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Abstract: Array imperfections may exist in an antenna system subject to non-ideal design and
practical limitations. It is difficult to accurately model array imperfections, and thus complicated
algorithms are usually inevitable for model-based methods to estimate the direction of arrival (DOA)
with imperfect arrays. Deep neural network (DNN)-based methods do not need to rely on pre-
modeled antenna array geometries, and have been explored to handle flawed array models because
of their better flexibility than model-based methods. The DNN autoencoder (DAE) method has been
proposed for the array imperfection problem, which decomposes the input into multiple components
in different spatial subregions. These components have more concentrated distributions than the
original input, which avoid a large number of connections and nodes used in the layers to realize DOA
estimation classifiers. In this paper, we study the convolutional AE (CAE) method that substantially
focuses on the learning of local features in a different manner from the previous DAE method. The
advantage of the convolutional operation using a kernel in CAE is to capture features in a more
efficient manner than the DAE, and thus be able to reduce the number of parameters that are required
to be trained in the neural networks. From the numerical evaluation of DOA estimation accuracy, the
proposed CAE method is also more resistant to the noise effect than the DAE method such that the
CAE method has better accuracy at a lower signal-to-noise ratio.

Keywords: deep neural network; array imperfection; direction of arrival (DOA); autoencoder (AE);
convolutional autoencoder (CAE)

1. Introduction

Antenna arrays have been widely used for finding signal sources and concentrating
beam energy in addition to suppress communication interferences. For example, the direc-
tion of arrival (DOA) estimation with the use of antenna arrays has revealed a diverse range
of applications such as wireless communications, radar, and sonar, etc. The most classic
DOA estimation algorithms are subspace-based methods, e.g., the multiple signal classi-
fication (MUSIC) algorithm [1], estimation of signal parameters via rotational invariance
techniques (ESPRIT) algorithm [2], etc., and their extended variants [3–6]. These methods
are developed based on the angle mapping relationship between the signal direction and
the antenna array, assumed that the relationship between a mapping and the incident angle
is reversible. Based on this assumption, the array output can be matched by the mapping
to achieve directional estimation. The DOA estimation performance of these parametric
estimation methods depends largely on the mathematical model between the mapping
and the incident angle, the mapping from the direction of the signal source to the antenna
array output, and the inverse mapping from the antenna output to the direction of the
signal source.

Due to non-ideal antenna design, limitations of practical implementation, and mutual
interferences between antennas, there may be various imperfections existing in array
systems [7–9]. In a real system, the mapping between the signal direction and the antenna
array output is much more complicated than the mathematical model that is usually
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expressed in the literature [10]. There are various drawbacks in array systems because
they are not easy to be accurately modeled such that incorrect models can also cause a
significant performance degradation on DOA estimation. In order to reduce the impact
of various imperfections, the past works, as found in the literature, merely established
simplified models to describe the effect of array imperfections. Most of the problems with
simplified array imperfections in mathematical models often consider the following factors:
antenna position error, antenna gain and phase error, and mutual interference between
antennas, etc. [11]. However, these simplifications and assumptions of parameters and
models may still deviate from the actual antenna situation to some degree. In addition,
there may be a combination of imperfections in the actual system, which is more difficult to
accurately model and calibrate [12] because developing parametric methods to solve these
problems is quite difficult. Therefore, it is difficult to find new parametric methods in this
research area.

Recent research works have introduced machine learning and deep learning tech-
niques for DOA estimation problems [13–17]. Since machine learning and deep learning
methods are data-driven, they do not rely on the mapping between signal direction and
antenna arrays as well as their modeling and assumptions about various array imperfection
patterns. In the literature, machine learning methods have been proposed to be better than
subspace-based methods in computational complexity [13], and have comparable perfor-
mance with them in experiments [14]. However, machine learning techniques demonstrate
a satisfying performance in the case when the training and test data have nearly identical
distributions. In a practical application of considering many unknown parameters for an
imperfect array, it is difficult to reach such an ideal condition with enough training data
set to cover the distributions of all test data as noted in [9]. The autocalibration method is
another appealing approach widely studied to deal with imperfect arrays for DOA estima-
tion [18–20]. Most autocalibration methods still rely on accurate mathematical modeling
for imperfect arrays and, besides, the combined effects of multiple kinds of imperfections
probably exist in practical systems. Those practical limitations make the problem difficult
to be modeled precisely for perfect calibration. In the past few years, some literature has
introduced the use of deep learning techniques to solve the DOA estimation and localiza-
tion problem for microphone arrays when considering very serious environments such
as dynamic acoustic signals [15], reverberation environments [16], and broadband signals.
In such applications, it is difficult to model the propagation of the signal to be analyzed,
and it is also rather difficult to solve these problems using parametric methods. However,
deep learning methods can reconstruct complex propagation models based on training
data, and then estimate the direction and location of sound sources. This approach first
converts the original sound signal into the time–frequency domain, and then takes the
converted signal as the input of the deep neural network (DNN) [17]. DOA estimation of
sound signals can be implemented in a similar way to pattern recognition of images.

The use of autoencoders (AE) to handle wireless positioning was mentioned in [21–24].
Ref. [21] designs a sparse AE network to automatically learn discriminative features
from the wireless signals and merges the learned features into a softmax-regression-based
machine learning framework to simultaneously realize location, activity, and gesture recog-
nition. Ref. [22] proposes a convolutional AE (CAE) for the device-free localization problem.
Different from the fully connected layers in an AE, a CAE consists of a convolutional en-
coder and the corresponding deconvolutional decoder. The encoder part is implemented
to extract feature maps from input images, while the decoder part is used to reconstruct
information from the learned feature maps. In [9,25], the framework based on the DNN AE
(DAE) technique is proposed for DOA estimation concerning array imperfections. Ref. [9]
first calculates the cross space matrix (CSM) of the array output, uses it as the input of the
DAE, and then introduces the multitasking AE before multilayer classifiers to decompose
the input signal vector into several spatial subregions. A series of parallel multilayer
classifiers was finally introduced to implement DOA estimation. It features a multitasking
AE executing an operation similar to a spatial filter to preprocess signal samples, which
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helps to narrow the spatial range covered by DOA estimates for input samples, thereby
greatly enhancing the versatility of the proposed method in unknown situations. If a set of
training samples is used to train a DAE, the corresponding DOA estimation method does
not need to be processed with any prior assumptions about them.

For DOA estimation with DNN [26,27], a key point is how to extract important features
that represent different locations. In this paper, we integrate a convolutional neural network
with AE to build a new CAE structure to deal with DOA estimation problems. To explain
the innovation in the new method, we state the following.

(1) The new structure combines the advantages of convolutional kernels and DAE,
in which the convolutional kernel is better suitable for learning local features in
different subregions and a hierarchical framework similar to a DAE remains to deal
with DOA estimation.

(2) A fully connected neural network is used in a DAE, where every neuron between two
adjacent layers is connected. When the feature dimension of the input layer becomes
very high, the parameters that a fully connected network needs to train will increase
dramatically, leading to the calculation speed becoming slower. In the proposed CAE,
the neurons of the convolutional layer are only connected to some neuron nodes in
the previous layer.

(3) The connections between neurons are not fully connected, and the weight and offset
of the connections between some neurons in the same layer are shared, which greatly
reduces the number of parameters that need to be trained.

(4) The convolutional operation in CAE is essentially an input-to-output mapping with
DNN, which can learn a large number of mapping relationships between input and
output, without the need for any precise mathematical expression between input
and output.

The remainder of this paper is organized as follows. Section 2 describes a simplified
model about the imperfections in a non-ideal array antenna. Section 3 gives a brief review
on the DAE structure while Section 4 explains the proposed CAE structure. Section 5
demonstrates the numerical results, and Section 6 summarizes our work.

2. Signal Model with Array Imperfections

Consider that a planar uniform linear array (ULA) consists of M antenna elements, and
d represents the distance between two neighboring elements of the receiving array. Assume
that the signal source is far-field and the signal s(t) impinges on the antenna elements in
straight lines. The azimuth of the incident signal is given by θ, as shown in Figure 1. Let
τm denote the propagation delay of the mth antenna element, then τm = (m− 1)d sin θ/c,
m = 1, 2, · · · , M, and c is the speed of light. The wave path difference due to the time delay
τm will cause a phase shift such that the signal received by the mth antenna at time tn can
be written as

xm(tn) = s(tn)e−j 2π
λ (m−1)d sin θ , (1)

where λ is the wavelength of the signal. From (1), the M × 1 signal vector x(tn) =
[x1(tn) x2(tn) · · · xM(tn)]T received by M antennas can be expressed as

x(tn) = a(θ)s(tn), (2)

where [·]T denotes the transpose of a vector and a(θ) = [1 e−j 2π
λ d sin θ · · · e−j 2π

λ (M−1)d sin θ ]T

is the steering vector. Suppose v(tn) = [v1(tn) v2(tn) · · · vM(tn)]T is the additive zero-
mean white Gaussian noise (AWGN) vector with covariance matrix σ2I, and the received
signal vector with M antennas can be rewritten as

x(tn) = a(θ)s(tn) + v(tn). (3)

Three typical kinds of array imperfections are considered in our framework, including
gain and phase inconsistence, antenna position error, and inter-antenna mutual coupling.
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Those imperfections cause different deviations to the steering vector in (2). Denote the
collection of imperfection parameters by e and the ideal steering vector by a(θ). We
represent the array responding function due to imperfections as a(θ, e). In practice, array
imperfections are complicated to be formulated with concise mathematical models, and we
consider a simplified model in this paper as a(θ, e).

Figure 1. M-antenna ULA structure.

Let e = {egain, ephase, epos, Emc} denote the collection of array imperfections, in which
those elements represent for the imperfections of gain and phase biases, position error,
and the mutual coupling matrix, respectively. From [9], the perturbed array responding
function can be written as

a(θ, e) =(IM + δmcρEmc)× (IM + diag(δgainρegain))

× diag(ejδphaseρephase)× a(θ, δposρepos),
(4)

where δmc, δgain, δphase, and δpos ∈ {0, 1} are used to indicate whether a certain kind of
imperfection exists, ρ ∈ [0, 1] is used to specialize the strength of the imperfection, IM is the
M×M identity matrix, and diag(·) denotes the diagonal matrix of the given vector in (·).

Let emc denote the inter-channel mutual coupling coefficient vector, then

emc =
[
0 γ1

mc · · · γM−1
mc

]T
, (5)

where the elements in emc contain the power terms of the coupling coefficient γmc, where
γmc = αejβ, α ∈ [0, 1] and β ∈ [−π, π]. Then, Emc is a Toeplitz matrix with the vector emc,
that is [28],

Emc = Toeplitz(emc)

=



0 γ1
mc γ2

mc · · · · · · γM−1
mc

γ1
mc 0 γ1

mc
. . .

...

γ2
mc γ1

mc
. . . . . . . . .

...
...

. . . . . . . . . γ1
mc γ2

mc
...

. . . γ1
mc 0 γ1

mc
γM−1

mc · · · · · · γ2
mc γ1

mc 0


.

(6)

egain in (4) represents for the gain bias of M antennas [29]

egain =
[
0 γ

(1)
gain · · · γ

(M−1)
gain

]T
, (7)
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where γ
(m)
gain ∈ [0, 1]. ephase in (4) represents for the phase bias of M antennas

ephase =
[
0 γ

(1)
phase · · · γ

(M−1)
phase

]T
, (8)

where γ
(m)
phase ∈ [−π, π]. epos in (4) represents for the position bias of M antennas

epos =
[
0 γ

(1)
pos · · · γ

(M−1)
pos

]T
× d, (9)

where γ
(m)
pos ∈ [0, 1]. When the positions of M antennas are skewed, the steering responding

function a(θ, ρepos) becomes

a(θ, ρepos) =
[
0 e−j 2π

λ (1+ργ
(1)
pos)d sin θ · · · e−j 2π

λ (M−1+ργ
(M−1)
pos )d sin θ

]T
. (10)

In the literature, there are mainly four possible approaches to deal with the imper-
fection problem: model-based algorithms, machine learning methods, such as support
vector regression (SVR) mentioned in [9], autocalibration, and deep learning methods.
Those four approaches have their individually better application scenarios and situations.
For example, model-based and autocalibration methods rely on the mathematical model of
imperfections to find solutions. With a precise model, they can reach a good theoretical
RMSE performance. The machine learning methods usually lack robustness to noisy train-
ing data sets. However, without the assumption of knowing precise imperfection model as
a priori knowledge, machine learning and deep learning algorithms have been recently
considered to estimate the angle between the incident signal and the array antennas, which
seems more flexible than other approaches and general subspace-based estimation algo-
rithms, such as MUSIC, ESPRIT, etc., to yield robust DOA estimation for imperfect arrays
in practical environments.

3. DOA Estimation with DNN Autoencoder

The DAE method uses parallel multilayer classifiers and performs as a spatial fil-
ter to divide the full input DOA range into multiple subregions, helping to reduce the
computational burden required in the classifiers. There are two main parts in a DAE: the
front-end is the multitasking AE behaving as a spatial filter, and then parallel multilayer
classifiers are connected at the back-end to estimate the DOA of the incident signal. In [9],
the multitasking AE is designed to decompose the incident signal into P spatial subregions,
and when the input signal is located in the pth subregion, the output of the pth decoder
is used as the input of the pth multilayer classifier. If the input DOA does not belong to
the pth subregion, the pth decoder output equals to 0. The main advantage is that in a
multitasking AE, each decoder output covers a narrower spatial subregions, making the
incident signal distribution more concentrated. This allows subsequent parallel multilayer
classifiers to learn the DOA features located in corresponding subregions, and therefore
makes training easier.

3.1. Data Preprocessing for DAE

Consider that the signal received by the antenna array is contaminated by AWGN,
where all noise vm(tn) are not related to the source signal s(tn). However, with the M anten-
nas and over a period of time for the received signal vector x(tn), antenna’s imperfections
can be found through the statistical characteristics related to each other. We collect the
received signal of N snapshots and calculate the CSM of the signals as [30]

R =
1
N

N

∑
n=1

x(tn)xH(tn). (11)
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Reformulate all the elements of the matrix R as a vector r̄

r̄ = {Rm1,m2} ∈ CM2×1 (12)

r = [Re{r̄} Im{r̄}]T/‖r̄‖ (13)

where Rm1,m2 represents the (m1, m2)th element in matrix R, Re(·) and Im(·) take the values
from the real part and the imaginary part, respectively, and finally we rearrange the vector
r as the input for AE.

The data length for preprocessing of the AE can vary depending on the selected
collection of Rm1,m2 . All elements of the CSM can be used as the input vector, in which case
m1, m2 = 1, 2, · · · , M. In order to reduce the size of the input vector to the AE, only some
elements in CSM can be taken as the input vector. For example, in [22], the elements of
the diagonal matrix are excluded to reduce the noise effect, and considering the conjugate
symmetry of the CSM, the elements of the lower left triangular matrix are discarded. Only
the elements of the upper right triangular matrix are selected as the input vector to the AE.
In this case, m1 = 1, 2, · · · , M− 1, while m2 = m1 + 1, m1 + 2, · · · , M. It is worth noting
that N should be large enough to reduce the influence of noise on off-diagonal upper right
or lower left matrix elements in order to calculate the CSM for better results.

3.2. Encoding and Decoding for DAE

As depicted in Figure 2, the encoder of AE compresses the dimension of the input
vector for a lower one to extract the main components in the original input, and then goes
through the decoding process to recover the original dimension, in which the input vector
will be decoded and restored in the subregion to which it belongs. The encoding–decoding
process is efficient to reduce the influence of noise and input perturbations.

Figure 2. Deep neural network autoencoder structure [9] for DOA estimation.

First, assume that each of the encoder and decoder has L1 layers, and the vector c has
the same dimension in the (L1 − l1)th and the (L1 + l1)th layers for 0 < l1 ≤ L1. Addition-
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ally, notice that the dimension of c(p)
l1

is smaller than that of c(p)
l1−1. The adjacent layers of the

AE are fully connected using a feedforward neural network structure, expressed as

net(p)
l1

= U(p)
l1,l1−1c(p)

l1−1 + b(p)
l1

p =

{
1 for l1 = 1, 2, · · · , L1
1, 2, · · · , P for l1 = L1 + 1, · · · , 2L1

c(p)
l1

= f [net(p)
l1

],

(14)

where superscript (·)(p) is associated with the pth subregion, subscripts (·)l1 and (·)l1−1

denote the layer indices, c(p)
l1

is the l1th layer output of the pth AE, c0 = r represents for

the initial input vector of the AE, U(p)
l1,l1−1 is the weight matrix from the (l1 − 1)th to the

l1th layer for the pth subregion, b(p)
l1

is the additive bias in the l1 layer, and f [·] denotes the
activation function in the l1 layer, which can be the Relu function, that is,

f (α) = max(0, α). (15)

The multitasking AE intends to decompose the input into P spatial subregions. A sim-
ple partition method is to choose P + 1 directions θ(0) < θ(1) < · · · < θ(P), satisfying
θ(1) − θ(0) = θ(2) − θ(1) = · · · = θ(P) − θ(P−1) and [θ(0), θ(P)) is the full spatial range cov-
ered by the incident signal. If a signal impinging from the pth subregion is used as the
input to the AE, the pth decoder output c(p)

2L1
equals to the input r while other decoder

outputs equal zero.

3.3. DAE Multilayer Classifiers

Each of the P groups of parallel multilayer classifiers takes the output of its decoder as
input, and then a set of fully connected multilayer neural networks are used to estimate the
spatial spectrum for the corresponding subregions individually. The output of each AE up
is only located in a smaller spatial range than the full range. Since the antenna array has
a similar steering responding function in adjacent space, the output of the AE up is more
centrally distributed than the original input signal r, and the adjacent layers of parallel
multilayer classifiers are connected using feedforward neural networks as

net(p)
l2

= W(p)
l2,l2−1h(p)

l2−1 + q(p)
l2

for p = 1, 2, · · · , P, l2 = 1, 2, · · · , L2

h(p)
l2

= f [net(p)
l2

],

(16)

where h(p)
l2

is the output vector in the l2th layer of the pth classifier, W(p)
l2,l2−1 is the weight

matrix between the (l2 − 1)th and the l2th layer of the p subregion, q(p)
l2

is the additive bias
vector in the l2th layer of the pth subregion, and f [·] is the activation function in the l2th
layer. Denote yp = h(p)

L2 as the output of the last layer. After obtaining all the outputs of the
P parallel classifiers, the P outputs are combined in order as a vector

y = [yT
1 yT

2 · · · yT
P]

T (17)

to estimate the spatial spectrum with the input r. To achieve DOA estimation based on the
spectrum estimate, the nodes close to the true signal direction in the output y have positive
values, while other node outputs equal zero.
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4. Convolutional Autoencoder for DOA Estimation

The CAE structure integrates the advantages of convolutional neural networks (CNNs)
and AE. Before elaborating the CAE method for DOA estimation, three points about CAE
can be stated as follows.

Motivation. The main feature of CAE differing from DAE [9] is to introduce convolu-
tional kernels used in CNN to the AE structure. CNN is known for its excellent 2D image
processing capabilities, which learns extracted features in a nonlinear manner based on
convolutional and pooling layers in specific regions of the input feature maps, and is paired
with a few fully connected layers for the output. CNN does not only reduce computational
costs, but also improves feature extraction capabilities. The encoder part of AE learns
the low-dimensional representation characteristics of the input data, called the code layer,
and the decoder part reconstructs the code layer back to the original dimension. It is
worth noting that under the structure of an AE, the input data are processed in a vector
form, and the layers are fully connected. CAE consists of a convolutional encoder and the
corresponding deconvolution decoder, which extracts feature maps from the input matrix
in the encoder part while reconstructing information from feature maps in the decoder.

Structure. The proposed CAE structure is plotted in Figure 3. Assume that the full
DOA range is decomposed into P subregions in the decoding process. In addition to
data preprocessing, a CAE is divided into two parts: a multitasking AE for spatial filters,
and a set of parallel multilayer classifiers for DOA estimation. For data preprocessing
in CAE, the real and imaginary parts of the CSM are separated as two individual input
channels. The multitasking AE is conceptually similar to that used in DAE. The inputs are
first compressed through the encoding process, and then the feature maps are recovered
through the decoding process. The training process learns from the difference between the
output of the decoder and the original input to obtain the CAE parameters.

Figure 3. The proposed convolutional autoencoder structure for DOA estimation.

Innovation. The CAE adds each node of the AE to a kernel to perform convolutional
operation. The main purpose of the convolutional operation is to capture features, where
some regional features of the input channel are selected by the kernel to produce all feature
maps. Hence, CAE can capture features in a more efficient manner than DAE and reduce
the number of parameters that are required to be trained in the neural networks.

4.1. Data Preprocessing for CAE

Imagine that when CAE is applied to image processing, a color image is used as a matrix
input such as a size of 320× 320 color image containing three channels, R, G, and B, regarded
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as matrices of 320× 320× 3. Here we take a similar approach, decomposing the real and
imaginary parts of the CSM in (11) as the input matrices of two independent channels

z(1)0 = Re{R}, (18)

z(2)0 = Im{R}, (19)

where z(1)0 and z(2)0 represent the two channel input matrices to CAE.

4.2. Encoding and Decoding for CAE

The structure of CAE is intuitively similar to that of AE, except for the convolutional
operation. Assuming that each layer operates the convolution with K kernels, K feature
maps can be produced correspondingly. The representation of the kth feature map during
encoding is

cov(k,i)
l1

= z(k,i)
l1−1 ∗Q(k,i)

l1,l1−1 + g(k,i)
l1

for l1 = 1, 2, · · · , L1, k = 1, 2, · · · , K, i = 1, 2

z(k)l1
= f [cov(k,i)

l1
],

(20)

where z(k,i)
l1

is the output of the convolutional operation with the kth kernel in the l1th layer,

Q(k,i)
l1,l1−1 ∈ RB×B is the kth kernel for convolutional operation between the (l1 − 1)th and

the l1th layers, g(k,i)
l1

is the bias in the l1th layer, and f [·] is the nonlinear activation function

in the l1th layer. Here, z(i)0 represents the initial input of the ith channel. Assuming that the
original CSM size is A× A and the kernel size is B× B, the size of the produced feature
map is reduced to (A− B + 1)× (A− B + 1) if not supplementing the boundary of the
CSM with zeros.

The decoding process can be written as

cov(p,k,i)
l1

= z(p,k,i)
l1−1 ∗ Q̃(p,k,i)

l1,l1−1 + g(p,k,i)
l1

for p = 1, 2, · · · , P, l1 = L1 + 1, · · · , 2L1 − 1, i = 1, 2

z(p,k,i)
l1

= f [cov(p,k,i)
l1

],

(21)

where (·)(p) is associated with the pth subregion. (21) represents the full convolution
operation of the feature map z(p,k,i)

l1−1 with the kernel Q̃(p,k,i)
l1,l1−1. Supplementing the boundary

of the feature map with zeros first, the matrix size after convolution operation becomes
(A + B− 1)× (A + B− 1). In the last layer l1 = 2L1 of the decoding process, the K feature
maps need to be added to restore the dimension of the input CSM as follows:

cov(p,i)
2L1

=
K

∑
k=1

z(p,k,i)
2L1−1 ∗ Q̃(p,k,i)

2L1,2L1−1 + g(p,k,i)
2L1

for p = 1, 2, · · · , P, i = 1, 2

z(p,i)
2L1

= f [cov(p,i)
2L1

].

(22)

4.3. CAE Multilayer Classifiers

The outputs of the P spatial subregions of the decoder are used as the inputs of the
P groups of the parallel multilayer classifiers, and the layers of two channels for each
group of classifiers are connected by a fully connected layer neural network. The spatial
spectrum of the corresponding subregion is estimated after L2 layers. Finally, the outputs
of the P groups of parallel classifiers are combined into y as written in (17) to determine
the direction of the incident signal.
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As plotted in Figure 4, the parallel multilayer classifiers in CAE can have two different
structures: the first is to directly process the data of the two channels, and the second is to
merge the separate channels into one input vector for the classifier, with which the entire
feature map has a smaller dimension than the first structure, described as follows:

h(p)
0 = (z(p,1)

2L1
+ z(p,2)

2L1
)/2

for p = 1, 2, · · · , P
(23)

where z(p,1)
2L1

and z(p,2)
2L1

denote the two channel outputs associated with the pth convolutional

kernel and h(p)
0 is the input of the pth classifier.

Figure 4. Two different structures of parallel multilayer classifiers in proposed CAE for DOA
estimation: (a) the structure of direct processing of two channels, (b) the structure of merging
two channels.

5. Numerical Simulations
5.1. Simulation Settings

Table 1 shows the simulation parameters, with which we simulate a ULA system of
M = 10 antenna elements. The DOA range of the signal source is θ(0) = −60◦ , θ(P) = 60◦,
where we divide the 120◦ spatial range into P = 6 subregions with each angle interval
of 1◦ as the classification category (class). Each spatial subregion is then responsible for
I0 = 20 classes. We fix the environmental SNR at 10 dB during training. Usually when
using deep learning methods, the entire training set is not directly used as input at once
because the amount of data in the training set is huge and exceeds the memory loading
of the normal computer. Here, we adopt the minibatch training method, where the entire
training set is divided into multiple subset data and each subset size (batch size) is 128.
Each training uses only one subset for batch processing. Training each subset in batches is
called an epoch, and we repeat the entire training set for 10 epochs. In addition, we apply
the stochastic gradient descent method, which is the simplest gradient descent, to find the
gradient of the parameters for updating the parameter W in the direction of the gradient
as follows:

Wnew = Wold − η
∆Loss

W
(24)
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where η is the learning rate and ∆Loss
W denotes the gradient of the loss function.

Table 1. Simulation parameters.

Parameters Values

number of antennas (M) 10
number of snapshot (N) 512
Ntrials 10,000
noisy environment AWGN
spatial scope [θ(0), θ(P)) [−60◦, 60◦)
number of subregion (P) 6
spatial subregion (I0) 20
direction grid 1◦

learning rate (η) 0.001
number of batch size 128
SNR (dB) 10

In this simulation, we analyze the accuracy of different methods as follows. Suppose
we have a test set with a total of Ntrials samples. Each sample is systematically tested to
obtain the prediction category, and then the real category is compared to judge whether the
classification is correct. The number of correctly predicted samples is divided by the total
number of samples to calculate the accuracy rate.

5.2. Determination of Main CAE Parameters

Through simulations with varying different parameters, we determine several impor-
tant system parameters in the proposed CAE structure. We show the performance of the
proposed CAE with four major system parameters, including the number of convolutional
kernel K, the kernel size B × B, the number of the multitasking AE layers L1, and the
number of the parallel multilayer classifier layers L2. With the experiments of varying
system parameters, we found that when the complexity of the CAE structure increases,
the variables due to the neurons inside the system will increase such that the overfitting
problem can decrease accuracy. In some papers, in order to overcome the problem of
overfitting, the structure with more layers requires learning more training samples. Here,
we use a fixed number of training samples for the comparison of different parameters.

Figure 5a shows the comparison of accuracy with different numbers L1 = 2, 3, and 4
of multitasking AE layers in CAE at SNR ranged from −10 dB to 20 dB, where the number
of the kernel is set to K = 64, the kernel size is 2× 2, the number of classifier layers is
L2 = 5, and the angle of the incident signal is 10◦. It can be seen from the figure that
when SNR is above 5 dB, the three different layers can achieve an accuracy of nearly 100%.
As SNR equals to 0 dB and −5 dB, the difference between using two layers and using
three layers is not large, but the accuracy of using four layers decreases. When the SNR is
less than −10 dB, using 3 layers is better than others. Based on this result, we determine
L1 = 3 layers in our CAE structure.

After deciding L1, Figure 5b compares the accuracy of three different kernel sizes for
2× 2, 3× 3, and 4× 4. When SNR is greater than 5 dB, the accuracy of the three sizes is
close to 100%, and when SNR is lower than 0 dB, it can be seen that the kernel size B = 2
is the best to resist noise. The main purpose of the kernel is to learn the characteristics of
DOA to understand the correlation between adjacent antennas. From the simulation result,
the kernel size in our CAE structure is chosen as 2× 2.
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Figure 5. The influence of four CAE parameters on performance: (a) accuracy of different numbers of
encoding layers L1 versus SNR, (b) accuracy of different kernel sizes B× B versus SNR, (c) accuracy
of different numbers of kernel K versus SNR, (d) accuracy of different numbers of decoding layers L2

versus SNR.

Figure 5c compares the accuracy for different numbers of kernels with K = 8, 16,
32, 64, and 128. When SNR is below 0 dB, it can be seen that the noise is best countered
with K = 64. The appropriate number of kernels is very important because K kernels will
produce K feature maps, and if too many feature maps are generated, the system parameters
will be too complicated such that overfitting problems occur to decrease accuracy.

Figure 5d compares the numbers of layers L2 for L2 = 4 (with numbers of nodes
200-512-256-20), L2 = 5 (with numbers of nodes 200-1024-512-256-20), and L2 = 6 (with
numbers of nodes: 200-1452-1024-512-256-20). When SNR is below 0 dB, the noise resistance
of the 6 layers of classifiers is the best. A multilayer classifier is divided into input layer,
hidden layer, and output layer, where the number of nodes in input layer is determined
by the output of the AE decoder, and the number of nodes in the output layer is judged
by the corresponding spatial subregion range I0. Here, we choose I0 = 20 classes in the
output layer. As choosing the numbers of nodes in hidden layers, we reduce the number of
nodes layers by layers. According to our experience, if the number of nodes in one layer is
suddenly increased or decreased, this may lead to poor results in model training. In this
experiment, we set the number of nodes in the first hidden layer to 1452, the second layer
1024, the third layer 512, and the fourth layer 256.



Electronics 2023, 12, 771 13 of 19

5.3. Accuracy Performance of the CAE Method with Different Parallel Multilayer Classifiers

The performance comparison of two kinds of parallel multilayer classifiers mentioned
in Section 3 is that the first treats all the variables of the two channels as input vectors,
and the second combines two independent channels into a single channel and then treats
the variables of the merged channel as input vectors. The length of the first input vector
is 200, and the length of the second input vector is reduced to 100. Figure 6 compares the
accuracy of the two methods. When SNR is greater than 0 dB, the accuracy of both classifier
methods is almost 100%, and when SNR is at−5 dB, it is better to treat all variables as input
vectors from the simulation result. Here, we apply the first method in our CAE structure
for comparing the simulation results.
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Figure 6. Comparison of accuracy with different input sizes for the parallel multilayer classifiers
in CAE.

5.4. Performance Comparison of DAE and CAE Methods

We then compare the accuracy of four different deep learning algorithms to determine
the DOA of the incident signal: the first is the traditional DNN method, the second is AE
without considering subregions, the third is DAE, and the fourth is the proposed CAE.
From Figure 7, it can be seen that the third and fourth methods have better accuracy at low
SNR than AE without considering subregions, and the proposed CAE also has better noise
immunity than DAE.
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Figure 7. Comparison of accuracy with different deep learning methods for DOA estimation.
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Next, we analyze the case that two different signal sources exist, and the spatial filter
for separating subregions is applied to both the DAE and CAE methods, where the system
parameters for DAE and CAE can be referred to in Tables 2 and 3, respectively. We separate
the spatial range of the signal direction into 6 subregions in [−60◦, 60◦), and hence, there
are two possibilities when considering the locations of multiple targets. Figure 8a is the
comparison of simulating two signal sources located in the same subregion. We assume
two similar angles to test the performance results of CAE and DAE; the incident angles
of the two signal sources are θ1 = 10◦ and θ1 = 12◦, where the two angles differ by 2◦.
In the previous CAE result, the accuracy of a single incident signal at 0 dB was as high
as 100%. However, when two targets are in the same subregion, as shown in Figure 8a,
the accuracy is reduced. Figure 8b is a comparison of simulating two signal sources located
in different subregions. We assume two angles with larger difference for testing, and the
incident angles of the two signal sources are θ1 = 10◦ and θ1 = 30◦, where the difference
between the two angles is 20◦. With the CAE, the accuracy of both a single signal source
and two signal sources at 5 dB SNR can reach almost 100%. From the figure, we can see
that when the two angles are located in different subregions, the CAE performance is still
close to that of a single signal source. Although the accuracy of DAE does not decrease in
the case of high SNR, CAE has better results than DAE in the case of low SNR. From this
experiment, we can find that when we consider multiple targets, the difficulty of DOA
estimation increases, and the proposed CAE has obvious advantages.
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Figure 8. Performance comparison of DAE and CAE with two different signal sources: (a) accuracy
of two incident angles θ1 = 10◦ and θ1 = 12◦ within the same subregion versus SNR, (b) accuracy of
two incident angles θ1 = 10◦ and θ1 = 30◦ in different subregions versus SNR.

Table 2. System parameters of the DAE structure.

Parameters Values

number of AE layers (L1) 3
size of input vector 200
number of classifier layers (L2) 5
loss function Relu function

Table 3. System parameters of the CAE structure.

Parameters Values

number of AE layers (L1) 3
number of convolution kernel (K) 64
size of input matrix (A× A) 10× 10
size of convolution kernel (B× B) 2× 2
number of classifier layers (L2) 6
loss function Relu function
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5.5. RMSE Performance Comparison of DOA Estimation with Array Imperfections

Before applying the CAE to deal with the array imperfections problem, we first show
the confusion matrix for accuracy analysis of DOA estimation at 10 dB SNR based on the
previously established parameters as listed in Table 3. We test the proposed CAE method
by randomly generating test samples of the incident angle ranged from −60◦ to 60◦ with
the amount of 100 data per 1◦. The real category of each test sample and the predicted
category are accumulated to produce the confusion matrix. Figure 9 shows the matrices for
the 6 subregions, where the darker the blue inside the lattice, the higher the accuracy rate
represented. We can find that the determined DOA grid and the true value almost coincide,
that is, with the proposed CAE in the absence of array imperfections, the accuracy of DOA
estimation within 1◦ error at 10 dB SNR is almost close to 100%.
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Figure 9. Confusion matrix of the CAE method for output angles versus incident angles at 10 dB
SNR: (a) the subregion of the incident angle in [−60, −40), (b) the subregion of the incident angle in
[−40, −20), (c) the subregion of the incident angle in [−20, 0), (d) the subregion of the incident angle
in [0, 20), (e) the subregion of the incident angle in [20, 40), (f) the subregion of the incident angle in
[40, 60).

Next, considering the parameters of array imperfections as listed in Table 4, we analyze
the RMSE performance of DOA estimation with the proposed CAE method, and compare
the result of CAE with those of ESPRIT and DAE. Assume that the incident angle is ran-
domly generated between 9.5◦ and 10.5◦, SNR is fixed at 10 dB, and the imperfection control
parameter ρ varies between 0 and 1. The larger ρ means that the deviation from the ideal
imperfection-free array is greater, and ρ = 0 means that the array is ideal. Figure 10 show
four different array imperfection cases. Figure 10a adds only gain and phase deviations to
the array. Figure 10b considers the antenna coupling effect, Figure 10c considers the error
influence in the antenna position, and Figure 10d combines the three array imperfections
at the same time. From the results of these experiments, it can be found that when the
array is ideal, the ESPRIT algorithm can obtain a very high resolution. The classical ESPRIT
algorithm similar to the MUSIC algorithm used in [9] is the subspace-based high resolution
method for DOA estimation and in contrast, has the advantage of significantly reducing
the computing power and memory needed for storage. However, ESPRIT is developed
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based on the ideal array responding function and exploits the property of the translational
invariance of the antenna array by decomposing the array into two sub-networks of identi-
cal antennas, in which one can be obtained by a translation of the other. Hence, increasing
ρ will degrade the performance of ESPRIT. Since DAE and CAE methods do not rely on
the geometry of the antenna or any assumption about the antenna models, they can adapt
to different kinds of array imperfections. DOA estimation based on the deep learning
methods does not fluctuate sharply with the influence of array imperfections.

Table 4. Simulation parameters of array imperfections.

Parameters Values

gain biases (0, γ
(1)
gain, · · · , γ

(M−1)
gain )

0, 0.2, · · · , 0.2,︸ ︷︷ ︸
5

−0.2, · · · , −0.2︸ ︷︷ ︸
4

phase biases (0, γ
(1)
phase, · · · , γ

(M−1)
phase )

0, 30◦, · · · , 30◦,︸ ︷︷ ︸
5

−30◦, · · · , −30◦︸ ︷︷ ︸
4

position errors (0, γ
(1)
pos, · · · , γ

(M−1)
pos )

0, 0.2, · · · , 0.2,︸ ︷︷ ︸
5

−0.2, · · · , −0.2︸ ︷︷ ︸
4

mutual coupling coefficient (γmc) 0.3ej60◦
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Figure 10. RMSE performance of DOA estimation for ESPRIT, DAE, and CAE methods with different
array imperfections versus the imperfection control parameter ρ at 10 dB SNR: (a) antenna gain and
phase biases, (b) antenna mutual coupling, (c) antenna position error, (d) combined array imperfections.
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In Figure 11, we show the comparison of DOA prediction for DAE and CAE with
all DOA training ranges [−60◦, 60◦) at SNR of 5 dB and 10 dB. As the results shown in
Figures 10d and 11b, DAE and CAE have no significant difference at 10 dB SNR. However,
for the SNR value reduced to 5 dB, the accuracy of DOA prediction for DAE becomes
worse while CAE remains a satisfying accuracy. This result can be obviously observed from
Figure 7, showing that at 0 dB SNR, the accuracy of DAE dramatically drops to 30%, while
CAE almost has a satisfying result. In Figure 11a at 5 dB SNR, an obvious accuracy loss
appears for DAE performing with combined array imperfections.
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Figure 11. DOA prediction of DAE and CAE performed with combined array imperfections:
(a) SNR = 5 dB, (b) SNR = 10 dB.

6. Conclusions

We study a CAE structure to deal with array imperfections for obtaining robust DOA
estimation, which combines the advantages of convolutional operations to learn local spatial
features and the use of spatial filters to concentrate the training information. Through
numerical experiments, we study different system parameters to improve system accuracy
with the proposed CAE. In the case of increasing the number of layers in CAE, the overall
accuracy will not be improved due to the overfitting effect. Therefore, the CAE parameters
need to be properly determined to obtain better accuracy with reasonable training load
according to the applications. In addition, we also show the performance of the proposed
CAE method with multiple signal sources. When multiple signal sources occur in different
subregions, the performance of the proposed CAE is still similar to that of a single source.
After evaluating the noise immunity performance of the DNN, DAE, and CAE methods,
we find out that CAE has better noise immunity than others. Although deep learning
methods for DOA estimation are inferior to subspace-based methods, such as MUSIC
and ESPRIT, without array imperfections, the performance is worse due to the resolution
limitation of the finite output grids of the multilayer classifiers. The proposed CAE method
demonstrates a robust performance in solving complex array imperfection problems.
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