 773 4 of 21

tage of the SDN’s real-time mastering of the topological state of the whole network and
makes the collaborative processing of tasks between different edge servers more efficient,
as shown in Figure 1. We extend the idea of software definition to the IoT environment
using edge computing. The computing resources and service capabilities of these edge
servers are virtualised and abstracted through cyberphysical mapping techniques, and
ultimately, the SDEC controller enables the allocation of edge tasks.

Controller

Controller

Controller

Edge Server

Edge Server

Sink Nodes

Wireless Sensors

Cloud Server Cluster

Control

Plane

Data

Plane

Application

Layer

Edge Server

Edge Server

Edge Server

Edge Server

Edge Server

Edge Server

Edge Server
SDN Domain

SDN Domain

SDN Domain

Figure 1. SDEC architecture. The SDEC architecture has three layers, converging the application,
control and data layers of the software-defined architecture with the cloud, edge and end of the edge
computing architecture.

The SDEC architecture makes full use of the east–west interface of SDNs, allowing the
controllers to be connected into a network for fast information exchange. SDEC controllers
are deployed at the edge layer of the edge computing architecture, allowing a global view
to be shared to get the distribution of computing resources at the edge of the network.

3.1. Network Global View

The network view consists mainly of static and dynamic information [10]. In a
software-defined architecture, the static aspects of the edge network information can
be divided into three parts:

First of all, the topology information between the controllers, including the status
information of the controllers, Openflow switches and wireless sensor devices, as well as
the status, bandwidth and port throughput of the links. Secondly, the reachability of the
edge servers: each controller is connected to an edge server in its area, and this section
includes information on the status of the edge servers and their reachability. Finally, there
is the quality of service (QoS) of the network, which includes the transmission delay of the
network, the reliability and packet loss rate of the links, delay variation and cost.

The dynamic aspect of the edge network information consists mainly of the real-time
state of the entire network architecture, such as real-time bandwidth utilisation in the
topology information and all flow paths in the network. In order to avoid congestion
throughout the network, the advantage of a centralised control of the SDN architecture lies
in the fact that flow tables can be planned dynamically according to the specifics of the
entire edge network and therefore also need to be treated as dynamic information about
the network.

A global view of the entire edge network is formalised, and a unified tag is used to
deliver the network global view message. The global view message contains the controller

Electronics 2023, 12, 773 5 of 21

information, link information, port information, edge server information, etc., and is stored
using key–value pairs in the format shown in Table 1.

Table 1. Key–value table of global view storage.

Key Column

Controller_ID IP address, Port number, System version, Edge Server_ID, Supplier name, Device type, Device function
Link_ID Source Controller_ID, Destination Controller_ID, Source Port_ID, Destination Port_ID, Is_Link_Active, Bandwidth
Port_ID Controller_ID, Port_MAC, Is_Active, Throughput
Edge Server_ID Controller_ID, CPU model, CPU frequency, Memory type, Memory capacity, Remaining computing resources
Controller_Capability Protocol name, version
Reachability Edge Server IP prefixes, Length
Link_Utilities Link_ID, Link utilities

Edge network global view messages contain the controller information, link infor-
mation, port information, edge server information and more. A uniform format is used
and encapsulated into an XML file format for delivery, making the network global view
message format flexible and easily extensible. The global network view is constructed
through the interaction of global view messages between controllers.

3.2. Global View Information Exchange Mechanism

After the controllers have discovered each other, each controller is informed of the
addresses where the other controllers are located. All controllers can then create a virtual
full mesh topology to exchange and share global view information.

When exchanging global view information, messages are sent between controllers to
keep the links linked and the information passed. We divided the messages between the
controllers into five main categories, as shown in Table 2, and each message had a different
function to support the global view information exchange.

Table 2. Message type table for information exchange.

Message Type Function

HELLO The first message sent after the TCP connection is established
KEEPALIVE Send at regular intervals to confirm the connection
VIEW-REQUEST Request network global view
UPDATE Global view update information sent to other controllers
ERROR Report problems with itself or adjacent controllers to all other controllers

The specific exchange is shown in Figure 2. The fast exchange of information between
controllers requires a TCP connection to be established first. When a controller A initiates a
connection to another controller B, it sends a SYN packet and waits for its acknowledgement.
Controller B receives the SYN packet from controller A, acknowledges it and then ends the
LISTEN phase and returns a TCP message. Controller A receives the SYN + ACK packet
sent, makes it clear that the data transfer from controller A to controller B is normal, returns
the acknowledgement packet ACK and controller A and controller B enter the connection
state. Once a TCP connection has been established between two controllers, an OPEN
message needs to be sent to confirm that the other is running; when an OPEN message is
received from the other, a reply needs to be sent to confirm the OPEN message. To ensure
the exchange of controller views, a KEEPALIVE message is sent continuously to confirm
that the link is open. The controller will continuously send KEEPALIVE messages to
neighbouring controllers via a timer to confirm the survival of the neighbouring controller.
When the controller does not receive a reply to the KEEPALIVE message several times, it
will assume that the neighbouring controller is not alive and pass the ERROR message to
the other controllers to update their stored global view.

Electronics 2023, 12, 773 6 of 21

Establish TCP connection

Send OPEN message

Reply OPEN message

Send KEEPALIVE message

Reply KEEPALIVE message

Send KEEPALIVE message

Reply KEEPALIVE message

...
Keep Repeating

Send UPDATE message

(carry the global view information)

Send VIEW-REQUEST message

(request global view)

Figure 2. Global view exchange mechanism. SDN controllers exchange messages between them
to achieve the effects of east–west connectivity, view updates, view requests, etc., and constantly
communicate with each other to keep the global view up to date.

During the transfer of the network global view, updates to the global view are sent
between controllers via UPDATE messages to other controllers. When a controller needs
to obtain the global view of a neighbouring controller, it can request its stored network
global view from the neighbouring controller by sending a VIEW-REQUEST message to
the neighbouring controller.

The SDN controller can be seen as an agent while outside the agent is regarded as
the environment, and environment changes can be obtained from the SDN global view.
Under the SDEC architecture, controllers can be informed of the distribution of resources
across the IoT edge environment in a timely manner and find the optimal edge-computing
task-allocation strategy.

4. Optimal Edge Task Allocation Algorithm

For tasks that needed to be assigned, we preprocessed them before the assignment, i.e.,
tasks that required more resources than the edge server could handle were handed over to
the cloud platform. When the edge servers worked together to perform tasks, the process
could be divided into two major steps: the edge server to be selected was first found in
scope, and then the task was logically assigned to the server to be selected.

4.1. Problem Definition

There are three factors to consider when finding a suitable edge server, namely the
transmission distance of the task, the computing power of the edge server to be selected
and its remaining computing resources.

Since the remaining computing resources of each edge server cannot be known in
real time through the global network view at the initial stage of the search process, the
transmission distance of the task needs to be the primary consideration at the initial stage,
and the closest edge server with the lowest latency is selected, and the number of edge

Electronics 2023, 12, 773 7 of 21

servers required is determined according to the size of the task. The required number of
edge servers Sneed can be obtained from the following equation:

Sneed = sup
(

Rneed/Redge

)
(1)

Rneed represents the compute resources required for the task and Redge represents the
average remaining compute resources of the edge servers within the network view. Once
the corresponding number of edge servers is found, a KEEPALIVE message is sent to the
specified edge server to confirm whether the edge server is still alive or not; the KEEPALIVE
message is timed and has a timeout retransmission mechanism. When a reply message
is received from another edge server, the current edge server stops sending KEEPALIVE
messages. If a KEEPALIVE message is sent several times but no reply is received, the target
edge server for the KEEPALIVE message is determined to be nonexistent or unreachable.

The reply message from the target edge server contains the existing remaining comput-
ing resources Ri

now of the ith edge server. By summing the existing remaining computing
resources Ri

now of the responding edge server, the remaining computing resources Rtemp of
the current edge environment can be obtained.

Rtemp =
n

∑
i=0

Ri
now (2)

If the current resource Rtemp does not satisfy the computational resources required by
the task, the search continues according to the distance and latency priority. If the current
resource Rtemp satisfies the need of the task, the task allocation policy is calculated based
on the obtained Rtemp, and the appropriate edge server is selected for collaboration.

The selection of the optimal edge server needs to take into account the partitioning of
tasks and the dependencies between subtasks. Here the dependencies between subtasks are
divided into two types, namely, same-task dependencies and different-task dependencies.
Same-task dependency means that there is a dependency between subtasks and they belong
to the same task, while different-task dependency means that there is a dependency between
subtasks but they do not belong to the same task. When subtasks are acquired in the
controller, it is necessary to determine whether the current subtask will have dependencies
with the next subtasks. In addition, in order to find the optimal edge server, three factors
need to be considered in the task allocation.

1. Distance factor: Distance here refers to the transmission distance between the wireless
sensor to be assigned the task and the edge server to be selected. Minimising the
distance reduces the transmission delay of the task and the energy consumption of
the sensor’s emission.

2. CPU processing frequency of the edge server: The higher the operating frequency
of the processing unit on the edge server, the less time a task of the same size will
take to compute on the edge server and the faster it will be computed. Denoting the
operating frequency of the processing unit on the edge server by fedge, the execution
time Texe of the task on the edge server is defined as follows:

Texe = W/ fedge (3)

3. Remaining computing resources of the edge server: The edge servers to be selected
that are rich in remaining computational resources are also prioritised as the optimal
edge servers to facilitate the allocation of more task-dependent subsequent subtasks.
The remaining computational resources can be measured by the average system load,
which can be calculated based on the average number of processes in the running
queue during a given time interval. We used the following formula to define the
remaining computational resources of an edge server:

Rm = 1− Lave/
(

Ncpu × Pmax
cpu

)
(4)

Electronics 2023, 12, 773 8 of 21

where Lave indicates the average number of processes in the system, Ncpu indicates
the number of CPUs, and Pmax

cpu indicates the maximum number of processes per CPU
specified by the user, which is generally no greater than 5. The smaller the value of
Rm, the less computing resources are left in the edge server, and when the value of
Rm is less than 0, the system goes into overload.

4.2. Energy Consumption Model

In the SDEC architecture, the underlying sensor network only undertakes data collec-
tion and data forwarding, while the computation and processing tasks are performed by
the edge server. Therefore, the energy consumption of wireless sensors is divided into the
sensor operation’s energy consumption and the wireless transmission’s energy consump-
tion, and this paper mainly considered the wireless transmission’s energy consumption of
sensors. We assumed that the operational energy consumption of the sensor was stable as
Erun, then according to the set of Friis transmission equations [28], the transmitting power
of the wireless sensor in different environments was proportional to the distance between
the transmitter and the receiver, and the ratio equation of the transmitting power Psend to
the receiving power Prcv was defined as follows:

Prcv

Psend =
K

D2
s

(5)

where K represents the influence factor in different environments and Ds represents the
distance between the sensor at the transmitter and the receiver. It follows that as the distance
to be transmitted becomes larger, the transmit power required by the wireless sensor
also needs to increase. We used εamp to denote the power amplifier power consumption
required to boost the transmit power of the wireless sensor, and then the transmit energy
consumption formula for wireless transmission of the sensor is shown in Equation (6).

Esend = Eelec + εamp × D2
s (6)

Eelec in the equation indicates the energy consumption of the circuit caused by sending
and receiving data. The energy consumption equation for wireless sensors receiving data
is shown in Equation (7), where the energy consumption of the sensor receiving data is
independent of distance.

Ercv = Eelec (7)

When performing task offloading, the wireless sensor needs to transmit the task data
to the selected optimal edge server, and the transmit energy consumption of the sensor
wireless transmission is then related to the distance of transmission; since our aim was
to minimise the transmit energy consumption of the sensor wireless transmission, the
expression was as shown in Equation (8).

min
εamp,D

Esend s.t.D ≤ Ds (8)

4.3. Task Allocation Issues

The closest edge server may not have an abundance of remaining compute resources,
so there is a trade-off between latency, energy consumption, the compute capacity of the
edge server to be selected and the remaining compute resources. The Q-value measures the
suitability of the edge server for the current edge task, with a higher Q-value indicating
that the selected edge server is more suitable for the current subtask.

Q = ω1 × fedge + ω2 × Esend + ω3 × relay + ω4 × Rm (9)

The {ω1, ω2, ω3, ω4} in Equation (9) are collectively referred to as ω values. relay
denotes the total delay of task transmission, defined in Equation (16), and Rm denotes

Electronics 2023, 12, 773 9 of 21

the remaining computational resources of the edge server, defined in Equation (4). The ω
serves as the key to weighting computational capacity, delay, remaining computational
resources and energy consumption, and it becomes a critical issue to find the appropriate
ω both quickly and accurately.

By means of reinforcement learning, we solved the decision problem of latency, energy
consumption, computational capacity of the edge server to be selected and its remaining
computational resources during the edge-computing task allocation. The optimal ω choice
was found by continuously measuring the edge servers to be selected based on the Q-
value and updating ω based on the measurement result. Finally, the optimal ω value was
substituted into the Q-value calculation formula, according to which one or more edge
servers were selected for collaborative task execution. One of the measures of the optimal
ω selection was the task completion time, and this paper used relay f in to represent the task
completion time. If the task was executed on the local edge server, relay f in was equal to
the execution time of the task in the edge cloud; while if the task was executed by multiple
edge servers together, relay f in needed to include the time it took for the task to be passed
to the edge server, the execution time of the task in the edge cloud and the time it took for
the task execution result to be passed back to the local edge server. We defined the time
Tsend for the task to be delivered to the edge server as:

Tsend = di/rsend (10)

where di denotes the quantity of data to be transmitted by the ith sensor to the other edge
servers for the edge task, and rsend denotes the rate at which the wireless channel data
are sent. Considering that after a task was processed, its data size was usually reduced
compared to before processing, we calculated the sending time of the task and the receiving
time of the task result separately, using rrcv to denote the receiving rate of the wireless
channel data, and the time Trcv for the task result to be delivered from the other edge
servers to the local wireless sensor was defined as:

Trcv = d′/rrcv (11)

d′ represents the quantity of task result data received from other edge servers. The
execution time of the task on the edge server is shown in Equation (3). From this, the
completion time of the task relay f in can be obtained to satisfy the following Equation (12).

relay f in = Tsend + Texe + Trcv (12)

If the task does not participate in coprocessing and is only executed in the local
edge server, both Tsend and Trcv in the equation are equal to zero, at which point the task
completion time is equal to the execution time of the task in the edge cloud.

In addition, in terms of task dependency, it is possible for subtasks of the same
application to have task dependency requirements [4]. If subtasks with dependencies
on each other are assigned to different edge servers for execution, it is also necessary to
consider the time spent for the task result after the execution of the previous subtask to be
delivered to the edge server executing the latter subtask, and we denoted the time delay
of sending the result of the previous subtask execution by relaysub, which was defined by
Equation (13).

relaysub = d′f ront/rsend (13)

d′f ront in the formula represents the quantity of task result data after the execution of
the previous subtask. Of course, if there is no dependency between two subtasks, the size of
the relaysub value needs not be considered. The total delay relay is defined in Equation (16)
below, where D is used to denote the distance between the sensor sending the current

Electronics 2023, 12, 773 10 of 21

subtask and the server receiving the subtask; Dsub denotes the distance between the server
executing the previous subtask and the server executing the current subtask.

relaysend
pre = relaysub + Dsub/rtran (14)

relaysend
next = Tsend + D/rtran (15)

relay =

{
relay f in + D/rtran

Texe + Trcv + max
{

relaysend
pre , relaysend

next

} (16)

The definition of the total delay relay needs to take into account the transmission delay
of the task, for which we used rtran to denote the transmission rate of the task. relaysend

pre

denotes the time when the result of the previous subtask is transmitted; relaysend
next denotes

the time when the new subtask is transmitted. When defining the total delay relay, if
there is no dependency between the preceding and following subtasks, we do not need
to consider the delivery time of the result of the previous subtask; if there is dependency
between the preceding and following subtasks, we need to consider the time of the result
of the previous subtask delivered to the server executing the following subtask, because
before starting the execution of the task, the execution result of the previous subtask and
the current subtask both must reach the edge server where the task is executed.

The algorithm first needs to define an initial ω0 for each ω and then adjust the choice
of ω according to the computational load of the task, the degree of dependency and the per-
formance of the edge server. We implemented the adjustment of ω through reinforcement
learning, a process that has several key elements.

4.3.1. State Space S

The state is the information about the detection of the environment after the algo-
rithm executes the relevant action and contains the initial state, the intermediate state
and the final state. For the optimisation objectives and constraints in this paper, the
state space S can be defined by the variation of the task transmission delay γrelnow, the
variation of the task result delivery time γrel sub, the variation of the task execution time
γexe, and the variation of the energy consumption during the task assignment γenergy, i.e.,
S = γrelnow, γrel sub, γexe, γenergy.

The final state is the goal of the algorithm’s execution, and the aim of each action’s
execution is to get as close as possible to the final state.

4.3.2. Action Space A

The action space A contains a set of actions, which include increasing and decreasing
the value of ωi, denoted by addωi and subωi . In addition, nchangei(S−) in the following
indicates that ωi is adjusted in the same way as the previous action, changei(S−) indicates
that ωi is adjusted in the opposite way to the previous action, and ki indicates that ωi
remains unchanged. The action space is defined as:

A = {addωi , subωi , nchangei(S−), changei(S−), ki}
i ∈ {1, 2, 3, 4} (17)

The movements are initially generated randomly by the algorithm and eventually
stabilise as they interact with the environment.

Electronics 2023, 12, 773 11 of 21

4.3.3. Reward R

Describing the system cost as the total duration of the task performed by the opti-
mal edge server under the current ω selection and the energy consumption, the reward
parameter R is defined as follows:

R =
(relay

S−i
real−relay

Si
real)+(energy

S−i
real−energy

Si
real)

relay
Si
real+energy

Si
real

(18)

where relay
S−i
real denotes the total delay of the task completion in the previous state S−i , while

the total delay of the task completion in the current state Si is represented by relaySi
real . In

addition, the change of energy consumption is also used as part of the reward parameter

for feedback, and we used energy
S−i
real to denote the total energy consumption under the

previous state S−i and energySi
real to denote the total energy consumption under the current

state Si.

4.3.4. Environment E

Under the SDEC architecture, the environment refers to the edge network’s state
information obtained by the SDN controller and the allocation of edge computing resources,
such as the congestion of the network and the remaining computing resources of the edge
servers. The environment information can be obtained from the SDN global view, and
the intelligences are affected by the environment into different states, i.e., changes in the
environment cause changes in the state. The SDN controller’s role as an intelligence needs
to continuously explore and interact with the environment to obtain the optimal policy for
adjusting the ω value.

To find the optimal ω value, we also defined a state–action table, as shown in Table 3
below. The parameter value of action j under state Si in the table is defined as Qi,j, which is
used to determine the direction of ω change. The larger the value of Qi,j in a given state,
the more the algorithm tends to select action j at state Si.

The state column in Table 3 refers to the different states, while the action column
contains the different actions, and the actions contain the change actions for ω1 ∼ ω4.
When the agent is in a certain state, it needs to select the action for ω1 ∼ ω4 from the action
columns, respectively. For example, at state S1 in the table, the parameter value of Q1,0 is
the largest for ω1, meaning that the parameter value of the action in column 0 is the largest
at state S1, i.e., the parameter value of the addω1 action is the largest, at which point the
algorithm tends to select the action in column 0 the most at state S1, increasing the value of
ω1 by ∆ω, making the change in the value of ω1 closer to the optimum. When the edge task
arrives, the controller continuously adjusts ω according to the values in the state–action
table and uses the adjusted ω to calculate the edge server with the largest Q-value, i.e., the
most suitable edge server for the current edge task.

Table 3. State–action table.

State
Action

addω1 subω1 nchange1 change1 ki . . .

Initial state S0 2.5 1 2 0.2 0.3 . . .

State S1 2.5 0.4 2.2 0.1 1.1 . . .

State S2 1.1 2.5 0.5 2.6 1.7 . . .

. .

Moreover, in the process of continuously adjusting ω, feedback is needed to update
the Qi,j values in the Si state in the table based on the effect of the ω adjustment. We defined

Electronics 2023, 12, 773 12 of 21

the original Qi,j value in the table for the Si state as Qold
i,j and the Qi,j value in the real case

as Qreal
i,j :

Qreal
i,j = R + ϕ×max

(
Qold

i,j

)
(19)

where ϕ is the decay value, and R represents the reward. The current ω selection is fed
back into the table through the parameter R and the Qi,j value is updated. We defined
the difference between the Qi,j value in the original Si state and the Qi,j value in the real
situation as a gap, then the value Qnew

i,j that needs to be updated to the state–action table
can be calculated by Equation (20). It is important to note that α in the formula is the
learning efficiency.

gap = Qreal
i,j −Qold

i,j (20)

Qnew
i,j = Qold

i,j + α× gap (21)

The RL-SDETA algorithm ends when the adjustment of ω enters the final state of the
state–action table, when the adjustment of ω has reached its optimal value. The final state
is determined when the ω value is no longer adjusted or is repeatedly adjusted around
a certain value, and the determination parameters need to be set before the algorithm is
executed. The significance of this algorithm is that the effect of performing an action in
different states can be fed back into the state–action table by means of the reward parameter
R. With continuous feedback, the parameter values stored in the state–action table allow
the adjustment of ω values in the right direction quickly and with increasing efficiency.
The process of selecting the optimal ω value for the RL-SDETA algorithm is described in
Algorithm 1 and is demonstrated in Section 5 by simulation experiments where the number
of lookups for the algorithm varies with the number of training rounds.

Algorithm 1 Optimal value find algorithm.

Input:
1: Give calculation amount of task
2: Give global view information
3: Give weight ω0 before algorithm execution

Output:
4: Optimal ω value selection
5: Initialize random data ε
6: Calculate the Q-value of the edge server in the global view by Equation (9)
7: while state S != ’terminal’ do
8: Select an action A from the state table corresponding to state S
9: With probability ε, select a random action A

10: Otherwise, select A = argmax
A

Q(S, A)

11: Execute action A and generate a new state Snext and a reward R
12: Adjustment parameter ω
13: if Snext != ’terminal’ then
14: Calculate Creal by R,Qold according to Equation (18)
15: else
16: Assign the reward R to Qreal

17: end if
18: Update the state table by parameter gap according to Equation (20)
19: Update new state Snext to state S
20: end while
21: return state table, ω

The optimal ω value can be obtained by the above-mentioned Algorithm 1, and this ω
value is substituted into the Q-value calculation formula, i.e., Equation (9). The Q-value

Electronics 2023, 12, 773 13 of 21

calculated according to the formula is used to measure the edge server, and the optimal
edge server selection scheme is finally obtained. The specific process is implemented in
Algorithm 2, and the edge server selection can be assigned to one or more edge servers
according to the task division.

Algorithm 2 RL-SDETA algorithm

Input:
1: Give computing tasks
2: Give global view information

Output:
3: Optimal edge server selection
4: Define initial ω0
5: Convert global view information to array form
6: Call Algorithm 1 with global view information in the form of index groups
7: Calculate the Q-value of the edge server to be selected according to Equation (9)
8: Sort the Q-values of edge servers
9: Select the best edge server by the Q-value

10: return Optimal server selection schemes

5. Simulation Experiment

In this section, we conduct simulation experiments on the offloading of edge task
assignment under software definition. The experimental results are divided into three parts:
(i) investigating the variation in the number of lookups of this reinforcement-learning-based
edge task allocation algorithm; (ii) comparing the proposed RL-SDETA algorithm with
random and uniform task-offloading schemes; and (iii) investigating the impact of the
task’s data size on task allocation performance.

5.1. Experimental Setup

The SDEC architecture requires an edge computing environment and we used Edge-
CloudSim [29] to simulate the edge environment. The experiments simulated different
numbers of edge servers running simultaneously, and the performance of the edge devices
and the congestion on the links were generated randomly. The experiments used Mininet to
simulate the global view transmission of the SDN’s east–west architecture, and the global
view information generated by the simulation was encapsulated into a configuration file
whose configuration was read by the network module of EdgeCloudSim. In order to imple-
ment the software-defined reinforcement-learning-based edge task allocation algorithm
proposed in this paper, the TensorFlow and Keras libraries were run in Python, running
on a multicore CPU server equipped with an Intel XeonGold 5118 processor with 48 cores.
In the implementation of the RL-SDETA algorithm, the global view, i.e., the task model,
was used as input to the algorithm and the best server selection scheme was saved as a
configuration file which was read by EdgeCloudSim to execute the scheme.

This experiment simulated different numbers of edge servers running simultaneously,
and the performance of edge devices, subtask dependencies and link congestion were
randomly generated. The experiments simulated global view passing of the SDN’s east–
west architecture with Mininet and implemented reinforcement learning algorithms using
Python. Through continuous recursion, we were eventually able to obtain the optimal
ω selection and apply it to the simulated environment of edge computing to verify the
efficiency of task processing. The settings of the simulation parameters are shown in Table 4.

When running the RL-SDETA algorithm, as the number of training rounds continued
to increase, it could be found that the number of times the optimal edge server was modified
in the process of finding the optimal ω value decreased rapidly, and as the number of
training rounds increased to a certain level, the number of times the optimal edge server
was found stabilised at a low value. As shown in Figure 3, the number of lookups for the

Electronics 2023, 12, 773 14 of 21

optimal ω value was always maintained at a low level as the feedback algorithm continued
to operate.

Table 4. Simulation parameters table.

Parameter Value

Number of edge servers 10
Number of tasks 500
Transmission bandwidth 20 MHz
Greed 0.9
Learning efficiency 0.8
Attenuation degree 0.9

0 20 40 60 80 100 120 140 160 180 200

0

50

100

150

200

S
e
a
rc
h
ti
m
e
s

Round

Search times

Figure 3. Change diagram of search times of edge server.

The reason for the rapid decrease in the number of times the value of ω needed to be
modified was that as the number of training rounds increased, more and more information
was fed into the state–action table. The efficiency of the controller in finding the optimal
edge server was improved by continuous optimisation feedback. Once the optimal edge
server was found, the controller still fed the state–action table with a positive result as
a success.

It is worth noting that the number of training rounds in Figure 3 refers to the number
of subtasks that arrived, with each subtask arriving to start a new round of training. When
a new task arrived, the controller looked for a suitable edge server based on the size of
the task and the remaining computational resources of the server; when the optimal edge
server was found, the training round was completed, i.e., the number of training rounds
was increased by one.

5.2. Performance Evaluation

In this section, we compare the RL-SDETA algorithm with the random [30] and
uniform [26] task-offloading schemes. We evaluated the performance of the RL-SDETA al-
gorithm in all aspects by comparing the computation time, latency and energy consumption
of the deployed tasks.

5.2.1. Contrast Programme

The random task offloading scheme refers to randomly offloading computational tasks
to other edge clouds for processing or processing them locally. In our experiments, we used

Electronics 2023, 12, 773 15 of 21

a random seed that could randomly generate the number zero or one with equal probability,
and then determined whether to offload the computational tasks to be processed to other
edge clouds or to process them locally based on the random number.

The unified task offload scheme divided all tasks into two parts based on task size,
with one part of the compute task being executed locally and the other part being executed
in other edge clouds. The offloading performance was evaluated based on task duration.

5.2.2. Impact of Calculation Volume on Task Calculation Time

In the simulation experiments, we randomly generated the task size, including the
amount of computation and the quantity of data for the task. For the computational
volume, we used a uniformly distributed random generation; for the data volume, we
used a normally distributed random generation. Varying the average computational size
of the computational tasks, we compared the performance of the three algorithms when
faced with tasks of different computational sizes, and the experimental results are shown
in Figure 4.

0.5 1.0 1.5 2.0

10

20

30

40

50

T
as
k
d
u
ra
ti
o
n
(s
ec
o
n
d
s)

Average computations per task (gigacycles)

Non-SDN

Uniform Offloading Scheme

Random Offloading Scheme

RL-SDETA

Figure 4. Impact of calculation amount on task duration.

As can be seen in Figure 4, the computation time of the RL-SDETA algorithm gradually
became more advantageous as the average computation size of the task increased. This is
the benefit of the continuous action of reinforcement learning: the influence of the actions
from the environment is obtained and trained to make the correct decisions throughout the
algorithm. It is worth noting that the RL-SDETA algorithm was identical to the random task
offload scheme at some points because the optimal edge server calculated by the feedback
algorithm happened to be the same as the randomly selected edge server, resulting in a
random task offload scheme with task computation times that were consistent with or even
better than the RL-SDETA algorithm, but this was not stable.

In contrast, the remaining three task-offloading schemes all had a significant advantage
over schemes that did not use the SDN’s global optimisation strategy. This was because
with the SDN architecture, the controller could calculate the best task allocation scheme
based on a global view, an advantage that offered the possibility of collaborative processing
of tasks at the edge. In addition, the SDN allowed for the global optimisation of the network,
which further improved the transmission rate of edge tasks.

As the RL-SDETA algorithm found the optimal edge server based on the size of the
task’s computation, the time advantage of the task’s computation became more apparent
as the average computation of the task increased. In cases where the average computation

Electronics 2023, 12, 773 16 of 21

volume of the task was small, the advantage of the RL-SDETA algorithm was not as
pronounced, as even a nonoptimal edge server could complete the task quickly.

5.2.3. Impact of Data Volume on Task Completion Time

In this section, we measured the performance of the three algorithms when performing
tasks with different quantities of data from the perspective of task data volume, and the
experimental results are shown in Figure 5.

2 3 4 5 6 7 8 9 10
12

16

20

24

28

32

36

40

T
as
k
d
u
ra
ti
o
n
(s
ec
o
n
d
s)

Average data size (MB)

Non-SDN

Uniform Offloading Scheme

Random Offloading Scheme

RL-SDETA

Figure 5. Impact of data size amount on task duration.

According to Figure 5, we can conclude that the larger the computational and data
volume of the computational task, the longer the task duration. Our proposed RL-SDETA
algorithm had a shorter task duration compared to the other two schemes. This was because
the RL-SDETA algorithm was implemented to minimise the task duration by considering
the task computation and data volume, the computational capacity of the server and the
remaining computational resources. In addition, we found that the global optimisation
effect of the SDN was not obvious when the task data volume was small, but as the task
data volume increased, network optimisation through the SDN became necessary. This
was because the SDN architecture could optimise the network congestion level when the
task data volume was relatively large, and the RL-SDETA algorithm could even take the
task data volume size into account in the edge server selection process.

From the above, we can conclude that the growth of the average computation and
data volume of the task caused the task duration to keep growing, whereas, with the
global view of the SDN, the computational resources at the edge of the network could
be maximised and the medium duration of tasks were better than random and uniform
task-offloading schemes.

5.2.4. Impact of Data Volume on Energy Consumption in Wireless Sensing Networks

By modifying the size of the average data volume, we found that the total energy
consumption of the entire wireless sensing network increased as the quantity of data to
be transmitted increased, which confirmed that the transmission energy consumption in a
wireless sensing network is not only related to the transmission distance but also to the
size of the transmitted data volume.

In this part of the experiments, we compared the difference in the total energy con-
sumption of the wireless sensing network without using the SDEC architecture and with a
path optimisation based on the SDEC architecture and using the RL-SDETA algorithm to

Electronics 2023, 12, 773 17 of 21

calculate the total energy consumption in these two different cases. From the experimental
results in Figure 6, it can be seen that optimising the path in the wireless sensing network
by the SDEC architecture could effectively reduce the transmission energy consumption
of the wireless sensing network due to the global sensing of the SDN which could greatly
reduce the path length of wireless sensors to transmit data. It can be seen from Equation (9)
that the transmit energy consumption of the sensors for the wireless transmission was
related to the transmission distance, so the optimisation of the path could reduce the total
energy consumption in the whole wireless sensing network.

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

T
o
ta
l
en
er
g
y
co
n
su
m
p
ti
o
n
o
f
W
S
N
s
(J
)

Average data size (MB)

Using SDEC

Not using SDEC

Figure 6. Change diagram of total energy consumption.

Using the RL-SDETA algorithm under the SDEC architecture could effectively reduce
not only the energy consumption in the wireless sensing network but also the energy loss
of the edge servers. Assigning tasks to different edge servers for execution could likewise
solve the energy consumption problem of some energy-sensitive computing devices at the
edge side.

5.2.5. Impact of The Number of Edge Servers on Task Processing

In performing this part of the performance evaluation, we allocated 500 edge tasks
to different numbers of edge servers and calculated the average execution time and prop-
agation delay of each edge task. In the edge server generation process, we randomly
generated different edge server performance parameters several times to satisfy the uni-
form and Gaussian distributions, respectively. To consider the whole edge collaboration
process comprehensively, we tested and evaluated the average propagation delay and
average task execution time of multiple task-offloading schemes separately, and came to
the following conclusions:

Firstly, as shown in Figure 7a, different task allocation strategies differed in their
average task propagation delay under different numbers of edge servers. For example, if
there was no edge collaboration, then there was no need to consider the propagation delay
among edge servers; while the uniform task-offloading scheme only collaborated with the
nearest edge server to process tasks and uniformly sent a portion of the edge tasks to the
nearest edge server. Therefore, the propagation delay of these two schemes was the lowest.
In comparison with the random task offloading scheme, the RL-SDETA algorithm had a
clear advantage for the propagation delay. In the case of a large number of edge servers,
the RL-SDETA algorithm considered each edge server comprehensively and selected the
optimal edge server.

Electronics 2023, 12, 773 18 of 21

0 10 20 30 40 50 60 70 80 90 100 110
0.00

0.25

0.50

0.75

1.00

1.25

1.50
A
v
er
ag
e
ta
sk
p
ro
p
ag
at
io
n
d
el
ay
(s
)

Number of edge servers

Uniform

Random

RL-SDETA

0 10 20 30 40 50 60 70 80 90 100 110
0

1

2

3

4

5

A
v
er
ag
e
ta
sk
ex
ec
u
ti
o
n
ti
m
e
(s
)

Number of edge servers

Not collaborative edge tasks

Uniform

Random

RL-SDETA

(a) (b)

Figure 7. Effects of different task-unloading schemes on edge tasks. (a) Effect of task propagation
delay. (b) Effect of task execution time.

Secondly, although the advantage of no edge collaboration or using only the unified
task-offloading scheme was obvious in terms of the average task propagation delay, the
lack of computational resources when processing tasks led to a much longer processing
time for edge tasks than the other two task-offloading schemes.

Finally, as can be seen in Figure 7b, the RL-SDETA algorithm always found the most
suitable solution due to learning the optimal means of measurement by means of feedback.
Whether it was finding a suitable collaborative edge server or running directly at the current
edge server, the RL-SDETA algorithm had a clear advantage in the task execution phase,
which was the purpose of this work.

Figure 8 shows the impact of different task offload solutions on the average task
processing time for each task throughout the edge task processing. The task processing
time was the result of combining the sending delay, propagation delay, receiving delay and
processing time of the tasks. As the number of edge servers increased, the possibility of
finding a suitable edge server for a random task offloading scheme decreased significantly,
and the advantage of the RL-SDETA algorithm became more obvious. The parameters in
the algorithm were continuously updated with the execution of tasks, reducing the number
of iterations of the search algorithm and further reducing the cost of finding the optimal
edge server. From a comprehensive view, the total task processing time of the RL-SDETA
algorithm was lower than that of other task-offloading schemes, which makes it more
suitable for some latency-sensitive edge IoT applications.

20 40 60 80 100
0

1

2

3

4

5

6

A
v
er
ag
e
ta
sk
p
ro
ce
ss
in
g
ti
m
e
(s
)

Number of edge servers

Not collaborative edge tasks

Uniform

Random

RL-SDETA

Figure 8. Effect of average task processing time.

Electronics 2023, 12, 773 19 of 21

6. Conclusions

In this paper, we proposed a software-defined edge-computing architecture, which
enabled the controller to have a global view of the computing resources at the network edge.
By using the global view in the controller, it was possible to assign subtasks to the optimal
edge server for execution. To this end, we proposed an RL-SDETA algorithm with the
goal of an optimal task assignment, and through reinforcement learning, we were finally
able to obtain optimal edge server assignment schemes based on different task and data
volumes. After simulation experiments, comparing the RL-SDETA algorithm with these
schemes of random and uniform computational offloading, we found that the RL-SDETA
algorithm worked better both for tasks with different computational volumes and for tasks
with different data volumes. In our future work, we will consider the pooling of edge
computing power in an SDN environment to further optimise the edge collaboration in an
IoT environment.

Author Contributions: Methodology, T.Z. and X.Z.; software, T.Z.; validation, T.Z., X.Z. and C.W.;
writing—original draft preparation, T.Z.; writing—review and editing, T.Z. and C.W.; funding
acquisition, X.Z. All authors reviewed the manuscript. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was jointly supported by National Natural Science Foundation of China (grant
no. 62076006), the Natural Science Research Project of Colleges and Universities in Anhui Province of
China (grant no. KJ2020A0300) and the Huainan Municipal Science and Technology Project (grant
no. 2021A243).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This work was supported by National Natural Science Foundation of China
(grant no. 62076006), the Natural Science Research Project of Colleges and Universities in Anhui
Province of China (grant no. KJ2020A0300) and the Huainan Municipal Science and Technology
Project (grant no. 2021A243). The authors would like to thank the reviewers for their efforts and for
providing helpful suggestions that have led to several important improvements in our work. We
would also like to thank all teachers and students in our laboratory for helpful discussions.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

IoT Internet of things
MEC Multiaccess edge computing
SDN Software-defined network
SDEC Software-defined edge computing
RL-SDETA Reinforcement-learning-based software-defined edge task allocation algorithm
OXP Open exchange protocol
CIDC Communication interface for distributed control
WECAN West–east control association network
QoS Quality of Service

References
1. Premsankar, G.; Di Francesco, M.; Taleb, T. Edge computing for the Internet of Things: A case study. IEEE Internet Things J. 2018,

5, 1275–1284. [CrossRef]
2. Hu, F.; Hao, Q.; Bao, K. A survey on software-defined network and openflow: From concept to implementation. IEEE Commun.

Surv. Tutorials 2014, 16, 2181–2206. [CrossRef]
3. Ghaffar, Z.; Alshahrani, A.; Fayaz, M.; Alghamdi, A.M.; Gwak, J. A Topical Review on Machine Learning, Software Defined

Networking, Internet of Things Applications: Research Limitations and Challenges. Electronics 2021, 10, 880. [CrossRef]

http://doi.org/10.1109/JIOT.2018.2805263
http://dx.doi.org/10.1109/COMST.2014.2326417
http://dx.doi.org/10.3390/electronics10080880

Electronics 2023, 12, 773 20 of 21

4. Geng, Y.; Yang, Y.; Cao, G. Energy-efficient computation offloading for multicore-based mobile devices. In Proceedings of the
2018-IEEE Conference on Computer Communications, Honolulu, HI, USA, 16–19 April 2018; IEEE: Piscataway, NJ, USA, 2018;
pp. 46–54. [CrossRef]

5. Hu, P.; Chen, W.; He, C.; Li, Y.; Ning, H. Software-defined edge computing (SDEC): Principle, open IoT system architecture,
applications, and challenges. IEEE Internet Things J. 2019, 7, 5934–5945. [CrossRef]

6. Feng, W.; Liu, C.; Cheng, B.; Chen, J. Secure and cost-effective controller deployment in multi-domain SDN with Baguette.
J. NETW. Comput. Appl. 2021, 178, 102969. [CrossRef]

7. Hu, T.; Yi, P.; Zhang, J.; Lan, J. Reliable and load balance-aware multi-controller deployment in SDN. China Commun. 2021, 15,
184–198. [CrossRef]

8. Ahmad, S.; Mir, A.H. Scalability, consistency, reliability and security in SDN controllers: A survey of diverse SDN controllers.
J. Netw. Syst. Manag. 2021, 29, 1–59. [CrossRef]

9. Contreras, L.M.; Solano, A.; Cano, F.; Folgueira, J. Efficiency Gains due to Network Function Sharing in CDN-as-a-Service Slicing
Scenarios. In Proceedings of the IEEE 7th International Conference on Network Softwarization, Tokyo, Japan, 28 June–2 July 2021;
IEEE: Piscataway, NJ, USA, 2021; pp. 348–356. [CrossRef]

10. Lin, P.; Bi, J.; Wang, Y. East-West Bridge for SDN Network Peering. In Communications in Computer and Information Science;
Springer: Berlin/Heidelberg, Germany, 2013; pp. 170–181._16 [CrossRef]

11. Yang, F.; Cheng, L.I.; Huang, T. OXP: An efficient west-east protocol for SDN in Ad hoc. Telecom Eng. Tech. Stand. 2016, 9, 1–6.
[CrossRef]

12. Benamrane, F.; Benaini, R. An East-West interface for distributed SDN control plane: Implementation and evaluation. Comput.
Electr. Eng. 2017, 57, 162–175. [CrossRef]

13. Yu, H.; Qi, H.; Li, K. WECAN: An Efficient west-east control associated network for large-scale SDN systems. Mobile Netw. Appl.
2020, 25, 114–124. [CrossRef]

14. Wu, D.; Nie, X.; Asmare, E.; Arkhipov, D.I.; Qin, Z.; Li, R.; McCann, J.A.; Li, K. Towards distributed SDN: Mobility management
and flow scheduling in software defined urban IoT. IEEE Trans. Parall. Distr. Syst. 2020, 31, 1400–1418. [CrossRef]

15. Wang, Z.; Cai, Y. Quality of service (QoS) control in mobile edge computing (MEC). IEEE Wirel. Commun. Mob. Comput. 2022, 12,
7291954. [CrossRef]

16. Lim, Y. Federated Deep Reinforcement Learning Based Task Offloading with Power Control in Vehicular Edge Computing.
Sensors 2022, 22, 9212. [CrossRef] [PubMed]

17. Masip-Bruin, X.; Marin-Tordera, E.; Juan-Ferrer, A.; Queralt, A.; Jukan, A.; Garcia, J.; Lezzi, D.; Jensen, J.; Cordeiro, C.; Leckey, A.;
et al. mF2C: Towards a coordinated management of the IoT-fog-cloud continuum. In Proceedings of the 4th ACM MobiHoc
Workshop on Experiences with the Design and Implementation of Smart Objects, Los Angeles, CA, USA, 25 June 2018; ACM:
New York, NY, USA, 2018; pp. 1–8. [CrossRef]

18. Ramirez, W.; Masip-Bruin, X.; Marin-Tordera, E.; Souza, V.B.C.; Jukan, A.; Ren, G.-J.; Gonzalez de Dios, O. Evaluating the benefits
of combined and continuous Fog-to-Cloud architectures. Comput. Commun. 2017, 113, 43–52. [CrossRef]

19. Wu, B.; Zeng, J.; Ge, L.; Su, X.; Tang, Y. Energy-latency aware offloading for hierarchical mobile edge computing. IEEE Access
2019, 7, 121982–121997. [CrossRef]

20. Chen, S.; Li, Q.; Zhou, M.; Abusorrah, A. Recent advances in collaborative scheduling of computing tasks in an edge computing
paradigm. Sensors 2021, 21, 779. [CrossRef]

21. Wang, B.; Wang, C.; Huang, W.; Song, Y.; Qin, X. A survey and taxonomy on task offloading for edge-cloud computing. IEEE
Access 2020, 8, 186080–186101. [CrossRef]

22. Guo, X.; Lin, H.; Li, Z.; Peng, M. Deep-reinforcement-learning-based QoS-aware secure routing for SDN-IoT. IEEE Internet Things
J. 2019, 7, 6242–6251. [CrossRef]

23. Rivera, A.V.; Refaey, A.; Hossain, E. A blockchain framework for secure task sharing in multi-access edge computing. IEEE Netw.
2020, 35, 176–183. [CrossRef]

24. Ranji, R.; Mansoor, A.M.; Sani, A.A. EEDOS: An energy-efficient and delay-aware offloading scheme based on device to device
collaboration in mobile edge computing. Telecommun. Syst. 2020, 73, 171–182. [CrossRef]

25. Sellami, B.; Hakiri, A.; Yahia, S.B.; Berthou, P. Deep Reinforcement Learning for Energy-Efficient Task Scheduling in SDN-based
IoT Network. In Proceedings of the IEEE 19th International Symposium on Network Computing and Applications, Cambridge,
MA, USA, 24–27 November 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–4. [CrossRef]

26. Zhang, H.; Wang, Z.; Liu, K. V2X offloading and resource allocation in SDN-assisted MEC-based vehicular networks. China
Commun. 2020, 17, 266–283. [CrossRef]

27. Zhou, X.; Hu, J.; Liang, M.; Liu, Y. An Efficient Computation Offloading Strategy in Wireless Powered Mobile-Edge Computing
Networks. In Proceedings of the International Conference on Algorithms and Architectures for Parallel Processing, Virtual Event, 3–5
December 2021; Springer: Cham, Swtizerland, 2022; pp. 334–344. [CrossRef]

28. Cho, Y.H.; Byun, W.J. Generalized Friis transmission equation for orbital angular momentum radios. IEEE Trans. Antenn. Propag.
2019, 67, 2423–2429. [CrossRef]

http://dx.doi.org/10.1109/infocom.2018.8485875
http://dx.doi.org/10.1109/JIOT.2019.2954528
http://dx.doi.org/10.1016/j.jnca.2020.102969
http://dx.doi.org/10.1109/CC.2018.8543099
http://dx.doi.org/10.1007/s10922-020-09575-4
http://dx.doi.org/10.1109/NetSoft51509.2021.9492721
http://dx.doi.org/10.1007/978-3-642-53959-6_16
http://dx.doi.org/10.13992/j.cnki.tetas.2016.09.008
http://dx.doi.org/10.1016/j.compeleceng.2016.09.012
http://dx.doi.org/10.1007/s11036-018-1194-9
http://dx.doi.org/10.1109/TPDS.2018.2883438
http://dx.doi.org/10.1155/2018/7291954
http://dx.doi.org/10.3390/s22239212
http://www.ncbi.nlm.nih.gov/pubmed/36501914
http://dx.doi.org/10.1145/3213299.3213307
http://dx.doi.org/10.1016/j.comcom.2017.09.011
http://dx.doi.org/10.1109/ACCESS.2019.2938186
http://dx.doi.org/10.3390/s21030779
http://dx.doi.org/10.1109/ACCESS.2020.3029649
http://dx.doi.org/10.1109/JIOT.2019.2960033
http://dx.doi.org/10.1109/MNET.011.2000497
http://dx.doi.org/10.1007/s11235-019-00595-3
http://dx.doi.org/10.1109/NCA51143.2020.9306739
http://dx.doi.org/10.23919/jcc.2020.05.020
http://dx.doi.org/10.1007/978-3-030-95388-1_22
http://dx.doi.org/10.1109/TAP.2019.2891438

Electronics 2023, 12, 773 21 of 21

29. Sonmez, C.; Ozgovde, A.; Ersoy, C. Edgecloudsim: An environment for performance evaluation of edge computing systems.
Trans. Emerg. Telecommun. Technol. 2018, 29, e3493. [CrossRef]

30. Lent, R. A generalized reinforcement learning scheme for random neural networks. Neural Comput. Appl. 2019, 31, 2699–2716.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1002/ett.3493
http://dx.doi.org/10.1007/s00521-017-3223-1

	Introduction
	Related Work
	Distributed Controller Architecture
	Allocation of Edge Tasks

	Software-Defined Edge-Computing Architecture
	Network Global View
	Global View Information Exchange Mechanism

	Optimal Edge Task Allocation Algorithm
	Problem Definition
	Energy Consumption Model
	Task Allocation Issues
	State Space S
	Action Space A
	Reward R
	Environment E

	Simulation Experiment
	Experimental Setup
	Performance Evaluation
	Contrast Programme
	Impact of Calculation Volume on Task Calculation Time
	Impact of Data Volume on Task Completion Time
	Impact of Data Volume on Energy Consumption in Wireless Sensing Networks
	Impact of The Number of Edge Servers on Task Processing

	Conclusions
	References

