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Abstract: In this paper, we use numerical simulations to investigate ultrathin Cu (In1−xGax) Se2

solar cells. In the first part, we focus on the cell configuration in which the PV parameters fit
and match the fabricated cell characteristics. Our goal is to investigate the impact of different loss
mechanisms, such as interface trap density (Dit) and absorber trap density (Nt), in different cell
pitch sizes on cell performances. Dit defines the number of carrier traps at CIGS/Al2O3 interfaces
to recombine with photogenerated carriers. Nt defines the number of carrier traps in the absorber
layer. Recombination through traps has been found to be the primary loss process in the investigated
cell. Additional numerical simulations reveal appreciable gains in cell performance for various cell
pitch sizes, absorber doping densities, Ga content, and graded bandgap under AM1.5 illumination.
Research during the recent decade has clarified that the most promising strategy to achieve maximum
efficiency consists of the so-called tandem configuration. Therefore, we here propose a u-CIGS/PERT
silicon device employing, as a top cell, a u-CIGS cell optimized to take into account the above
procedure. The results of these simulations provide insights into the optimization of ultrathin-film
CIGS solar cells.

Keywords: thin film; traps; ultrathin CIGS; PERT silicon; device optimization

1. Introduction

The ultrathin-film Cu (In1−xGax) Se2 solar cell has significantly advanced, achieving
high conversion efficiencies of over 12% [1–3]. In terms of production, the ultrathin
CIGS PV manufacturing costs are expected to decrease as a result of high efficiency [4,5].
Recently, the CIGS devices have been improved by developing growth conditions and
device engineering [6]. However, controlling the defect density of the absorbing layer is a
crucial issue for the development of highly efficient and stable u-CIGS solar cells [6]. The
u-CIGS solar cell performances are generally limited by several factors, including Grain
Boundary (GB) defects, bulk traps, and interface traps [7]. The above factors lead to a
higher recombination rate and lower charge carrier separation [7–10].

The ultrathin CIGS structures with Al2O3 rear surface passivation layer were inves-
tigated and optimized by Jackson, Bart, Joel, and our research group [1,8–10]. Kotipalli’s
group has reported that decreasing the deep-defect states can improve cell performance [11].
Several works reported different strategies to reduce the rear surface recombination which
consist of implementing a very thin oxide layer and using different contact materials on
the rear side of the cells [12–26]. Furthermore, ultrathin CIGS devices have drawn great
attention because they could be most suitable for tandem cell applications as top and/or
bottom cells with silicon (PERT, PERC, IBC, and a-Si:H) and perovskite solar cells [8,27].
Perovskite/CIGS tandem solar was investigated by Sining [24]. In addition, 2-Terminal
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CIGS-perovskite cell devices have been successfully investigated by Jacobson and our
research team [25,26].

In this work, we describe possible limitations and pathways to enhance cell perfor-
mance. We evaluate scenarios in which u-CIGS could be optimized and used for high
efficiencies. First, the proposed rear passivated ultrathin CIGS model was performed
according to the fabricated cell [1]. Then, we studied the effect of the interface trap at the
CIGS/Al2O3 interface, trap density in the absorber layer, and absorber doping density
at different cell pitch sizes on cell performance. Further simulations quantify significant
improvements in cell performance for absorber doping densities, Ga content, and graded
bandgap at a fixed opening width in the Al2O3 layer. Finally, the optimized single u-CIGS
cell has been used as a top cell for tandem configuration with the PERT silicon cell which
arose recently as a very promising approach for achieving maximum efficiencies. The simu-
lation results from these investigations are compared to the experimental results [1,26,27].

2. Device Structure

In this section, we describe a few features that are unique to our model. All our
ultrathin CIGS models were performed using 2-D Silvaco tools. The simulated structure
follows the design of the fabricated device [1]. The proposed model was inspired by
Jackson’s work [1]. In their study, Jackson et al. investigated the back-contact grid size in
Al2O3 rear passivation ultrathin CIGS with an absorber layer of 500 nm-thick. Good agree-
ment between simulated and reference quantities is observed [1]. Reducing the absorber
thickness allows for minimizing the bulk defects, thereby improving overall recombina-
tion losses [1]. Figure 1 represents the studied model with the following configuration:
ZnO:Al/ZnO/CdS/u-CIGS/Al2O3/Mo/glass-substrate (2 µm cell pitch). The thermionic
emission and tunneling mechanisms are activated at the CdS/CIGS interface. Aluminum
oxide (Al2O3) material of 25 nm-thick is used to reduce the recombination losses at the rear
contact CIGS/Mo. A fixed negative charge density (Qf, −1 × 1012 cm−2) was implemented
in the back passivation layer by introducing a single uniformly distributed acceptor into
most of the Al2O3 layer. According to the literature, the front and rear contacts are assumed
to be Schottky (4.7 eV) and ohmic, respectively [5,6]. The contact resistance for passivated
cells has been approximated by Jackson to be 0.181 Ω·cm2 for 0.1 ratio cell configuration [1].
The interface trap density (Dit) is inserted into the model by donor-type Gaussian defect
distribution at CIGS/Al2O3 interface [1]. Figure 2 shows a band diagram of the calibrated
model. Different band alignments can significantly contribute to carrier transport and
recombination, as well as cell performance. Figure 3 shows energy band diagrams for the
u-CIGS device simulated under illumination for different voltages. The forward applied
voltage ranges between 0 V and 0.7 V. Furthermore, a 0.05 eV spike-like jump in the conduc-
tion band is generated at the CdS/CIGS heterojunction. The spike-like configuration occurs
when the conduction band minimum of the absorber layer is smaller than the conduction
band minimum of the buffer layer. This configuration is critical as, if the spike is sufficiently
higher, it will prevent the flow of photogenerated carriers at the heterojunction interface,
resulting in lower cell efficiency.
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Figure 3. Band diagram of an ultrathin CIGS solar cell under different bias conditions (under
illumination).

3. Results and Discussion
3.1. Model Validation

Figure 4 shows the simulated J–V characteristics and the external quantum efficiency
(EQE) obtained at room temperature under the AM1.5G spectrum for the cell described in
ref [1]. A rear contact resistance (Rc = 0.181 Ω·cm2) is used to emulate the series resistance
(Rs). The rear-passivated regions maintain a surface recombination velocity, Spass, of
102 cm/s [1]. The cell characteristics of the investigated models Jsc, Voc, FF, and η are
compared to the experimental outputs [1] and presented in Table 1.
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Table 1. Investigated model characteristics.

PV Parameters This Work Pass.
Qf = −1 × 1012 cm−2

Ref. Cell [1]
Qf = −1 × 1012 cm−2

J0 (mA/cm2) 3.85 × 10−6 2.01 × 10−6

Jsc (mA/cm2) 26.97 26.79
Voc (mV) 632.42 661.58

Pmax (W/m2) 250.32 -
FF (%) 73.36 71.54
η (%) 12.51 12.68

3.2. Influence of Interface Trap Density (Dit)

As in our previous investigation, we demonstrated that the simulations fit well with
the experimental results, and we have not changed the cell configuration. The rear pas-
sivation area is the parameter that expresses how much the ultrathin CIGS cell structure
emphasizes the cell features. Cell pitch has been found to be important for the performance
of the passivated cells. Here, we introduce the Dit in the CIGS/Al2O3 interface using the
calibrated model configuration including a fixed charge Qf = −1 × 1012 cm−2 [1] in the
simulated models as a function of Dit and cell pitch that range from 0.5 µm to 4 µm, and
from 1 × 1010 eV−1 cm−2 to 1 × 1013 eV−1cm−2, respectively, while Qf and SRVs are kept
constant. Figure 5 illustrates the influence of Dit on Jsc, Voc, FF, and η when the cell pitch
distance spans between 0.5 and 4 mm. The figure clearly highlights a strong dependence of
Jsc on the cell pitch size. An increase in cell pitch contributes to an increase in the incoming
photon absorption and current density, therefore current density increases, as well [9].
However, at a high cell pitch, a larger Dit dramatically degrades cell performance. The
investigated ultrathin CIGS cell has two main recombination regions: CIGS bulk and rear
passivation. This fact means the bulk doping density influences bulk resistivity (related
to FF) and bulk lifetime (related to Voc). Increasing cell pitch size leads to increased Voc,
indicating the recombination is reduced with a larger device pitch. At the highest Dit
density (>1 × 1012 eV−1cm−2), the cell pitch variation has a very slight effect on Voc due to
less field-effect passivation strength compared to Dit, therefore high carrier recombination
occurred in the rear side of the cell [10]. The FF decreases with cell pitch size due to an
increase in Rs across the investigated cells [7,25]. Originally, the interface defect is assigned
to the imperfect passivation; therefore, to maintain high performance, a suitable growth
process should be able to ensure that the interface defect density is less than 1011 cm−2.
Moreover, it is worth noting that the efficiency has a maximum when the pitch is between
one and two microns. Chemical passivation is improved by reducing Dit and/or SRV.

3.3. Influence of Trap Density (Nt)

Another key point to evaluate the cell performances consists of studying the effects
of the absorber trap density with different energy levels for the donor trap. Following the
previous results, we kept the interface defects density (Dit) constant at about 1011 eV−1cm−2.
The thermionic and tunneling mechanisms are enabled at the absorber/buffer interface. In
the absorber layer (CIGS, 1.15 eV), donor trapping centers are located at midgap (0.575 eV).
They lie in a forbidden gap and exchange charge with the conduction and valence bands
through the emission and capture of electrons. These trap levels will capture carriers,
slowing the process of any solar cell. The trap centers influence the density of the space
charge in CIGS bulk and the recombination statistics as illustrated in Figures 6 and 7. As
shown in Figure 6, increasing Nt causes the offset of the valence and conduction bands
to change. Additionally, the band-bending induced by the defect density influences the
free carrier concentrations n and p, and, consequently, also the recombination current. In
general, three recombination mechanisms often occur simultaneously in a semiconductor
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material: Shockley–Read–Hall (SRH), Auger, and radiative recombination. The total
recombination rate is the sum of these three recombination rates [7,11].

1
τtotal

=
1

τSRH
+

1
τAuger

+
1

τrad
(1)
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Auger electron and hole capture for the CIGS model is taken as 3.7 × 10−29 cm6/s and
3.7 × 10−29 cm6/s, respectively [7]. The radiative recombination coefficient for the CIGS
material is taken as 1.5 × 10−10 cm3/s [7].

The total recombination is proportional to the defect density near the CdS/CIGS
interface as shown in Figure 7. When the cross-section area and trap density of electrons
are increased, current density and cell efficiency decrease. Moreover, increasing the bulk
defect density results in lower cell efficiencies that strongly depend on the capture cross
sections and the trap energy levels. Figure 8 reports the effect on the cell performances of
the absorber layer defects density (Nt) versus the defect’s energy levels. Noticeably, shallow
traps with energy below 0.3 eV have no significant effect on cell characteristics. Figure 9
shows the electric field distribution in ultrathin CIGS cells. Two spikes are observed at the
heterojunctions: one at the CdS/CIGS junction and the other at the CIGS/Al2O3 interface.
The presence of the spike at the CIGS/Al2O3 interface is due to the negative charges
implemented in the rear-passivation layer preventing the minority carriers (electrons) to
be recombined with the CIGS/Molybdenum interface traps. The maximum electric field
observed is 0.118 MV/cm and 0.107 MV/cm for 1013 cm−3 and 1017 cm−3, respectively.
Table 2 illustrates the PV characteristics with different trap densities. We can conclude that
inefficient charge transport and collection occurs at higher Nt, and with large energy levels
of the trap, efficient transport is achieved if electrons are transported from CIGS to ZnO:Al
without significant energy loss.

Table 2. PV characteristics with different absorber defect densities at a fixed energy level (0.4 eV).

PV Parameters 1 × 1013 cm−3 1 × 1016 cm−3 5 × 1016 cm−3 1 × 1017 cm−3

Jsc (mA/cm2) 26.97 25.57 24.74 23.91
Voc (mV) 632.40 512.65 429.67 395.48

Pmax (W/m2) 249.77 167.81 125.28 95.34
FF (%) 73.22 63.99 58.91 50.40
η (%) 12.48 8.39 6.26 4.76

3.4. Influence of Absorber Doping Density

It is well known that a thin absorber layer with a high doping concentration is not
beneficial for a solar cell since poor light absorption entails lower η values. Similarly, a
thicker absorber is also not suitable as it introduces a more significant route to transfer the
photo-generated charge carriers that lead to high recombination. Therefore, an optimum
u-CIGS absorber doping concentration selection is necessary for an efficient u-CIGS solar
cell. The above states that the photovoltaic parameters (Jsc, Voc, FF, and η) of a passivated
u-CIGS solar cell are strongly influenced by the doping concentration of the absorber and
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cell pitch. We look for the optimum design varying, the doping concentration, and cell
pitch size from 1014 to 1018 cm−3 and from 0.5 to 4 µm, respectively. Figure 10 shows
obtained PV parameters for a passivated cell at fixed opening width (W = 200 nm) with
contact resistance (Rc = 0.181 Ω·cm2) at Mo/CIGS interface within the opening, as well as
for the passivated layer with a specific Qf value −1 × 1012 cm−2 and a fixed SRV value of
102 cm/s at CIGS/Al2O3 interface [1]. Figure 11 illustrates the effect of absorber layer dop-
ing density on the built-in electric field and total recombination rate using the 1 × 1014 cm−3,
1 × 1016 cm−3, and 1 × 1018 cm−3 u-CIGS absorber layer doping density. As compared
to the 1 × 1016 cm−3, the 1 × 1014 cm−3, this doping density gives a weaker electric field
which reduces the charge separation ability of the u-CIGS and, in turn, increases the charge
recombination. When the doping density is lower and the cell pitch size is less than 2 µm,
the Jsc of the passivated cells is improved. By increasing the cell area, a significant impact
of the field-effect passivation compared to the bulk defect effect on cell performance is
observed. However, we find that its value increases until it reaches a plateau after 2.5 µm.
It is observed that the increase in Jsc is due to a decrease in the effective recombination
with cell pitch. As the cell pitch increases for the low doping densities of the absorber,
Voc follows the same trend because of the improved charge separation. Increasing the
doping density, the cell pitch effect starts reducing, and the Voc value reaches 656 mV. Due
to increasing in series resistance across the cell as the cell pitch size increases, FF follows
the opposite trend of Jsc and Voc. Increasing the absorber carrier concentration reduces the
series resistance which increases the FF. The resulting cell conversion efficiency is a com-
bination of Jsc, Voc, and FF parameters; the first increases from small cell pitch, passes by
an optimum value, and then decreases when the cell pitch size is further increased. These
results are very important when designing an ultrathin solar cell to reduce production
costs. Figure 12 shows the effect of the absorber doping density on cell efficiency at 1.5 µm
cell pitch. The conversion efficiency reaches a maximum value of 13.07% at 1 × 1016 cm−3,
even though it starts decreasing afterward. A 120 nm thick MgF2 layer has been used as an
anti-reflective coating (ARC) to reduce the light reflection, thus enhancing efficiency [9].
Figure 13 illustrates a comparison of the J–V characteristics of the proposed u-CIGS models
with and without ARC layers. Table 3 presents a comparison between simulated and
fabricated model results at room temperature, AM1.5G spectrum [10,12].
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Table 3. PV characteristics of different u-CIGS models.

PV Parameters Opt. Cell
with ARC

Opt. Cell
w/o ARC

Opt. Pass.
w/o Qf

Ref. [1] Pass.
with −Qf

Ref. [10] Pass.
with −Qf

Jsc (mA/cm2) 30.47 28.44 27.17 26.79 28.56
Voc (mV) 615.04 613.22 584.63 661.58 625.5

Pmax (W/m2) 209.81 196.09 170.81 - -
FF (%) 74.62 74.95 71.66 71.54 74.85
η (%) 14 13.07 11.38 12.68 13.37

3.5. Strategies to Improve the Efficiency of u-CIGS Solar Cells

In this section, we investigate different ways to improve cell performance by optimiz-
ing the spectral responses. Bandgap profile grading and tandem structure configuration
are considered very promising approaches for achieving maximum efficiencies.

3.5.1. Impact of Ga-Concentration in u-CIGS Solar Cells

For the passivated u-CIGS solar cell, the photovoltaic parameters such as Jsc, Voc, FF,
and η are strongly influenced by the Ga/(In+Ga) ratio in CuIn1−xGaxS2 based solar cells as
the CIGS alloy has both bandgap and electron affinity depending on the gallium content [9].
Previous modeling research has suggested that Ga composition grading is the most effective
way to boost the efficiency of the next CIGS generation cells [3,27]. Following the above,
we modulated the energy bandgap of the absorbing layer by changing the Ga/(In+Ga)
ratios. The initial increase in efficiency is mainly due to an increase in the Ga content in
the absorber layer, which also results in an increase in Voc and a small increase in Jsc. The
increase of Jsc is believed to be due to a reduction of the conduction band offset at the
CdS/CIGS interface. In Figure 14, the characteristics of the cell when the Ga content spans
between 12% and 77% are shown. It has been found that when the CIGS layer thickness is
below 1 µm, an increase in Ga/(In+Ga) ratio towards the back contact improves the cell
efficiency [6,9]. The efficiency reaches a maximum value when the Ga/(In+Ga) ratio at the
junction reaches 77% (1.6 eV) [28]. The material properties are certainly very significant
for future tandem structures where bandgap matching with the optical spectrum can be
further exploited to increase efficiency [2].
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3.5.2. Impact of Stepped Bandgap Profile and Ga-Concentration in u-CIGS Solar Cells

We investigated the effect of the thickness of the sub-layers on cell performance. The
proposed device consists of three layers with thicknesses of 50, 150, and 300 nm, and with
a bandgap of 1.6 eV, 1.15 eV, and 1.32 eV, respectively, as illustrated in Figure 15. Many
research works clarified that reduced absorber thickness leads to a decrease in the photon
absorption rate and consequently less amount of the generated carriers [3–7]. A decrease
in the photocurrent density results inevitably in a drop in the yields of solar cell devices.
In this frame, we assumed that an optimal thickness exists and simulated the effect of the
sub-absorber thickness on the cell characteristics by varying the thickness of layer one
and layer three one at a time by keeping the total thickness of the absorber at 500 nm
(See Figure 16). A strong impact on the cell parameters appears with a thickness greater
than 200 nm in both cases. The optimal sub-layer thicknesses were found to increase the
conversion efficiency from 13.07% to 15.82%. These consist of the following configuration:
CIGS 1 (300 nm)/CIGS 2 (150 nm)/CIGS 3 (50 nm). After optimizing the thickness of the
sub-layers, it is very important to optimize the bandgap of the second sublayer (CIGS 2).
Figure 17 presents the cell characteristics’ dependence on Ga content in CIGS 2 from 12%
to 77%. Improvements in Jsc and FF were clearly visible while increasing the Ga content
due to conduction band offset reduction at CIGS 1/CIGS 2 interface. After following the
same trend until a certain concentration level, η then becomes approximately constant from
60% of the Ga/(In+Ga) ratio. An improvement in Voc has been found when the Ga content
ratio ranges between 30% and 60%. In conclusion, we chose as the optimum value the Ga
content ratio of 57% corresponding to an energy gap of 1.46 eV. Figure 18 illustrates the
electric field distribution, electron velocity, electron concentration inside the investigated
structure, and J-V characteristics with two different absorber configurations. For the
Eg1 < Eg2 < Eg3 absorber configuration, an increase in the current density is observed due
to high electric field distribution across the junction. On the other hand, the configuration
Eg1 > Eg2 > Eg3 shows high electron velocity and concentration that cause a loss in short
circuit current due to lower electric field strength at higher Eg that, in turn, causes higher
carriers’ recombination within the absorber layer.
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3.5.3. Optimization of u-CIGS/C-Si PERT Tandem Solar Cell

The numerical simulations were performed to design a two-terminal u-CIGS/silicon
tandem cell targeting the best efficiency and stability [8,26]. The proposed C-Si PERT
model was inspired by Benick’s works [27]. The PERT cell model was calibrated with
the reported experimental data [27]. In their study, Benick et. al. applied ion implan-
tation for the realization of both the emitter and the back surface field (BSF) of high-
efficiency PERT and PERL structures [27]. For the C-Si model, good agreement between
simulated and reference quantities has been obtained in previous work [26]. Figure 19
represents the investigated u-CIGS/C-Si PERT tandem cell with the following configuration:
MgF2/ZnO:Al/ZnO/CdS/u-CIGS/ITO/FSF/Bulk/BSF/Al2O3/Silver/glass-substrate.
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The thermionic emission and tunneling mechanisms at the CdS/CIGS interface are acti-
vated in the simulation. An aluminum oxide (Al2O3) material of 10 nm-thick has been
used for the rear passivation and reduces the recombination losses at the rear Silicon/Silver
contact. According to the literature, the front and rear contacts are assumed to be Schottky
(4.7 eV) and ohmic contact, respectively. The interface trap density (Dit) is inserted into the
model by donor-type Gaussian defect distribution at Silicon/Al2O3 interface [1]. The J–V
curves of the studied cell models are shown in Figure 20. An efficiency of 29.93% can be
obtained with the optimized 2T u-CIGS/Silicon tandem cell [29]. Table 4 summarizes the
PV cell performance of the studied cells in comparison to recently published work [8,26,28].
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Figure 20. J–V curves of the optimized u-CIGS cells, C-Si PERT cell, and u-CIGS/C-Si PERT tandem
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Table 4. PV characteristics of different ultrathin CIGS cells.

Cell Absorber
Thickness Eg (eV) Jsc (mA/cm2) Voc (V) FF (%) η (%)

Optimized pass. u-CIGS cell 500 nm 1.15 30.47 0.615 74.62 14
Optimized pass. u-CIGS cell

(Thickness for graded Bandgap) 500 nm 1.6 eV/1.3 eV/1.15 eV 21.56 1.012 70.74 15.45

Optimized pass. u-CIGS cell
(Graded Bandgap Eg1 > Eg2 > Eg3) 500 nm 1.6 eV/1.46 eV/1.15 eV 22.22 1.026 72.95 16.63

Optimized pass. u-CIGS cell
(Graded Bandgap Eg1 < Eg2 < Eg3) 500 nm 1.15 eV/1.46 eV/1.6 eV 29.11 0.733 75.74 16.18

C-Si PERT cell untextured 180 µm 1.124 36.45 0.693 83.36 21.07
C-Si PERT cell textured [28] ~180 µm - 40.9 0.691 83.8 22.7

u-CIGS top cell 500 nm 1.6 29.65 1.070 79.58 25.27
C-Si PERT filtered by top cell 100 µm 1.124 9.05 0.633 25.04 1.43

Our previous work [26]
Perovskite/u-CIGS Tandem cell 500 nm/600 nm 1.6/1.15 20.89 1.708 85.05 30.36

u-CIGS/C-Si Tandem cell 500 nm/180 µm 1.6/1.124 19.98 1.749 85.57 29.93

4. Conclusions

In this paper, passivated u-CIGS solar cells were successfully simulated using TCAD
tools. The investigation takes into account the effect of recombination loss mechanisms,
such as interface trap density and absorber trap density, on the performance of u-CIGS solar
cells. The influence of the cell pitch size and absorber doping density on cell performance
has been investigated and analyzed under room temperature, AM1.5G spectrum. The
results indicate that a correct optimization of the construction parameters improves the
performance of the cell. In particular, we observed that excessive dimensions of the cell step,
doping density, and trap density give rise to a higher total recombination rate of the carriers
and, therefore, to reduced efficiency. Using the optimal values for these parameters and an
MgF2 layer as ARC, it was possible to simulate a device capable of exhibiting an efficiency
of 14%. Attention was paid to the doping density of the absorber, the Gallium content,
and the consequent bandgap variation. Furthermore, a cell consisting of an absorber with
variable Ga content was simulated, assuming that the absorber consists of three layers
with different thicknesses and bandgap values. The optimized cell was then used in the
model of a tandem structure which employs a PERT-type silicon cell as the bottom cell. The
approach used to optimize the overall efficiency paves the way for the design of highly
efficient photovoltaic devices in tandem configuration with ultrathin film technology.
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