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Abstract: Predicting pedestrian trajectories in urban scenarios is a challenging task that has a wide
range of applications, from video surveillance to autonomous driving. The task is difficult since
pedestrian behavior is affected by both their individual path’s history, their interactions with others,
and with the environment. For predicting pedestrian trajectories, an attention-based interaction-
aware spatio-temporal graph neural network is introduced. This paper introduces an approach
based on two components: a spatial graph neural network (SGNN) for interaction-modeling and a
temporal graph neural network (TGNN) for motion feature extraction. The SGNN uses an attention
method to periodically collect spatial interactions between all pedestrians. The TGNN employs an
attention method as well, this time to collect each pedestrian’s temporal motion pattern. Finally, in
the graph’s temporal dimension characteristics, a time-extrapolator convolutional neural network
(CNN) is employed to predict the trajectories. Using a lower variable size (data and model) and a
better accuracy, the proposed method is compact, efficient, and better than the one represented by the
social-STGCNN. Moreover, using three video surveillance datasets (ETH, UCY, and SDD), D-STGCN
achieves better experimental results considering the average displacement error (ADE) and final
displacement error (FDE) metrics, in addition to predicting more social trajectories.

Keywords: pedestrian trajectory prediction; deep learning; social interactions; graph neural networks

1. Introduction

To drive safely in most traffic scenarios, including crowded places full of vehicles and
people, autonomous vehicles must accurately predict and track the future behaviors of the
surrounding interacting agents [1]. For a short-term prediction, it may be acceptable to
utilize pure physics-based approaches. However, because future scenarios are unknown, a
long-term prediction system is essential to enable not only interaction modeling between
various agents but also to figure out the traversable regions defined by road layouts and
right-of-way compliance with traffic rules.

Pedestrians are responsible for 23% of the 1.35 million road deaths worldwide every
year [2]. In Organization for Economic Co-operation and Development (OECD) countries,
more than 20,000 pedestrians lose their lives annually. Pedestrian deaths represent between
8% and 37% of all traffic fatalities, depending on the country and year [3]. Most of these
tragic accidents occur in crowded areas at pedestrian crossings with a poor visibility due to
low driver attention and/or fatigue. According to [4], the number of elderly pedestrian
accidents is influenced by multiple factors in the city environment; it is important to
mention that pedestrians have minimal protection. As a result, reducing (or eliminating)
these collisions is an important safety concern. In these situations, helping the driver
includes predicting pedestrian behavior. This helps to reduce the effect of various factors
that could negatively affect traffic safety (such as fatigue, poor visibility, inadvertent
cognitive distraction, etc.). According to [5], the implementation of these new technologies
is estimated to reduce the number of accidents by up to 93.5%.
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Despite its importance, forecasting trajectories is extremely challenging due to the
inherent erratic human’s characteristics. First off, the pedestrian motion is multimodal,
which indicates that many different socially acceptable future paths might emerge from
the same trajectory history. With many different personal habits, the associated motion
is sometimes difficult to define. Second, human motion is strongly influenced by the
individuals around them, as can be seen in Figure 1. The interactions between pedestrians
can cause someone to walk similar paths inside a group or modify direction/speed to
prevent collisions. In practice, the joint modeling of complex social interactions is also
challenging. Third, the scenario is highly dynamic because people constantly move in a
scene and out of it, so each frame may be different. The dynamic feature requires powerful
algorithms to manage a variable number of traffic actors.
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For example, a pedestrian in the front will have a greater impact than one in the back. To
represent these dynamic interactions, this approach uses a directed graph to organize
the trajectories of all pedestrians in a scenario. The nodes contain motion properties,
such as the desired velocity across a defined time window. Meanwhile, the edges
between neighboring nodes contain spatial interaction.

Figure 1. Pedestrians consider the future impacts of dynamic people involved in the scene when
trying to make navigation decisions. The future trajectories of pedestrians need to be mentioned in

Figure 1. Pedestrians consider the future impacts of dynamic people involved in the scene when
trying to make navigation decisions. The future trajectories of pedestrians need to be mentioned in
a completely random way. As a result, both the spatial and temporal structure of the pedestrian-
environment interaction must be taken into account.

The pedestrian trajectory prediction topic was studied in many contexts, but the
previously proposed algorithms still suffer due to the constraints described below: first
off, most of the current approaches encoded and decoded the recorded trajectories with
a specific resolution (i.e., a defined number of iterations), which is unable to fully utilize
the temporal connections of the movement behavior. Modeling the general concept (e.g.,
the destination of the pedestrian and their current position) and the local context (e.g.,
the orientation and speed of the motion at a particular time) with a single resolution is
ineffective. Second, many previous approaches used aggregation mechanisms, such as
pooling. This uses the pedestrian trajectory modelled by recurrent units. These are used as
inputs to model human interactions by learning the scene’s general representations.

On sidewalks and crosswalks, pedestrians can suddenly change direction and their
movement should consider interactions with others. According to [6], 70% of pedestrians
walk in groups. Most human interactions follow logic and social rules.

These interactions are not always homogeneous and are likely to be asymmetric. For
example, a pedestrian in the front will have a greater impact than one in the back. To
represent these dynamic interactions, this approach uses a directed graph to organize the
trajectories of all pedestrians in a scenario. The nodes contain motion properties, such as the
desired velocity across a defined time window. Meanwhile, the edges between neighboring
nodes contain spatial interaction.

A pedestrian’s trajectory is affected by a variety of conditions, including the number
of obstacles, the proximity to other traffic actors, their objective, and personality. On the
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other hand, the movement of surrounding pedestrians is an obvious and important aspect
that affects the trajectories [7]. Modern data-driven methods [8] use a pooling/aggregation
process to model the influences of neighbors, which are typically chosen based on the fixed
spatial size of the graph grid.

In this paper, a stable and computationally efficient solution is introduced. The
primary goal of the proposed method is to predict the trajectory of all pedestrians in the
scene in a single shot. This is extremely important for intelligent mobility solutions (e.g.,
automated guided robots, autonomous driving vehicles, etc.) because trajectory prediction
determines traffic safety. A real-time operation with minimal computation resources is
essentially important.

The relevance of hidden neural states is difficult to comprehend. This also makes it
more challenging to extract social relationships from hidden layers. Instead of extracting
these features, the social-spatio-temporal graph convolutional neural network (social-
STGCNN) uses graph convolutional networks (GCNs) with a hand-crafted kernel to capture
them directly from their position information, as described by Mohamed et al. [9].

Previous works in the pedestrian trajectory prediction (PTP) problem were mainly
dominated by RNN and CNN approaches. They are briefly described below.

1.1. Trajectory Prediction Methods with RNNs

Due to its intrinsic capability in dealing with spatio-temporal data, many researchers
prefer long short-term memory (LSTM) architecture. This is an enhanced variant of the
vanilla RNN model. Alahi et al. [8] proposed a social-LSTM to extract the state of the move-
ment characteristic of each pedestrian using three popular datasets: ETH [10], UCY [11],
and the Stanford drone dataset (SDD) [12]. Additionally, a ‘social pooling’ layer is used
to analyze the interactions of traffic participants, the result being called a social-LSTM
network. Taking into account bivariate Gaussian distributions, the social-LSTM model
successfully estimates the stochastic trajectories.

Recent research has improved the social-LSTM method [8] by creating an interaction
aggregation module or using image-derived environment and neighbor features. To im-
prove the prediction accuracy, Fernando et al. [13] used a dual attention (a ‘soft’ and a
‘hardwired’) model for LSTM. Xue et al. [14] proposed embedding the scene information in
the LSTM model. Their initial social-scene-LSTM proposal used two extra layers to model
the interaction of nearby people and the environment. This architecture proposes a circular-
shaped neighborhood which outperforms the traditional rectangular one by considering
the person, social, and scene scales integrated into a hierarchical LSTM structure. An LSTM
refinement was proposed in [15,16]. This solution enables the employment of the current
participants’ group intention through a message passing mechanism.

Another approach used is structural-RNN [17]. This represents a spatio-temporal
LSTM graph-based implementation. This method shows a solution that merges edgeRNNs
and nodeRNNs in the form of a bipartite graph in a variety of interactions, for example,
between people and static objects. This approach showed better results in generalizing the
mutual influence of pedestrians in crowd modeling.

Some researchers argue that if a previous trajectory is provided and pedestrian routes
are analyzed in the context of a multimodal distribution, many paths are realistic and
socially acceptable. Gupta et al. [18] proposed social-GAN, which employs generative
adversarial networks (GANs) with an LSTM-based generator. Many other researchers
began to improve on this study once it was published. According to Amirian et al. [19], the
social networks reveal an improvement in the attention pooling architecture rather than the
maximum pooling structure and use an info-GAN without L2-loss. Sadeghian et al. [20]
proposed SoPhie, which includes the scene characteristics to improve the attention mecha-
nism obtained from images using a CNN-based feature extraction module and an LSTM-
based GAN architecture. The approach described in [21] uses contextual information that
affects the pedestrian trajectories. Using the recorded human-contextual interaction and the
latent variation mode, their method deals with uncertainties in the estimated trajectories.
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1.2. Trajectory Prediction Methods with CNNs

CNNs were used to estimate the trajectory and extract information from the images.
Compared to RNN solutions, which autoregressively predict the future path time steps,
CNN-based methods can estimate all the location time steps in an instant. Nikhil and
Morris [22] used CNN to estimate the trajectories. They demonstrated a competitive
performance while maintaining computational efficiency. The multi agent tensor fusion
generative adversarial network (MATF-GAN) [23] created a social tensor that encodes
the entire static scene’s context and agent’s trajectory information. Although MATF-GAN
considered the global spatial structure of agents in the final observed positions, it did not
take into account the temporal dynamics across the trajectories and did not overlook the
spatial distribution of the agents’ path.

Chandra et al. [24] presented a method that uses CNN to extract data from the images
independent of the perceptions of the horizon and proximity and mix it with the ego state to
integrate it into the LSTM architecture. This method performed well (ADE = 0.78, FDE = 2.44
for the TRAF dataset) in predicting future pedestrian routes. Peek into the future (PIF) [25]
collects a visual input from a scene using CNN and integrates the movement data into an
LSTM architecture to estimate the pedestrian trajectories. The authors initially employed
a pre-trained image segmentation model to extract the pixel-level scene classes; in this
work, a total of ten common scene classes including roads, sidewalks, etc., are considered.
Before making decisions, agents always collect and evaluate the scene information within
a certain range of locations. Segmentation maps are insufficient to fully represent their
future actions.

Trajectron++ [26] developed a recurrent model (graph-structured) predicting the tra-
jectories of a varying pedestrian number while considering various scene inputs, including
the human dynamics. This approach uses then the graph’s structure to model the nodes
interaction (i.e., agents) in a scene. To prevent obstacle collisions, it encodes a local map
that represents the agent’s interaction and the environment. To outperform other com-
plex models, Zamboni et al. [27] proposed novel data augmentation and preprocessing
methods. Their model produces the deterministic projections of future states without
measuring the uncertainties. In complex traffic circumstances, the predicted trajectories are
not always accurate.

Considering the prediction accuracy, the data efficiency, and the component size,
the introduced model outperforms previous architectures. The following are the main
contributions of the presented work:

• An improved trajectory prediction by increasing the number of convolutional lay-
ers in the model, resulting in a significant improvement generated in the social-
STGCNN [9] architecture.

• Performed a comparison experiment using three trajectory datasets: ETH [10], UCY [11],
and the Stanford drone dataset (SDD) [12] collected in different urban scenarios, to
assess the effectiveness of the introduced method versus state-of-the-art architectures.

• Performed an ablation study to reveal the contribution of different components of the
presented model on the prediction problem and to validate the performance of the
attention-based ST-GCNN and TXP-CNN.

• Illustrated the qualitative results visualization on different scenarios from ETH, UCY,
and SDD datasets.

The rest of the article is organized into six main sections, each with extensive subsec-
tions. In Section 2, a brief overview of other relevant research works is presented. Section 3
concerns the formulation of the problems. Section 4 describes the model architecture of the
proposed method. Section 5 contains information about the proposed methodology, includ-
ing the implementation details, datasets, and evaluation metrics. Section 6 provides the
ablation study, the comparison of the presented method with the state-of-the-art research,
and the visualization of various predicted trajectories in different scenes. Finally, Section 7
presents the observations and conclusions.
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2. Related Work

In recent years, in the context of smart vehicles and autonomous driving, the pedes-
trian trajectory prediction problem has become an important aspect. However, due to their
varying interactions, predicting trajectories is challenging. Researchers are studying this
problem and are generating predictions under uncertainty. Deep learning has recently
demonstrated the potential of learning the human movement patterns using a data-driven
approach. In the following, an overview of the relevant work in the field of PTP is provided.

The PTP field has attracted a lot of research interest in the scientific community. The
proposed methods are focused on the following four areas: modeling social interactions,
the physical limitations of real-world scenes, the joint representation of available cues, and
multimodal predictions.

The graph neural network is a deep learning model that is applied directly to graph
architectures. It effectively includes relational inductive bias into the model’s design. In
the context of GNNs, most graphs are attributed (with nodes and edges attributes, and/or
global characteristics). In graph representation learning using GNNs, there are three main
operations: nodes, edges, and global updates [28].

Graph convolutional neural networks (GCNNs) can be divided into spectral [29–31]
and spatial methods [32,33]. The first uses a spectral representation of the graphs to
create convolutions, whereas the latter defines on-the-graph convolutions, working on a
spatially close group of neighbors. The learned filters of the spectral methods are defined
by a Laplacian eigen basis, which is determined by the graph’s structure. As a result, a
model trained on a particular structure cannot be immediately transferred to a structurally
different graph. However, modeling human social interaction requires a time-variant graph.
As a result, spectral methods are ineffective in forecasting pedestrian trajectories. Therefore,
the proposed method belongs to the category of spatial solutions.

Velickovi et al. [34] introduced so-called graph attention networks (GATs). This allows
for an integration of a ‘self-attention-based’ architecture into any type of data structure
characterized as a graph. These networks improve the features of GCNNs [35] by allowing
the model to assign each network node a dynamic value directly. Kosaraju et al. [36]
proposed social-BiGAT, which generates social interactions between pedestrians as a graph
and provides higher edge weights for the most important interactions. The so-called
agent-former learns representations of social interaction from both the temporal and social
dimensions, arguing that the representation of the time and social elements separately may
lead to a suboptimal solution.

Mohamed et al. [9] combined pedestrian crossing features from their position data
directly using the GCNN and a handcrafted kernel. Their approach (social-STGCNN)
improves the STGAT method [37] by obtaining data from each pedestrian trajectory, mod-
eling the interactions between pedestrians with the help of a GNN, and calculating a
weighted graph using GAT. In [38], the authors defined the task of predicting the trajec-
tory of pedestrians using a spatio-temporal graph, with nodes representing humans in
the crowd.

In [39], the authors designed a conditional generative neural system (CGNS) to esti-
mate future vehicle trajectories for a safe and intelligent navigation. However, due to an
unsupervised learning method and unstable training, it is difficult to expect good results
based on this solution.

The reader can also consult [40] for a more extensive overview of the deep learning-
based approaches used to predict the trajectories of the pedestrian.

Similarly to [34], in our proposed method, pedestrian interactions are represented as
a graph, with nodes designating people and edges indicating interactions; higher edge
weights correspond to strong interactions. A weighted adjacency matrix, which is a
representation of the characteristics of the graph’s edge, is also utilized to determine the
influence between people.
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3. Problem Description

The main objective of trajectory prediction is to estimate the future positions of a
group of N pedestrians in a real-world scene. This is based on their past and current
positions on a map representation throughout a time interval, starting at moment To, as
can be seen in Figure 2. The goal is to estimate the coordinates of each pedestrian after
Tp time steps. The position of each pedestrian in a scene is represented by the real-world
coordinate X = (x, y). The ith past position for each human is identified as Xi

t =
(

xi
t, yi

t
)

with t ∈ {1, . . . , To}, where
(

xi
t, yi

t
)

are the random variables describing the probability
distribution of the pedestrian n location at moment t within the scene (n is scene-dependent).
The ground truth of the future trajectories is denoted as Trajobs =

{
Yi

t =
(
xi

t, yi
t
)}

, where
i ∈ {1, . . . , n}, To + 1 ≤ t ≤ Tp.
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three positions can be mentioned: observed positions, real-future positions, and predicted positions.

The predicted positions denoted Trajpred =
{

Ŷi
t =

(
x̂i

t, ŷi
t
)}

, i ∈ {1, . . . , n},
To + 1 ≤ t ≤ Tp are the random variables. It is assumed that the position of the ith

pedestrian at moment t follows bi-variate Gaussian distribution Ŷi
t ∼ N

(
µi

t, σi
t , ρi

t
)
. At

time t, the pedestrian’s group’s center is denoted as µi
t =

(
µx, µy

)i
t. The standard deviation

is referred to as σi
t =

(
σx, σy

)i
t, and the correlation coefficient is denoted as ρi

t. To obtain
the trajectory prediction, the proposed architecture predicts the Gaussian distribution
parameters

(
µx, µy, σx, σy, ρ

)i
t.

The pedestrian positions of the observation time moments 1 ≤ t ≤ To are utilized
to estimate the position’s moments To + 1 ≤ t ≤ Tp for each traffic participant. To learn
the parameters of the model, the negative logarithmic likelihood loss function is used, as
shown in Equation (1).

Li(W) = −
Tp

∑
t=1

log
(

f (xi
t, yi

t

∣∣∣µx, µy, σx, σy, ρ
)
) (1)

In Equation (1), W denotes the learned network parameters. The loss value is mini-
mized to obtain the optimal weights of the network.

4. The Proposed Method

In the following, a description of the key aspects of the proposed estimation method is
provided. Subsequently, the complete design of each module will be discussed, including
the overall creation of the model. The main goal is to forecast future trajectories for
numerous interacting agents using position history and context information. The prediction
method is also extendable to multi-target tracking frameworks.

Compared to social-STGCNN [9], in this paper, the layers dimensions of both CNN
modules were adjusted to increase the accuracy of the estimation. The original method in-
cludes two components: the spatio-temporal graph convolution neural network (ST-GCNN)
and the time-extrapolator convolution neural network (TXP-CNN). The first component
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uses convolution to extract the features. These characteristics provide a concise description
of the history of the observed trajectories. These are fed to the TXP-CNN which employs
them to predict positions for all pedestrians in the group and to extrapolate the future
trajectories. The overview diagram of this method is depicted in Figure 3.

Electronics 2022, 11, x FOR PEER REVIEW 7 of 16

��(�) =−
�=1

��

��� (�(��
� , ��

� ��, ��, ��, ��, �))� (1)

In Equation (1), W denotes the learned network parameters. The loss value is
minimized to obtain the optimal weights of the network.

4. The Proposed Method
In the following, a description of the key aspects of the proposed estimation method

is provided. Subsequently, the complete design of each module will be discussed,
including the overall creation of the model. The main goal is to forecast future
trajectories for numerous interacting agents using position history and context
information. The prediction method is also extendable to multi-target tracking
frameworks.

Compared to social-STGCNN [9], in this paper, the layers dimensions of both CNN
modules were adjusted to increase the accuracy of the estimation. The original method
includes two components: the spatio-temporal graph convolution neural network
(ST-GCNN) and the time-extrapolator convolution neural network (TXP-CNN). The first
component uses convolution to extract the features. These characteristics provide a
concise description of the history of the observed trajectories. These are fed to the
TXP-CNN which employs them to predict positions for all pedestrians in the group and
to extrapolate the future trajectories. The overview diagram of this method is depicted in
Figure 3.

Figure 3. Overall architecture of the proposed method. Through optimization of the layer size,
increased accuracy in trajectory prediction is also possible.

4.1. Graph Representation of Pedestrian Trajectory
The graph is formed by the relative positions of the pedestrian trajectories and

captures the spatial interactions of pedestrians in the real-world scene. Considering N
pedestrians at moment t, their trajectories are represented as the graph �� = ��, �� .
Here, �� = {��

� ∀� ∈ {1, . . . , �} is a node-set that corresponds to the pedestrians’
positions. Each observed location ��

�, ��
� is a point of ��

� . �� = ��
�� ∀�, � ∈ {1, . . . , �}

represents the set of edges within graph �� . The vector ��
�� emphasizes the edge

between ��
� and ��

� (n and j denote pedestrians) and is reflected by an N x N adjacency
matrix ��

� for each moment. ��
� is defined in Equation (2).

��
�(�, �) = 1/ ��

� − ��
�

2
�� ��

� − ��
�

2
≠ 0,

0 ��ℎ������
(2)

4.2. Spatio-Temporal Graph Convolutional Neural Network

Figure 3. Overall architecture of the proposed method. Through optimization of the layer size,
increased accuracy in trajectory prediction is also possible.

4.1. Graph Representation of Pedestrian Trajectory

The graph is formed by the relative positions of the pedestrian trajectories and captures
the spatial interactions of pedestrians in the real-world scene. Considering N pedestri-
ans at moment t, their trajectories are represented as the graph Gt = (Vt, Et). Here,
Vt = {{vn

t |∀n ∈ {1, . . . , N} } is a node-set that corresponds to the pedestrians’ positions.

Each observed location (xn
t , yn

t ) is a point of vn
t . Et =

{
enj

t

∣∣∣∀n, j ∈ {1, . . . , N}
}

represents

the set of edges within graph Gt. The vector enj
t emphasizes the edge between vn

t and vj
t

(n and j denote pedestrians) and is reflected by an N × N adjacency matrix Am
t for each

moment. Am
t is defined in Equation (2).

Am
t (n, j) =

{
1/‖vn

t − vj
t‖2 i f ‖vn

t − vj
t‖2 6= 0,

0 Otherwise
(2)

4.2. Spatio-Temporal Graph Convolutional Neural Network

The first component is the ST-GCNN used to incorporate the object’s representation [9].
The ST-GCNN function is to extract the spatio-temporal embedding from the input graph.
The next step is the normalization of matrix As, representing the network topology at time
step t, for generating the Laplacian matrix, as can be seen in Equation (3):

Âs
t = Λ−

1
2

t (As
t + I)Λ

− 1
2

t , (3)

where node links are considered by adding the identity matrix I to the adjacency As
t and Λt

is the diagonal degree matrix with components reflecting the row summations of As
t + I.

The ST-GCNN is further specified by convoluting the velocity map V(ı) with the kernel
W(ı) at layer ı under the graph Laplacian Âs

t as can be seen in Equation (4):

f (V(ı), A) = σ

(
Λ−

1
2

t Âs
t Λ−

1
2

t V(ı)W(ı)
)

. (4)

4.3. Time-Extrapolator Convolutional Neural Network

The second component employed is the TXP-CNN. This works on the temporal
dimension of the graph embedding V̂ and it increases to meet the demand of the prediction
accuracy. Since it relies on feature space convolutions, it has fewer parameters than the
recurrent units. It is important to note that the TXP-CNN layer is permutation-variant,
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since variations in the graph embedding lead to different outcomes. Aside from that, the
predictions are invariant if the order of the pedestrians is permuted.

The main objective of the network time extrapolator is to perform temporal convolu-
tions in the trajectory’s history to decode future locations. This is because the temporal
convolution network (TCN) [41] is considered a more powerful and efficient system for
learning time dependencies than the recurrent architectures. Each temporal layer is residu-
ally interconnected with the previous one.

In this paper, the entire process of the prediction of the pedestrian trajectory is illus-
trated by Algorithm 1.

Algorithm 1. Dynamic Graph Convolutional Networks

Input: real-world pedestrians coordinate X = (x, y);
Output: the evaluation metrics, i.e., the average displacement error (ADE) and final displacement
error (FDE);

1: For each t ∈ [1, To] do
2: Represent trajectories as a graph : Gt = (Vt, Et);

3: Compute ground truth of future trajectories : Trajobs =
{

Yi
t =

(
xi

t, yi
t

)}
;

4: End for
5: Create ‘distribution distance′ N × N adjacency matrix Am

t by using Equation (2);
6: Generate Laplacian matrix by using Equation (3);
7: For each i ∈ {1, . . . , n} do
8: For all t ∈ [1, To] do
9: Learn the parameters

(
µx, µy, σx, σy, ρ

)
of the model by using Equation (1);

10: probability distribution of the predicted trajectory : Ŷi
t =

(
x̂i

t, ŷi
t

)
∼ N

(
µi

t, σi
t , ρi

t

)
;

11: End for
12: End for
13: Collect all of the predicted location and the real location for each pedestrian;
14: Compute the ADE and FDE with the formulas from Equations (5) and (6);
15: Return ADE and FDE.

5. Experiments
5.1. Implementation Details

The PyTorch deep learning framework was used for the implementation of the pro-
posed solution. For training and evaluation, a Nvidia GeForce GTX 1080 GPU with 8 GB
memory RAM on a desktop running Ubuntu Version 20.04 was used. The model was
trained for 250 epochs with a batch size set to 128. The stochastic gradient descent (SGD)
algorithm was utilized as a neural network optimizer. The learning rate was initially set
at 0.01 while the decay was set at 0.002 after 150 epochs, while PRELU [42] was used as
an activation function. All the hyperparameters were determined empirically following a
trial-and-error approach.

5.2. Datasets

For comparison purposes, the proposed method was first evaluated on the following
traditional datasets: ETH [10] and UCY [11]. Furthermore, the experimental results for
the more challenging dataset, SDD [12], are also provided. These datasets contain videos
and annotated trajectories that include social interactions in real-world scenarios. All the
paths are represented in world coordinates. Unprocessed pedestrian positions for these
datasets were obtained from the S-GAN-P repository [18], which used them to calculate
the relative location.

ETH includes two scenes, known as ETH and HOTEL. UCY includes three scenes,
identified as UNIV, ZARA1, and ZARA2. In total, there are around 1500 pedestrians,
including thousands of trajectories in different scenarios, such as creating groups, crossing
together, and walking alongside each other.



Electronics 2023, 12, 611 9 of 15

The SDD contains a bird’s-eye view from the drone recordings of eight different
locations and thirty-one videos recorded on the Stanford University campus. It includes six
annotated classes, such as vehicles, pedestrians, cyclists, buses, carts, and skateboarders.
SDD has eight scenes, including Bookstore, Coupa, DeathCircle, Gates, Hyang, Little, Nexus,
and Quad. The annotated data produce 2D bounding box coordinates (measured in pixels)
in video sequences available at 30 frames per s. While pedestrians and bicycles are visible
in every scene, fast-moving categories have a significant impact on pedestrians. The
decision to consider this dataset is related to the existence of difficult-to-model multiple
dynamic patterns.

5.3. Evaluation Metrics

In computer vision research, trajectories are commonly described by motion statistics
such as the number of collisions, the average acceleration, the average speed, and the total
distance covered [19]. There are eight observed time steps (3.2 s) for each traffic participant.
For all datasets, a total of twelve steps (4.8 s) are used to represent the real future positions.
Euclidian L2 norms are employed to evaluate the displacements between the ground truth
and the estimated trajectories. The evaluations are based on two common metrics: the
average displacement error (ADE) and final displacement error (FDE). These are briefly
described in the following.

• The ADE represents the average distance between the ground truth and the predicted
trajectories over all future time steps, as shown in Equation (5).

ADE =
∑N

n=0 ∑
Tp
t=0 ‖ p̂n

t − pn
t ‖2

N × Tp
, (5)

• The FDE represents the distance between the final positions of the ground truth and
the predicted trajectories, as shown in Equation (6).

FDE =
∑N

n=0 ‖ p̂n
t − pn

t ‖2

N
, t = Tp, (6)

where N denotes the number of pedestrians, Tp designates the number of the predicted
time step, and pn

t and p̂n
t are the ground truth and predicted result at time step

t, respectively.

Many of the proposed solutions [43–45] incorporate multimodality in their estimation
task, causing their models to produce more than one prediction given a single past trajectory.
This proposed method reports the results using the minimum ADE/FDE among the
randomly sampled k number of predicted positions, where k = 20 in all the tested scenes
from the above-mentioned datasets.

6. Results
6.1. Ablation Study

D-STGCN is created by stacking several layers of ST-GCNN and TXP-CNN. In general,
the selection of the network dimension can have a major impact on the ideal results. To
identify the most efficient architecture, multiple combinations of the ST-GCNN and TXP-
CNN number of layers were tested based on the design-of-experiment (DOE) method
comparable to [46].

Each experiment was carried out with the same hyperparameter settings in both
the testing and training phases. Taking into account the complexity of the model, the
maximum number of ST-GCNN and TXP-CNN is established at four. The metrics described
in Section 5.3 were used for evaluation purposes. The empirical results are detailed in
Table 1.
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Table 1. Results of different parameter combinations applied on the ETH, UCY, and SDD datasets.
The results are shown in terms of the average ADE/FDE metrics. The AWG column represents the
average ADE/FDE results for all scenes of the ETH-UCY datasets. The best results are indicated in
bold. Lower numerical results are better.

ST-GCNN TXP-CNN SDD ETH HOTEL UNIV ZARA1 ZARA2 AWG

1 1 17.03/28.32 0.68/1.32 0.52/0.86 0.47/0.83 0.41/0.61 0.34/0.54 0.48/0.83
1 2 20.47/36.21 0.72/1.23 0.54/1.01 0.47/0.83 0.38/0.64 0.32/0.50 0.48/0.84
1 3 18.98/29.46 0.63/1.03 0.40/0.65 0.50/0.89 0.37/0.60 0.32/0.50 0.44/0.73
1 4 19.69/34.28 0.74/1.26 0.37/0.58 0.47/0.85 0.35/0.57 0.29/0.48 0.44/0.74
2 1 15.82/25.50 0.69/1.33 0.58/0.91 0.46/0.78 0.38/0.56 0.34/0.51 0.49/0.81
2 2 18.65/31.05 0.99/1.80 0.52/0.93 0.52/0.96 0.37/0.58 0.37/0.57 0.55/0.96
2 3 24.32/44.00 0.77/1.50 0.43/0.72 0.50/0.92 0.36/0.59 0.36/0.56 0.48/0.85
2 4 17.56/31.53 0.81/1.64 0.67/1.23 0.50/0.90 0.38/0.62 0.34/0.55 0.54/0.98
3 1 25.09/29.93 0.69/1.34 0.53/0.91 0.62/1.10 0.42/0.70 0.39/0.58 0.53/0.92
3 2 15.18/25.93 0.70/1.26 0.58/0.97 0.57/1.03 0.44/0.67 0.35/0.53 0.52/0.89
3 3 43.46/62.67 0.77/1.34 0.66/1.22 0.49/0.88 0.40/0.60 0.39/0.56 0.54/0.92
3 4 23.86/42.04 0.73/1.42 0.48/0.78 0.51/0.96 0.44/0.70 0.32/0.53 0.49/0.82
4 1 18.65/31.84 0.99/1.74 0.53/0.74 0.57/0.95 0.50/0.86 0.35/0.53 0.58/0.96
4 2 21.54/31.21 0.94/1.94 0.64/1.03 0.53/0.84 0.51/0.89 0.35/0.51 0.59/1.04
4 3 19.18/33.29 0.75/1.29 1.13/2.04 0.53/0.98 0.39/0.63 0.39/0.55 0.63/1.09
4 4 26.88/43.56 0.71/1.25 0.89/1.56 0.56/0.99 0.45/0.69 0.35/0.54 0.59/1.00

This study concluded that the best architecture model consists of:

• One ST-GCNN layer and three TXP-CNN layers for the ETH-UCY datasets.
• Three ST-GCNN layers and two TXP-CNN layers for the SDD dataset.

As the number of D-STGCN layers increases, the performance of the model decreases
(i.e., a combination of three and four layers). This behavior is caused by a lack of scene
vision data for the model inputs.

6.2. Visualization

The prediction of the proposed method is qualitatively analyzed for five different
real scenes from the ETH and UCY datasets. The visualization results are illustrated in
Figure 4. The plots depicted here show that pedestrians pay attention to their surroundings.
People pay more attention to the nearby humans and obstacles in front of them than to
those behind them. Changes in the context behind a pedestrian or far in front of him have
little impact on future movement decisions. The observed pedestrian positions (the known
eight-point trajectory) are represented by the blue segments between two consecutive
locations. The real trajectory (observed) is represented in green (twelve positions). The
prediction, starting from position nine (for the next twelve points), is represented in red.
All locations are depicted in a 2D plot (x, y coordinates) in meters.

Figure 4a represents a road crossing scene. It includes pedestrian interactions and
an obstacle avoidance scenario in the ETH scene. This figure shows the behavior of the
algorithm path prediction algorithm in the absence of information from social interactions.

Figure 4b shows the qualitative model prediction evaluation for a pedestrian inter-
action in the HOTEL scene scenario. For example, solutions such as S-GAN-P [18] and
SoPhie [20] use simple social information to pool data; therefore, the prediction results
deviate significantly from the real trajectory. The proposed model captures long-term
social information using the spatial-temporal graph; thus, the results are more likely to
correspond to the real future paths.
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Figure 4. Examples of trajectory prediction results. (a) Pedestrian crossing the road in the ETH
scene. (b) Interaction of pedestrians and objects in the HOTEL scene. (c) No social interaction in the
UNIV scene. (d) Sudden change in direction in the ZARA1 scene. (e) Pedestrians walking together
throughout the ZARA2 scene.
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Figure 4c corresponds to the UNIV scene, where the subject walks on campus alone
without interference. The proposed model collects information on the subject–environment
interaction using the spatial-temporal graph and provides various impact weights based on
that information. As a result, the predicted trajectory is pretty close to the real future positions.

Figure 4d represents the ZARA1 scene in which the trajectory prediction fails. The
analyzed pedestrian normally walks in the straight direction but is temporally diverted in
the direction by other pedestrians passing nearby. The expected outcome of the model for
this situation is not satisfactory.

Finally, in Figure 4e, one can see the best result obtained with our model in the ZARA2
scene. Here is a crossing scenario where the pedestrians are considered to be walking
together with two others throughout the entire scene. Figure 4e shows that, taking into
account the spatial interaction, more socially appropriate trajectories are obtained.

6.3. Comparison with the State-of-the-Art Methods

Table 2 presents the comparison between the state-of-the-art methods and the one
proposed in the ETH, UCY, and SDD datasets in terms of the ADE/FDE evaluation met-
rics. In most situations, the presented method outperforms the other current state-of-the-
art approaches.

Table 2. Quantitative results of state-of-the-art methods for ETH, UCY, and SDD datasets in terms of
ADE/FDE metrics. All models use eight frames as input and predict the next twelve frames. The
column AWG represents the average results between the ETH-UCY datasets’ scenes. n/a means that
the corresponding articles have not provided detailed results in the SDD dataset.

Methods SDD ETH HOTEL UNIV ZARA1 ZARA2 AWG

S-LSTM [8] 31.19/56.97 1.09/2.35 0.79/1.76 0.67/1.40 0.47/1.00 0.56/1.17 0.71/1.53
Social-STGCNN [9] n/a 0.64/1.11 0.49/0.85 0.44/0.79 0.34/0.53 0.30/0.48 0.44/0.75

SR-LSTM [15] n/a 0.63/1.25 0.37/0.74 0.51/1.10 0.41/0.90 0.32/0.70 0.44/0.93
SR-LSTM-2 [16] n/a 0.58/1.13 0.31/0.62 0.50/1.10 0.41/0.90 0.33/0.73 0.43/0.89
S-GAN-P [18] 27.23/41.44 0.87/1.62 0.67/1.37 0.76/1.52 0.35/0.68 0.42/0.84 0.61/1.20
S-Ways [19] n/a 0.39/0.64 0.39/0.66 0.55/1.31 0.44/0.64 0.51/0.92 0.45/0.83
SoPhie [20] 16.27/29.38 0.70/1.43 0.76/1.67 0.54/1.24 0.30/0.63 0.38/0.78 0.53/1.15

SSALVM (20) [21] n/a 0.61/1.09 0.28/0.51 0.59/1.24 0.30/0.64 0.37/0.78 0.43/0.85
MATF-GAN [23] 27.82/59.31 1.33/2.49 0.51/0.95 0.56/1.19 0.44/0.93 0.34/0.73 0.64/1.26

PIF [25] n/a 0.73/1.65 0.30/0.59 0.60/1.27 0.38/0.81 0.31/0.68 0.46/1.00
Social BiGAT [36] n/a 0.69/1.29 0.49/1.01 0.55/1.32 0.30/0.62 0.36/0.75 0.47/0.99

STGAT [37] n/a 0.65/1.12 0.35/0.66 0.52/1.10 0.34/0.69 0.29/0.60 0.43/0.83
CGNS [39] 15.84/25.17 0.62/1.40 0.70/0.93 0.48/1.22 0.32/0.59 0.35/0.71 0.49/0.97

Our method 15.18/25.50 0.63/1.03 0.37/0.58 0.46/0.78 0.35/0.56 0.29/0.48 0.42/0.68

Regarding the ADE metric, the presented approach decreased the error by 3% for the
ETH-UCY datasets compared to the state-of-the-art SR-LSTM-2 solution [16] and decreased
the error by 5% for the SDD dataset compared to the state-of-the-art method CGNS [39].
Regarding the FDE metric, the presented approach reduced the error by 10% compared
to the baseline state-of-the-art method social-STGCN [9]. Surprisingly, D-STGCN, which
does not utilize scene image data, outperforms the methods that do, such as SoPhie [20],
PIF [25], or STGAT [37].

7. Discussion and Conclusions

In this paper, a suitable graph-based spatio-temporal approach for the prediction
of pedestrians’ trajectories is presented. The experimental results improve the previous
findings of [9,47] by showing the efficiency of attention-based spatial and temporal graph
neural networks along with the importance of an optimization procedure performed with
respect to the number of layers for both modules of the neural network. Comparative
experiments on ETH, UCY, and SDD datasets indicate that the proposed method outper-
forms the baseline approach and other state-of-the-art solutions in terms of the accuracy
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and performance on the ADE/FDE metrics. The visualization results demonstrate that
the presented approach can provide reasonable interaction weights and generate coherent
future unimodal trajectories.

In future work, previous [48] and current results will be considered for future de-
velopments aimed at addressing the more complicated real-world situations commonly
encountered in autonomous driving. Furthermore, it is interesting to determine the perfor-
mance obtained using a larger dataset such as the nuScenes dataset [49]. A richer dataset
would offer images taken in more traffic scenarios and eventually surprise human social
interaction. Some rich information can be extracted from interaction, such as grouping (for
example, at road-crossing points) and ungrouping (once the road has been crossed).
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