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Abstract: Deep learning, due to its excellent feature-adaptive capture ability, has been widely utilized
in the fault diagnosis field. However, there are two common problems in deep-learning-based fault
diagnosis methods: (1) many researchers attempt to deepen the layers of deep learning models for
higher diagnostic accuracy, but degradation problems of deep learning models often occur; and
(2) the use of multiscale features can easily be ignored, which makes the extracted data features
lack diversity. To deal with these problems, a novel multiscale feature fusion deep residual network
is proposed in this paper for the fault diagnosis of rolling bearings, one which contains multiple
multiscale feature fusion blocks and a multiscale pooling layer. The multiple multiscale feature
fusion block is designed to automatically extract the multiscale features from raw signals, and further
compress them for higher dimensional feature mapping. The multiscale pooling layer is constructed
to fuse the extracted multiscale feature mapping. Two famous rolling bearing datasets are adopted to
evaluate the diagnostic performance of the proposed model. The comparison results show that the
diagnostic performance of the proposed model is superior to not only several popular models, but
also other advanced methods in the literature.

Keywords: deep learning; residual learning; multiscale feature fusion deep residual networks;
feature fusion; intelligent fault diagnosis

1. Introduction

The development of digitalization and intellectualization puts forward high require-
ments for the reliability of mechanical equipment [1–3]. Because of long device running
times, it is inevitable that cracks, corrosion or other faults will occur in rolling bearing
operations under high temperatures, high pressures and other harsh environments. There-
fore, timely and accurate fault diagnosis of rolling bearings is necessary for mechanical
equipment, diagnoses which can effectively avoid further deterioration of mechanical
faults, and even serious accidents and huge economic losses [4–6].

Currently, the waveform signal is the most widely used monitoring signal for the
fault diagnosis of rolling bearings [7–9]. Multidimensional features in time-domain,
frequency-domain and time-frequency domain are widely extracted for signal process-
ing. Cheng et al. [10] adopted 12 different time-domain statistical features to indicate
the health status of rolling bearings. Betta et al. [11] adopted the fast Fourier trans-
form to extract frequency-domain features from raw signals. Zheng et al. [12] intro-
duced a spectral envelope-based monitoring signal processing method for fault diagnosis.
Bouzida et al. [13] implemented the discrete wavelet transform for extracting information
from signals of a wide range of frequencies, achieving the fault diagnosis of induction
machines. Yu et al. [14] used empirical mode decomposition to convert the raw signals
to the local Hilbert marginal spectrum, which is utilized to extract the time-frequency
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domain features for the fault diagnosis of roller bearings. However, such methods rely
heavily on expert knowledge and experience, which restricts their application in complex
practical scenarios.

With the rapid progress of intelligent sensing and computer technology, artificial
intelligence-based fault diagnosis approaches have become a research hotspot [15–19].
Among all artificial intelligence methods, the machine learning method is most prominent,
since it can adaptively capture potential data features in monitoring signals without too
much expert knowledge and experience. Li et al. [20] proposed a Bayesian network-based
fault diagnosis method, and applied it as to the motor bearing. Yang et al. [21] constructed
a support vector machine model integrated with an intrinsic mode function envelope
spectrum for fault diagnosis with few training samples. Boutros et al. [22] detected and
diagnosed the faults of a bearing and cutting tool based on hidden Markov models, and
achieved more than 95% classification accuracy on both objects. Although AI-based fault
diagnosis methods have achieved outstanding results to some extent, they gradually lose
their dominant position in complex diagnosis tasks with the booming of industrial big data,
since their shallow architectures cannot effectively capture the many potential data features
within massive data.

Because of the ability to adaptively capture and extract high-dimensional information
from massive monitoring data, deep learning (DL) is widely utilized in the field of fault
diagnosis [23–26]. Some DL methods, such as deep neural networks (DNN) [27], the deep
Boltzmann machine [28], recurrent neural networks [29] and deep autoencoders [30] and
convolutional neural networks (CNN) [31,32], have shown their prominent capabilities and
been successfully applied. Among these DL models, CNN shows the most outstanding
feature capture capability due to its unique convolution and pooling structure. Li et al. [33]
built a CNN model for the fault diagnosis of rolling bearings, and validated this method
on these different datasets. Xia et al. [34] utilized CNN to fuse multi-sensor signals, and
successfully achieved the fault diagnosis of bearings. Lu et al. [35] proposed privacy-
preserving federated learning framework by using CNN as the backbone network, and
applied it on the fault diagnosis of rolling bearings.

Although DL has become a popular method, there are two common problems in the
DL-based fault diagnosis methods:

(1) Currently, many researchers attempt to deepen the layers of the DL model for better
nonlinear feature extraction ability and higher diagnostic accuracy. With the deep-
ening of the network layers and the expanding of the parameter scale, degradation
problems often occur in the DL model training process. Specifically, traditional DL
models require the utilization of back-propagation algorithms for pass errors, layer by
layer. With the increase of nonlinear layers, the influence of gradient disappearance
or explosion will gradually increase, which means the gradient tends to the extreme
value (maximum or minimum), making the optimization process more and more
difficult. This makes it difficult for the training errors to continue to decline when
the training is reduced to a certain extent. Guo et al. [36] constructed a deep CNN
model for the fault diagnosis of rolling bearings. However, the convergence was quite
slow and the training process required thousands of epochs. Zhu et al. [37] proposed
a deep autoencoder-based fault diagnosis method and achieved excellent performance
on rolling bearings. However, model training took thousands of cycles to complete
in both of the two experimental cases, which greatly increases the challenge of this
model in practical engineering applications. Fortunately, residual learning, as a new
extension of DL with special skip connection structure, offers a promising solution to
the degradation problem.

(2) The second problem is that most researchers neglect the use of multiscale features;
this makes the extracted data features lack diversity. Jing et al. [38] proposed a fault-
diagnosis method of rolling bearings based on the CNN model, where multiple
convolutional layers and pooling layers stack to form a depth model. Lu et al. [39]
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constructed a CNN model for the fault diagnosis of rolling bearings, but it did not
consider the extraction of multiscale features.

To overcome these problems, this paper introduces a novel multiscale feature fusion
deep residual network (MFFDRN) for the fault diagnosis of rolling bearings, which contains
multiple multiscale feature fusion blocks (MFF blocks) and a multiscale pooling layer (MPL).
The MFF block is designed to automatically extract the multiscale features from raw signals,
and further compress them for higher dimensional feature mapping. The stacking of
multiple MFF blocks enables MFFDRN to capture and extract more abstract and high-
dimensional features from raw signals. Then, MPL is constructed to fuse the extracted
multiscale feature mapping.

The main contributions are summarized as follows:

(1) An end-to-end fault diagnosis approach based on residual learning is proposed with
enhanced feature extraction ability, one which can effectively extract potential features
from 1-D raw signals without handcrafted feature extraction.

(2) A novel MFF block is designed to automatically extract, fuse and compress the multi-
scale features. This structure can extract multiscale features with fewer filter channels.

(3) A new multiscale pooling method is proposed to broaden the receptive field of MFFDRN.

The rest of this paper is arranged as follows. The proposed MFFDRN approach is
introduced in detail in Section 2. Section 3 introduces two experimental cases. Finally,
Section 4 sets forth a conclusion.

2. Proposed MFFDRN
2.1. CNN

CNN is developed on the basis of feedforward neural networks, which use the mecha-
nism of local connection and weight sharing to reduce the number of network parameters.
Therefore, the training time of a CNN model is much shorter than that of an ANN model
with the same number of parameters. A CNN model usually contains a convolutional layer,
an activation layer and a pooling layer.

The convolutional layer outputs deeper feature maps through the convolution between
pooling kernels and input feature maps; different sizes of convolutional kernels will lead to
different convolution results. The convolution operation is expressed as

yk = wk ⊗ x + bc (1)

where yk represents the convolution result of the kth channel, wk denotes the kth convo-
lutional kernel, ⊗ is the convolution operator, x indicates the input feature map and bc
represents the bias item.

To increase the nonlinearity of CNN, an activation function is applied to activate the
feature maps output by convolutional layers. Rectified linear unit (ReLU) is commonly
used in CNNs, for it usually learns much faster than other activation functions [40]. The
definition of ReLU is shown as

g(z) = max{0, z} (2)

“Pooling layers” is adopted to diminish the dimension of input matrix, which uses
the overall statistical value of adjacent data at a certain location as the output at the
same position. Compared with maximum pooling, average pooling can retain more local
information of the input data, therefore is often integrated in CNN models, expressed as

p = ψdown(y) + bp (3)

where ψ represents the multiplicative bias term, down(·) is the operation of average pooling,
y indicates the input matrix, and bp is the additive bias.
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2.2. Residual Learning Module

Due to the nonlinear mapping of CNN layers, the output features of each layer will
lose some information relative to the input features. With the deepening of the network, the
impact of this phenomenon will become more and more serious, leading to the degradation
problem of deep CNN in the training process, that is, model training becomes very difficult
and the training accuracy of the network reaches saturation or even decreases gradually.
To address the degradation problem, residual learning was designed with the special skip
connection structure. In this paper, residual learning block (ResBlock) is adopted in the
proposed MFFDRN.

The structure of the ResBlock constructed in MFFDRN is shown in Figure 1. A ResBlock
includes two convolutional blocks (ConvBlocks), each of which contains a convolutional
layer, a batch normalization layer (BatchNorm) and a ReLU activation layer. The concate-
nation of two ConvBlocks can effectively improve the capabilities of data capture and
feature mining. In addition, the skip connection structure allows the output data to contain
information about all input data to alleviate the degradation problem in the deep learning
training. The mathematical expression of ResBlock is shown as

H(X) = f (X) + X (4)

where H denotes the nonlinear transformation process of ConvBlocks, X represents the
input data, and f represents the transformation in stacked ConvBlocks.
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Figure 1. Residual learning block.

The batch normalization layer can solve the internal covariate shift problem during
training iteration by normalizing input data.

The batch normalization layer (BatchNorm) is for the normalization of the input data
in ResBlocks, which can solve the problem of internal covariate shift in the training [41].
The process of BatchNorm can be expressed as follows,

µ = 1
N

N
∑

i=1
xi

σ2 = 1
N

N
∑

i=1
(xi − µ)2

x̂i =
xi−µ√
σ2+ε

yi = µx̂i + β

(5)

where xi and yi are the independent variable and the dependent variable of the nth observa-
tion in a mini-batch of size N, µ and β are variables learned to scale and shift distributions.
ε is a positive constant close to zero to make the denominator always positive.

2.3. Proposed MFFDRN Architecture

Figure 2 shows the architecture of the MFFDRN. We can see that MFFDRN contains
an initial ConvBlock, 3 MFF Blocks, a MPL with 3 multiscale pooling blocks (MSPs) and
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a fully-connected layer with softmax as the activation function. In addition, the MFFDRN
model uses raw vibration signal as input without manual feature extraction and selection.
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Figure 2. Structure of MFFDRN.

MFF Block is the core part of MFFDRN, which includes 3 ConvBlocks, 3 ResBlocks and
a bottleneck layer with kernel size of 1 × 1 (1 × 1 convolution). The difference between the
3 ConvBlocks is the kernel size, similar to the ResBlocks. To extract multiscale features from
raw signal, feature maps output from various Resblocks are re-concatenated by channel
concatenation. Then, the multiscale features pass through a convolutional layer with
kernel size of 1 × 1 for the fusion of feature maps, so as to diminish feature map channels
without losing information. These components enable the MFF Block to have the ability
of multiscale features fusion and enhance the IDF performance of MFFDRN. Due to the
utilization of MFF blocks, the feature map channels in MFFDRN are much fewer in number
than those in CNN. Next, a MPL is utilized to mine the most effective feature information
from the output feature maps of MFF blocks. It can be seen in Figure 3 that each MSP
includes a convolutional layer with 1× 1 kernels and an average pooling layer. For features
with different scales, the hyperparameters of MSPs are various.
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The configuration of MFFDRN is listed in Table 1. L indicates the length of input
signal segments and T denotes the number of fault types; 4 × L × 1 represents that
the feature maps have four channels and their sizes are L × 1; C3 × 1 denotes that the
convolutional kernel size is 3 × 1; S1 denotes that stride is 1 and 2 × (C3 × 1, S1) means
that the parameters of the two ConvBlocks that make up of the ResBlock are both C3 × 1;
P[L/16 × 1] denotes that the pooling kernel size is one-sixteenth of the length of feature
maps; CAT represents channel concatenation. It is noted that strides are set to 1 by default
in all the convolutional layers.

Table 1. The configuration of MFFDRN.

Block Name Component Parameter Output Size

Input - - 1 × L × 1

ConvBlock - - 4 × L × 1

MFF Block-1

ConvBlock-1 C3 × 1, S1 8 × L × 1
ConvBlock-2 C7 × 1, S1 8 × L × 1
ConvBlock-3 C11 × 1, S1 8 × L × 1
ResBlock-1 2 × (C3 × 1, S1) 8 × L × 1
ResBlock-2 2 × (C7 × 1, S1) 8 × L × 1
ResBlock-3 2 × (C11 × 1, S1) 8 × L × 1

CAT - 24 × L × 1
1 × 1 Conv C1 × 1, S1 8 × L × 1

MFF Block-2

ConvBlock-1 C3 × 1, S1 16 × L × 1
ConvBlock-2 C7 × 1, S1 16 × L × 1
ConvBlock-3 C11 × 1, S1 16 × L × 1
ResBlock-1 2 × (C3 × 1, S1) 16 × L × 1
ResBlock-2 2 × (C7 × 1, S1) 16 × L × 1
ResBlock-3 2 × (C11 × 1, S1) 16 × L × 1

CAT - 48 × L × 1
1 × 1 Conv C1 × 1, S1 16 × L × 1

MFF Block-3

ConvBlock-1 C3 × 1, S1 32 × L × 1
ConvBlock-2 C7 × 1, S1 32 × L × 1
ConvBlock-3 C11 × 1, S1 32 × L × 1
ResBlock-1 2 × (C3 × 1, S1) 32 × L × 1
ResBlock-2 2 × (C7 × 1, S1) 32 × L × 1
ResBlock-3 2 × (C11 × 1, S1) 32 × L × 1

CAT - 96 × L × 1
1 × 1 Conv C1 × 1, S1 32 × L × 1

MSP-1
1 × 1 Conv C1 × 1, S1 1 × L × 1

Average Pooling P[L/16 × 1], S[L/16 × 1] 1 × L/16 × 1

MSP-2
1 × 1 Conv C1 × 1, S1 4 × L × 1

Average Pooling P[L/8 × 1], S[L/8 × 1] 4 × L/8 × 1

MSP-3
1 × 1 Conv C1 × 1, S1 8 × L × 1

Average Pooling P[L/4 × 1], S[L/4 × 1] 8 × L/4 × 1

Fully Connected
Layer - - T × 1

3. Experimental Study

To evaluate the effectiveness and the generalization ability of the proposed MFFDRN
in rolling bearing fault diagnosis, two cases were studied using two different famous
datasets, i.e., the Paderborn University bearing dataset [42] and the dataset from the Society
for Machinery Failure Prevention Technology (MFPT dataset) [43].
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Two evaluation indicators were used to evaluate the fault diagnosis performance,
including accuracy and the macro F1-score (F), respectively, expressed as

accuracy =
a
A

(6)

F =
1
n
·

n

∑
i=1

(2 · pi · ri
pi + ri

) (7)

where a is the number of test samples correctly diagnosed. A represents the total number
of test samples. n indicates the number of all fault types. pi and ri denote precision and
recall of i-th fault type, respectively.

The training and testing of all models were implemented by Pytorch 1.7 on a worksta-
tion with a Windows 10 operation system and TITAN XP GPU.

3.1. Case One
3.1.1. Data Description

This dataset was obtained from a modular test rig shown in Figure 4. Tested rolling
bearings had three kinds of conditions: healthy bearings, bearings with an inner race fault
and bearings with an outer race fault. Additionally, two types of bearings damage were
used in these experiments: the artificial damages and the real damages from accelerated
lifetime tests. As presented in Table 2, the experiments were carried out under four different
operating conditions with various rotating speeds, load torques, and radial forces applied
to the bearings. In this paper, only the bearings with real damages from accelerated lifetime
tests were adopted to better evaluate the diagnostic performance of MFFDRN in real
industrial applications.
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Table 2. Operating parameters of test rig in Case 1.

NO. Rotating Speed
[rpm]

Load Torque
[Nm]

Radial Force
[N] Name of Settings

0 1500 0.7 1000 N15_M07_F10
1 900 0.7 1000 N09_M07_F10
2 1500 0.1 1000 N15_M01_F10
3 1500 0.7 400 N15_M07_F04

The procedure of vibration signal preprocessing is shown in Figure 5. The signals are
divided into small pieces with the length of 5120 as input sample. No overlay exists in the
process of signal segmentation. The final signal segments under various health conditions
are exhibited in Figure 6.
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Next, the min-max normalization is adopted to normalize the raw signal segment,
defined as

x̃ =
x−min(x)

max(x)−min(x)
(8)

where x represents the raw data, and max(x) and min(x) are the maximum and minimum
in the signal segment.

A total of 48,052 signal samples were finally obtained for IDF, 80% of which were
randomly selected for training models, and the rest were utilized as test data samples.

3.1.2. Results Comparison and Analysis

To verify the superiority of the proposed approach, the comparison between MFFDRN
and several popular methods were implemented, such as DNN, CNN and single scale deep
residual networks (DRN) with kernel sizes of 3 × 1, 7 × 1 and 11 × 1 (shown as DRN-3,
DRN-7 and DRN-11). The structure of DRN degenerates from MFFDRN; the differences are
that the DRN is a single-scale network, the 1 × 1 convolutional layer is removed and the
global average pooling layer is utilized as the multiscale pooling layer. The experiment was
repeated five times. The training settings for all models are shown in Table 3. All models
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used the same training and testing set. Additionally, the dataset was re-divided randomly
after each experiment. The diagnostic results are illustrated in Figure 7 and Table 4.

Table 3. The training settings for all models.

Model Settings Value

Epoch number 40
Optimizer Adam

Initial learning rate 0.001
Batch size 16

Regularization L2 regularization in convolutional layers (weight as 0.00001)
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Table 4. Experimental results in Case 1 (%).

Model Max Acc Min Acc Mean Acc SD Mean F Average Training
Time (s)

Average Testing
Time per Sample (s)

DNN 66.31 63.99 65.26 0.868 64.65 14,683.94 0.31
CNN 87.88 86.22 87.29 0.566 87.27 23,908.26 0.52

DRN-3 97.48 97.03 97.21 0.166 97.22 25,438.37 0.55
DRN-7 99.43 98.75 99.07 0.234 99.08 26,876.36 0.61
DRN-11 99.45 99.31 99.39 0.055 99.36 28,457.64 0.63

MFFDRN 99.78 99.68 99.73 0.035 99.72 82,359.04 0.75

It is obvious from Figure 7 that MFFDRN achieved the highest diagnosis accuracy in
each experiment and was quite stable in its prediction results; the accuracies of DRN-11,
DRN-7 and DRN-3 were lower and less stable than that of MFFDRN. The prediction of
CNN was worse than the models mentioned above. The DNN is not presented in the
picture because its performance is much worse than other models.

Table 4 shows the maximum, minimum and mean accuracy, standard deviation (SD)
of accuracy and mean F1-score (mean F) of DNN, CNN, DRN-3, DRN-7, DRN-11 and
MFFDRN. The MFFDRN has the highest performance of all the indicators. The detailed
discussions about the result comparison are summarized as follows.

(1) Among these models, the DNN has the worst performance, which is due to the
relatively shallow network structure of DNN.

(2) CNN, DRNs and the MFFDRN are much better than DNN. This demonstrates the
good data mapping ability of the convolution operation.

(3) The performance of three DRNs is positively correlated with filter sizes and much
greater than CNN. It indicates the advantage of residual learning and shows that
bigger filters have better feature-mapping abilities.



Electronics 2023, 12, 768 10 of 15

(4) MFFDRN has the highest indicators on max accuracy, min accuracy and mean accu-
racy, and the smallest standard deviation. In addition, the mean F of MFFDRN is the
highest. This is because the multiscale extraction structure enabled MFFDRN has the
enhanced feature extraction ability. In addition, the feature fusion structure of MFF-
DRN can effectively fuse multiscale features to obtain better diagnostic performance.

(5) In terms of time consumption, MFFDRN shows no obvious advantages compared with
other models. It is because the MFFDRN has a relatively complex network structure.
The average testing time of all the models meets the industrial requirements, which
proves the MFFDRN can be applied to practical equipment in industrial systems.

In order to better understand the diagnosis results, the results of the last experiment
will be shown in detail. The classification accuracies of each fold in the four-fold cross-
validation test for MFFDRN were 99.54%, 99.75%, 99.79% and 99.69%, with an average
value of 99.69%. The classification results of testing samples for six models are shown in
Figure 8. It can be seen that MFFDRN can better diagnose the faults of rolling bearings
than can other models.
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The comparison of MFFDRN to some advanced methods reported in the recent litera-
ture is presented in Table 5, including transfer CNN (TCNN) [44], CNN with one-dimension
convolution channels (CNN-1D) [45] and ensemble CNN (ECNN) [46]. Among these mod-
els, TCNN uses 2-D images generated by the signal-to-image conversion as inputs, and
the proportion of testing test is 10%. The inputs for CNN-1 are frequency spectrum images
generated by fast Fourier transform and the proportion of testing set is 1/160. ECNN takes
frequency spectrum images of multiple sensor signals as input and the proportion of testing
set is 20%. As opposed to these methods, the proposed MFFDRN can extract data features
directly from the raw signal, avoid the design of manual features, and achieve end-to-end
fault diagnosis. Compared with other comparison methods, the proposed method faces
greater challenges. As shown in Table 5, the mean accuracies of TCNN, CNN-1, ECNN and
MFFDRN were 98.95%, 98.58%, 98.17% and 99.73%, respectively. MFFDRN outperformed
all three advanced methods, which further manifests its excellent classification ability for
real faults.



Electronics 2023, 12, 768 11 of 15

Table 5. Comparison of MFFDRN with some advanced methods in Case 1.

Model Input Mean Acc (%)

TCNN [44] 2-D image 98.95
CNN-1D [45] 2-D image 98.58
ECNN [46] Spectrum image 98.17
MFFDRN Raw signal segment 99.73

3.2. Case Two
3.2.1. Data Description

The MFPT dataset was utilized to further validate the performance of MFFDRN,
a dataset acquired from a test bench with NICE bearings. This dataset is composed
of three conditions: healthy, inner race fault and outer race fault. All faults of rolling
bearings in this dataset are caused by artificial damage. It is noted that the MFPT dataset
is an unbalanced dataset, which makes this task more challenging than Case 1. More
information about MFPT dataset can be found in [43].

The preprocessing of MFPT was similar to the procedure in Figure 6; the difference
was that signals in this subsection didn’t have to be cut off. In this case, the signal segment
length was 1024. Finally, 5434 signal segments were obtained and 30% were randomly
selected as the testing set. The signal segments with different health conditions are shown
in Figure 9.
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3.2.2. Results Comparison and Analysis

DNN, CNN and DRN-3, DRN-7 and DRN-11 were also adopted as the comparison
methods with MFFDRN. The model settings are the same as in Case 1 (shown in Table 3).

The experimental results are presented in Figure 10. The accuracy of MFFDRN reached
100% in the second, third, fourth and fifth repeated experiments and reached 99.94% in the
first repeated experiment. The best accuracy of DRN-11 and DRN-7 were also 100% but
both models were less stable than MFFDRN. The accuracy of DRN-3 was quite stable but
slightly lower than MFFDRN. Table 6 records the detailed testing accuracies. Compared
with DRN-7, DRN-3 and DRN-11 had a higher mean accuracy and mean F value. Overall,
MFFDRN showed its superiority in all indicators.



Electronics 2023, 12, 768 12 of 15

Electronics 2023, 12, x FOR PEER REVIEW 12 of 15 
 

 

3.2.2. Results Comparison and Analysis 
DNN, CNN and DRN-3, DRN-7 and DRN-11 were also adopted as the comparison 

methods with MFFDRN. The model settings are the same as in Case 1 (shown in Table 3). 
The experimental results are presented in Figure 10. The accuracy of MFFDRN 

reached 100% in the second, third, fourth and fifth repeated experiments and reached 
99.94% in the first repeated experiment. The best accuracy of DRN-11 and DRN-7 were 
also 100% but both models were less stable than MFFDRN. The accuracy of DRN-3 was 
quite stable but slightly lower than MFFDRN. Table 6 records the detailed testing accura-
cies. Compared with DRN-7, DRN-3 and DRN-11 had a higher mean accuracy and mean 
F value. Overall, MFFDRN showed its superiority in all indicators. 

 
Figure 10. Diagnostic accuracy comparison of five methods in Case 2. 

Table 6. Experimental results in Case 2 (%). 

Model Max Acc Min Acc Mean Acc SD Mean F 
DNN 79.34 70.63 75.65 2.845 74.94 
CNN 98.96 94.67 97.76 1.581 97.48 

DRN-3 99.88 99.51 99.73 0.143 99.75 
DRN-7 100 97.06 99.28 1.123 99.12 
DRN-11 100 99.45 99.85 0.207 99.82 

MFFDRN 100 99.94 99.99 0.025 99.99 

Figure 11 shows the classification results of the last repeated experiment. It is easy to 
see that the dataset is unbalanced; this is the reason why the DNN mistakenly identifies 
more than half of the healthy samples as an outer race fault. The CNN based models per-
form well on this dataset. Except for MFFDRN, all other models have some misjudgments, 
which reveals the superiority of the proposed model. 

In Table 7, the MFFDRN is compared with ST-CNN [47], LCNN [48], SNN [49] and 
local binary CNN (LBCNN) [50]. Among these models, inputs for the ST-CNN are time-
frequency pictures generated by the S-transform algorithm and the proportion of testing 
set is 15%. The dataset is processed to be balanced for LCNN and the proportion of testing 
set is 20%. The SNN uses features generated by local mean decomposition (LMD) and the 
proportion of testing set was 30%. The mean accuracy of 1-D CNN, LCNN, SNN and 
MFFDRN was 99.50%, 99.92%, 99.54% and 99.99%. The fact that MFFDRN reached the 
highest accuracy proves its extraordinary classification ability on the unbalanced dataset. 

Figure 10. Diagnostic accuracy comparison of five methods in Case 2.

Table 6. Experimental results in Case 2 (%).

Model Max Acc Min Acc Mean Acc SD Mean F

DNN 79.34 70.63 75.65 2.845 74.94
CNN 98.96 94.67 97.76 1.581 97.48

DRN-3 99.88 99.51 99.73 0.143 99.75
DRN-7 100 97.06 99.28 1.123 99.12

DRN-11 100 99.45 99.85 0.207 99.82
MFFDRN 100 99.94 99.99 0.025 99.99

Figure 11 shows the classification results of the last repeated experiment. It is easy to
see that the dataset is unbalanced; this is the reason why the DNN mistakenly identifies
more than half of the healthy samples as an outer race fault. The CNN based models per-
form well on this dataset. Except for MFFDRN, all other models have some misjudgments,
which reveals the superiority of the proposed model.
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In Table 7, the MFFDRN is compared with ST-CNN [47], LCNN [48], SNN [49] and
local binary CNN (LBCNN) [50]. Among these models, inputs for the ST-CNN are time-
frequency pictures generated by the S-transform algorithm and the proportion of testing
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set is 15%. The dataset is processed to be balanced for LCNN and the proportion of testing
set is 20%. The SNN uses features generated by local mean decomposition (LMD) and
the proportion of testing set was 30%. The mean accuracy of 1-D CNN, LCNN, SNN and
MFFDRN was 99.50%, 99.92%, 99.54% and 99.99%. The fact that MFFDRN reached the
highest accuracy proves its extraordinary classification ability on the unbalanced dataset.

Table 7. Comparison of MFFDRN with some advanced methods in Case 2.

Model Input Mean Acc (%)

ST-CNN [47] S-transform image 99.50
LCNN [48] Raw signals (Balanced) 99.92
SNN [49] Local mean decomposition feature 99.54

LBCNN [50] Wavelet transform image 99.56
MFFDRN Raw signal segment (Unbalanced) 99.99

4. Conclusions

This paper proposes a novel multiscale feature fusion deep residual networks for the
fault diagnosis of rolling bearings, which contains multiple multiscale feature fusion blocks
and a multiscale pooling layer. The multiple multiscale feature fusion block is designed to
automatically extract the multiscale features from raw signals, and further compress for
higher dimensional feature mapping. The multiscale pooling layer is constructed to fuse
the extracted multiscale feature mapping. Two famous rolling bearing datasets are adopted
to evaluate the diagnostic performance of the proposed model. The comparison results
show that the diagnostic performance of the proposed model is superior to both several
popular models and to other advanced methods in the literature.

There may be strong signal interference in actual industrial applications. How to effec-
tively remove the interference signal to achieve accurate diagnosis is a question that still needs
further research. In the future, we will try to equip the proposed model with noise removal
components to enable it to perform fault diagnosis tasks in complex noise environments.
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