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Abstract: This paper summarizes a review of the distribution system state estimation (DSSE) meth-
ods, techniques, and their applications in power systems. In recent years, the implementation of a
distributed generation has affected the behavior of the distribution networks. In order to improve
the performance of the distribution networks, it is necessary to implement state estimation methods.
As transmission networks and distribution networks are not similar due to variations in line param-
eters, buses, and measuring instruments, transmission state estimation cannot be implemented in
distribution state estimation. So, some aspects, such as accuracy, computational time, and efficiency,
should be taken into account when designing distribution state estimation methods. In this paper,
the traditional methods are reviewed and analyzed with data-driven techniques in order to present
the advantages and disadvantages of the various methods.

Keywords: distribution system state estimation; distribution phasor measurement units (D-PMU);
model-based state estimation; data-based state estimation

1. Introduction

Real-time measurements, power management, and the control of active distribution
networks (ADNs) are difficult due to a smaller number of smart monitoring devices, the
complex arrangements of distribution networks, and the inclusion of distributed gener-
ations [1]. State estimation methods are implemented to control the active distribution
networks. The state estimation methods make a connection between measuring devices
and control areas to observe each and every parameter in ADNs [1]. With the introduction
of various power electronic devices, several power quality issues that are related to har-
monics have arisen in practice [2]. State estimation methods were implemented long ago
in the transmission network, but in distribution networks, the state estimation methods
were not implemented directly [3]. Both transmission and distribution networks vary
substantially in their respective cases. In [1], measuring devices were generally placed
in a limited bus, where all buses were observed by measuring devices. The work in [4]
showed that the distribution networks are mainly arranged in simple meshed networks,
whereas the arrangement of transmission networks is complicated. The work in [5] shows
that in a distribution network with a larger number of buses, the complex arrangement
creates major differences when compared to the simple arrangement of the transmission
networks. Work in [6] shows that the X/R ratio is small in the distribution systems. The
length of the lines in power distribution systems is much shorter when compared to that of
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transmission systems, and hence, inductance has a minimum value, thereby the X/R ratio
is small. The decoupled state estimation algorithm cannot be implemented in distribution
systems. Therefore, suitable state estimation techniques must be implemented to establish
the relationships between the monitoring devices and the control areas to determine the
efficiency of ADNs [6]. Historically, the first distribution state estimation (DSSE) technique
was recorded in the year 1990 when the SCADA system was presented [7]. DSSE plays
a vital role in the control of ADNs because error identification and the discovery of bad
data in the measurements are achievable through the DSSE data. The reliability of the
state estimation depends on the data obtained from the measuring devices, which include
SCADA, phasor measurement units (PMU) [8], and micro-PMUs (µPMU) [9].

In general, an electrical power system consists of three different systems, i.e., gener-
ation, transmission, and distribution. The generated power can be transmitted through
transmission lines and deals with high voltages [10]. The consumers from households and
industries which connect to the power substations, and the relevant voltages respective to
the distribution systems, are very low, when compared to the transmission systems [11]. As
the transmission system in a power grid has to deal with higher voltage ranges, in actual
practice, these systems are given more priority and come with several control techniques,
while in the case of distribution systems, the priorities and advances in the implementation
of control technologies are relatively low [12]. During the past years, the implementation of
the distributed generation in practice has required adequate control and monitoring of the
distribution network, and the distribution management system was employed to achieve
this goal. State estimation and control scheduling are two main parts of the distribution
management system [13]. The concept of state estimation in a distribution network is
currently the subject of ongoing research [14]. There is a great need to assess and monitor
the generation of harmonics and their propagation [15]. In order to locate the sources of
harmonic content and estimate the distribution of harmonic voltages in the distribution
system, harmonic state estimation should be used in practice [16]. In an unobservable
system, there may be observable islands as well as unobservable regions within the net-
work [17]. Pseudo-measurements are not obtained from meters but are typically calculated
using historical data or short-term load forecasting [18].

1.1. Motivation

In actual practice, Phasor measurement units (PMUs) have been widely deployed in
electricity transmission systems and are used in major power system applications, such
as phenomenon monitoring, protection, and control [19]. In a distribution network, when
the set of available measurements is sufficient to calculate the state vector of the system,
it is referred to as an observable system [20]. In order to monitor the power system in
real-time, an observability test should be performed prior to the state estimation [21].
If a system is observable, then state estimation may be carried out straight away [22].
However, in an unobservable system, the states of the network can be estimated using
pseudo measurements [23]. The objective of the power system state estimation is to monitor
the power system or transmission/distributed networks [24].

The objective of state estimation is to obtain a computer model that accurately repre-
sents the current conditions of the power system. This paper mainly addresses a review of
various methods of state estimation in a distributed power system network.

1.2. Survey of the Literature

Developments and challenges in distribution system state estimation, along with
Cramer–Rao lower bound analysis, were proposed by the authors in [14]. One of the state
estimation methods, i.e., the WLS method and fast heuristic optimization algorithm were
discussed in [3]. A discussion on the optimal allocation of measuring units using a multi-
objective evolutionary algorithm was proposed by the authors in [4]. A method of dynamic
state estimation (DSE) optimization in accordance with back/forward sweep-based load
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flow calculations was discussed in paper [5]. A new PMU-DSSE formulation to estimate
NEVs was proposed in [6].

Weighted least squares (WLS), the extended Kalman filter (EKF), the unscented Kalman
filter (UKF), and invariant unscented Kalman filter (IUKF) methods were proposed in [7].
A new multi-grounded secure state estimation SSE-PMU-based formulation was presented
in [8]. The branch current-based state estimation (BCSE) method was proposed in [9]. An
analysis of the state estimation results for two different models of the network tested was
presented in [10]. A hybrid algorithm of state estimation based on hybrid measurements
was proposed by the authors in [11]. The concept of intelligent meter placement and a
hybrid state estimator for the achievement of optimal operations was presented in [12]. A
methodology for distribution state estimation using pseudo-measurements was proposed
in [13]. A discussion on the linearized, three-phase distribution class SE algorithm for
applications in smart distribution systems was presented in [14]. A discussion on the
reliability of satisfying accuracy constraints (RSACs) was presented in [15]. A mathematical
model of an electricity-gas interconnected integrated energy system and its state estimation
method was proposed in [15]. An ANN-based load forecasting model was proposed to
improve the distribution system state estimation accuracy [16]. The PASE method was
proposed to improve the accuracy of the current one, using EnKF [17]. An information
fusion estimation approach was presented for distributed network systems with data
random transmission time delays and lost and disordered packets [18].

An approach using branch currents as state variables and an explanation regarding the
weakly meshed distribution system was proposed in [19]. An analysis of low-voltage power
distribution systems (PDS) from the SE perspective was proposed in [20]. A bibliographic
review of different methods used for state estimation in an electric power distribution
network was presented [21]. A study of different types of topology changes in distribution
systems in the initial stages was discussed in [22]. SE with different measurements based
on the WLS approach was proposed in [23]. The effect of synchro phasor measurements
from multiple PMUs on the multi-area state estimator (MASE) in the distribution grid (DG)
was discussed in [24].

The estimation of network parameters is described in [25]. A new algorithm that
belonged to the group of harmonic state estimation (HSEs) was proposed in [26]. A study
of the application of error covariance in DSE by using the augmented complex Kalman
filter (ACKF) was proposed in [27]. A high-performance DSSE method that can handle
the PMUs along with all the measurement types commonly used in industrial DSSE was
proposed in [28]. A comparison between the branch-current-based distribution system
state estimation in polar and rectangular coordinates was presented by the authors in [29].
The singular value decomposition (SVD) method and Principal component analysis (PCA)
algorithm were proposed in [30]. A discussion on predictive variables was proposed
in [31]. A detailed review of DSSE techniques was proposed in [32]. A numerical method
to identify the topology and estimation of line parameters without the information of
voltage angles was proposed in [33]. A PMU-based algorithm was discussed in [34].
An empirical wavelet transform based on D-PMU was discussed in [35]. IEEE 14-bus
and 33-bus distribution systems were tested by the proposed heuristic algorithm [36].
The Monte Carlo simulation was used in [37]. A heuristic algorithm for optimizing the
deployment of real-time measuring points was discussed in [38]. A novel PMU-DSSE
formulation was proposed in [39]. The performance analysis of WLS (static estimator),
EKF, and UKF (dynamic state estimators) was proposed in [40]. Earthing resistances in
the optimization problem were studied in [41]. A branch current-based state estimation
was discussed in [42]. Performance analysis of two different models of the grid over the
state estimation results was conducted in [43]. A hybrid algorithm of state estimation
was explained in [44]. The placement of a smart meter and hybrid state estimator was
proposed in [45]. The evaluation of the proposed algorithm could be performed by a
calculation of the mean percentage errors of the estimated pseudo measurements [46]. A
state estimation algorithm was proposed in smart distribution systems [44]. The reliability
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of satisfying accuracy constraints was proposed in [47]. A mathematical model and state
estimation method of the electricity-gas interconnected integrated energy system were
proposed in [48]. An artificial neural network-based load forecasting model to improve the
accuracy of DSSE was proposed in [49]. The PASE method with ensemble Kalman filter
(EnKF) to improve accuracy was proposed in [33]. A novel information fusion estimation
methodology for distributed networked systems was proposed in [50]. The calculations
for the weak meshed distribution system were presented in [51]. Low voltage power
distribution systems in the state estimation domain were analyzed in [52]. A study of
various topological changes in distributed energy systems was proposed in [53]. State
estimation based on the WLS technique was proposed in [54]. Novel two-step multi-
area state estimation (MASE) algorithm testing was proposed in [55]. A methodology
for estimating network parameters was discussed in [56]. A novel power system-robust
hybrid state estimation (PS-RHSE) algorithm was proposed in [57]. An augmented complex
Kalman filter (ACKF) was proposed in [38]. Hachtel’s matrix method was presented in [58].
Micro-PMU measurements were presented in [59]. The singular value decomposition (SVD)
method and Principal component analysis (PCA) algorithm were proposed in [60]. The
state of risk in a distribution network was realized in [61]. A WLS algorithm based on DSSE
was presented in [62]. The identification of topology and estimation of line parameters
were performed by introducing a numerical method [63]. Line parameters in a three-phase
distribution network were estimated by using a PMU-based algorithm [64]. A pre-filtering
method was proposed to avoid the errors which arose due to the presence of spectral
leakage [65].

The remainder of the paper is organized as follows. The D-PMU is discussed in Sec-
tion 2; the distribution system state estimation is discussed in Section 3. The mathematical
formulation of the distribution system state estimation and a summary table discussing
the proposed topics and contributions made by various authors in all the references added
in this paper are presented in Section 4, followed by the Conclusions and Future scope in
Section 5.

2. Distribution Phasor Measurement Units

There is a need to develop better and more accurate real-time distribution level
PMUs [66]. The outline is mainly focused on the basic structure of PMU s, the key charac-
teristics of distribution level signals, and the discussion of a new D-PMU scheme [67]. The
basic diagram of a conventional phasor measurement unit (PMU) is shown in Figure 1.

The voltage or current signals obtained from CTs and PTs are considered analog input.
They are then sent to the sampler for the purpose of sampling. From the Nyquist sampling
theorem, it follows that the sampling frequency has to be greater than or equal to twice the
maximum frequency component available in the signal. The data sampled in this way is
fed into a microprocessor, where the phasor estimation technique is deployed [68]. The
GPS receiver provides a UTC signal that serves two purposes, (i) it helps in synchronizing
the sampled data across all the PMUs, (ii) it also provides a timestamp in the PMU output.
Finally, the output of the PMU is expected to be the magnitude of the voltage and its phase
angle, the frequency, the rate of change in frequency, and the timestamp [69]. This infor-
mation is transmitted to a central place known as the phasor data concentrator (PDC) [70].
The major difference between the PMU and various signal parameter estimators is the
phasor measurement technique in the PMU, which conforms to particular synchro phasor
standards [71]. There are three options as far as phasor estimation techniques are concerned.
These include (a) time-domain state estimation techniques, (b) frequency-domain state
estimation techniques, and (c) time-frequency-domain state estimation techniques [72].

The time domain state estimation techniques, such as the weighted least squares (WLS)
technique, cannot provide data on the available frequency component in the signal [73].
Most time, domain systems require a matrix inversion that creates a computational burden,
and sometimes, it may not be possible to obtain the matrix inversion, i.e., it may be a
single matrix [74]. The frequency domain state estimation techniques, such as the discrete
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Fourier transform (DFT)-based techniques, also have some drawbacks [75]. Once a signal is
transformed from the time domain to the frequency domain, time information is lost [67].
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They are very sensitive to frequency deviations. The outcomes may be abnormal due
to spectral leakage problems [76]. Therefore, it is better to consider time and frequency-
based state estimation techniques, such as the short-time Fourier transform (STFT)-based
method or the wavelet-based method [77]. Finally, the physical measurement unit (PMU)
has a sinusoidal input, and the GPS satellite provides a time stamp and synchronizes the
sampling to the PMU. Based on the algorithm present in the PMU, a synchro phasor data
packet can be obtained and sent to the PDC [78].

According to the IEEE standards, there are two types of PMUs. These are P(protection)-
class and M(monitor)-class. M-class PMUs are used for wide-area monitoring applications,
and P-class PMUs are used for wide-area protection and control applications [79]. The
M-class PMUs place more emphasis on accuracy, while the P-class PMUs can be used
for a faster response rather than accuracy [80]. The accuracy or efficacy of the phasor
estimator can be checked based on the total vector error (TVE). For an M-class PMU, the
TVE should be less than 1%, and for a P-class PMU, the TVE should be relaxed up to
3% [81]. Under no circumstances should the TVE be greater than 3%. PMU algorithms
must be tested under stringent conditions such as harmonics, signal modulation, Out-of-
band interference (OOB), frequency deviation, frequency ramp, etc. There are several other
desired characteristics for the distribution level or micro-PMUs [82]. Distribution level
signals consist of more bad data, and therefore, more noise must be considered. Since
there is little power flowing in the distribution level, the angle phasor estimation should
be highly accurate [25]. The estimation time should be very fast because of the rapidly
changing dynamics due to RES [74,75]. Finally, D-PMUs should be able to detect various
PQ events in the signal [83]. An empirical wavelet transform-based D-PMU, which is a
time and frequency-based technique, is shown in Figure 2.
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The sampled input is passed through the frequency estimator. Since, in most cases,
it is off the nominal frequency in the distribution network, it is passed through a sample
value adjustment (SVA). This is an interpolation technique to dispose of the nominal
effect of the frequency [26]. The clean signal is sent to the FFT to obtain the number of
dominant frequency components present in the signal [84]. Based on this, the boundaries
are selected, and the filter coefficients are found to design the filter [85]. In order to have
the estimated phasor, the filter is passed through a Hilbert transform to obtain orthogonal
components [27].

3. Distribution System State Estimation

State estimation [4] is nothing more than the estimation of the states of the distribution
network, as in the case of the transmission network. The voltage magnitude and the phase
angle at every node of the grid are considered states. If the values of these states are
known, we can determine the value of power as well as the direction of power flow at
every branch [28]. The three phases in a distribution system network are not balanced
as in the case of the transmission system network. Additionally, these systems employ
radial topology and there are many other aspects present that differentiate between the
estimation topology of the distribution system and the transmission system [5,8]. The
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current operating state of the system can be identified with the help of state estimators,
which can facilitate the monitoring of operational constraints on quantities in an efficient
manner [29].

The state estimation includes the following main functions: [1] topology processor,
observability analysis, state estimation solution, bad data processing, and parameter and
structural error processing [41]. The topology processor helps to collect data regarding the
status of CBs and switches [30]. The observability analysis is used to determine whether
the solution resulting from state estimation could be obtained or not with the available set
of measurements [31]. States in the unobservable regions of the network can be estimated
by adding additional measurements using “pseudo measurements”. The best estimates
for transformer taps, line flows, loads, and generator outputs can be determined using the
state estimation solution [32]. Bad data processing always helps to detect errors in the set of
measurements [86]. The estimation of several network parameters, detection of structural
errors in the network configurations, and identification of the status of erroneous breakers
can be conducted by parameter and structural error processing [2].

When there is a discussion on topology estimation, there is an assumption that we
actually consider in practice, and hence all state estimation methods, in general, are based
on the assumption that the system network is available with an accurate system model [33].
However, in actual practice, in the case of distribution systems, sometimes the states of
the switching mechanism that are used may not be known. Under such conditions, the
system network experiences some topological errors, and, in general, topology processing
algorithms play a role in detecting these errors in an efficient and accurate manner [34].
The network topology processor, in actual practice, is used to determine the connectivity of
the electrical network and the location of the metering devices in the system [35]. There
are several methods of state estimation, and, of these, the WLS method is given priority,
although the main disadvantage of this method is that it has slow convergence [87]. The
orthogonal transformation method (Q-R method) directly performs the Q-R decomposition
of the Jacobian matrix [33].

The determination of state estimation and the existence of bad data can be performed
after the completion of topology processing [88]. In practice, to perform state estimation in
a transmission network, the amount of measured data available is very abundant, but in a
distribution system network, it is very low. Therefore, in order to make state estimation
programs work more efficiently, the use of pseudo-measurements should be considered [13].
Pseudo measurements can be added by using historical data regarding loads of feeders
and distribution transformers, whereby Pseudo measurements using historical data always
increase the over-abundance of data for state estimations [78,89,90]. There are many
methods available for the modeling of loads in order to improve the accuracy of pseudo
measurements for state estimations [65]. Possible measurements include real power flow,
reactive power flow, current flow magnitude, voltage magnitude, injected real power, and
injected reactive power [19,91].

Modern distribution system algorithms and tools are constantly improving, but their
functionality is only as good as the utility model of their grid. In conventional methods,
compiling records of installations through manual data entry can be error-prone, and these
techniques have little validation with measurements [92]. These problems can be overcome
by using data-driven modeling. It uses advanced metering infrastructure (AMI) data and
validates system models. These techniques have granular, high accuracy, high resolution,
and fidelity. The model dynamically adjusts itself and updates itself automatically based
on the system conditions. It assumes knowledge regarding the possible network topology
configurations and distribution line resistance-to-reactance ratios; the framework for identi-
fying the true network topology configuration and the corresponding line parameters uses
only a few measurements of voltage magnitudes and power injections. The data-driven
framework is intrinsically adaptive to changes in system conditions, such as unknown
topology reconfiguration [93].
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4. Mathematical Formulation of Distribution System State Estimation

In any state estimation exercise, the number of measurements is always taken to be
randomly large when compared to the number of states to be estimated, and the below
equation has been taken from [14,15,24].

If m is the number of measurements and n is the number of states, then always m > n.
If any bad data are found during the estimation, then the number of measurements is
reduced. The estimation of the state means is conducted by estimating the voltage and
phase angles (represented by Vi and θi)

Let
x =

[
vT θ

T
]

where
vT =

[
V1 V2 . . . . . . . . . VN

]
θ

T
=
[
θ2 θ3 . . . . . . . . . θN

][
vT θ

T
]
=
[
V1 V2 . . . . . . . . . VNθ2 θ3 . . . . . . . . . θN

][
vT θ

T
]T

=
[
V1 V2 . . . . . . . . . VNθ2 θ3 . . . . . . . . . θN

]T

, (1)

Hence, x is a column vector with a dimension of (2N − 1).
The measurement vector for a simple DC circuit is given by:

Z = Hx + e, (2)

where, H is the constant matrix.
If Pi is the injected real power at bus “i” and Qi is an injective reactive power at bus

“i”, then

Pi =
N

∑
k=1

ViVkYikcos(θi − θk − αik), (3)

Qi =
N

∑
k=1

ViVkYiksin(θi − θk − αik). (4)

Equations (1) and (2) are non-linear equations and can be written as follows.

Pi = Pi(V, θ), (5)

Qi = Qi(V, θ). (6)

In general, in power system state estimation, the measured quantities are non-linear
functions of state variables. Since the measured quantities are non-linear functions, the
mathematical description is as follows:

Z1 = h1(x) + e1

Z2 = h2(x) + e2
.
.

Zm = hm(x) + em


, (7)

The vector x is represented by a vector and can be written as

x =
[
x1 x2 . . . . . . . . . xn

]T . (8)
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After substituting Equation (8) into Equation (7) the measurement vector has the
following form 

Z1 = h1( x1 x2 . . . . . . . . . xn ) + e1
Z2 = h 2 ( x1 x2 . . . . . . . . . xn ) + e2

.

.
Zm = hm( x1 x2 . . . . . . . . . xn ) + em


. (9)

Equation (9) represents the general measurement model of the distribution system
state estimation, and the functions used in this model are essentially non-linear.

Let us now consider a certain initial vector, x(0) =
[

x1
(0)x2

(0) . . . . . . xn
(0)
]T

and with
this initial assumption, the Taylor series expansion up to the first order is applied. The set
of components of the measurement vector has the following form:

Z1 = h1(x1
(0)x2

(0) . . . . . . xn
(0)) + ∂h1

∂x1
∆x1 +

∂h1
∂x2

∆x2 + . . . . . ∂h1
∂xn

∆xn + e1

Z2 = h 2 (x1
(0)x2

(0) . . . . . . xn
(0)) + ∂h1

∂x1
∆x1 +

∂h2
∂x2

∆x1 + . . . . . ∂hn
∂xn

∆x1 + e2

.

.
Zm = hm(x1

(0)x2
(0) . . . . . . xn

(0)) + ∂hm
∂x1

∆x1 +
∂hm
∂x2

∆x1 + . . . . . ∂hm
∂xn

∆x1 + em


(10)

Next, Equation (10) can be written as:

Z1 − h1(x(0)) = ∂h1
∂x1

∆x1 +
∂h1
∂x2

∆x2 + . . . . . ∂h1
∂xn

∆xn + e1

Z2 − h 2 (x(0)) = ∂h2
∂x1

∆x1 +
∂h2
∂x2

∆x1 + . . . . . ∂hn
∂xn

∆x1 + e2

.

.
Zm − hm(x(0)) = ∂hm

∂x1
∆x1 +

∂hm
∂x2

∆x1 + . . . . . ∂hm
∂xn

∆x1 + em


. (11)

Taking into account the matrix transformation, the set of Equation (11) can be re-
placed by: 

Z1 − h1(x(0)

Z2 − h2(x(0))

.

.
Zm − hm(x(0))

 =

.

∂h1
∂x1

∂h1
∂x2

. . ∂h1
∂xn

∂h2
∂x1

∂h2
∂x2

. . ∂h2
∂xn

. . . .

. . . .
∂hm
∂x1

∂hm
∂x2

. . ∂hm
∂xn




∆x1
∆x2

.

.
∆xn

+


e1
e2
.
.

en

 (12)

Equation (11) can be written as:


∆Z1
∆Z2

.

.
∆Zn

 =

.

∂h1
∂x1

∂h1
∂x2

. . ∂h1
∂xn

∂h2
∂x1

∂h2
∂x2

. . ∂h2
∂xn

. . . .

. . . .
∂hm
∂x1

∂hm
∂x2

. . ∂hm
∂xn




∆x1
∆x2

.

.
∆xn

+


e1
e2
.
.

en

, (13)

where ∆Zk = Zk − hk

(
x(0)

)
, k = 1, 2, . . . ,n.
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The Jacobian matrix of the measurement vector is:

Hx(0) =

.

∂h1
∂x1

∂h1
∂x2

. . ∂h1
∂xn

∂h2
∂x1

∂h2
∂x2

. . ∂h2
∂xn

. . . .

. . . .
∂hm
∂x1

∂hm
∂x2

. . ∂hm
∂xn

. (14)

The linearized measurement model is represented by:

∆Z = Hx(0)∆x + e, (15)

where, ∆x = [∆x1 ∆x2 ∆x3 . . . . . . . ∆xn
]T is the vector of increments and Hx(0) is the

Jacobian matrix evaluated at initial iteration x=x(0),e = [ e1 e2 e3 . . . . . . . en
]T . [94].

The power systems should be continuously subjected to a monitoring or observation
process, which helps to keep the operational limits under control, and in order to achieve
this, state estimators are used. Furthermore, state estimators can be operated as a filter
against some incorrect measurements [94].

A detailed summary of the contributions made by various authors is shown in Table 1.

Table 1. Summary of various state estimation methods made by different authors.

Ref. No. Authors Proposed Work/Technique/Method

[2] Louis Investigation of error covariance in DSE with the help of an augmented complex
Kalman filter (ACKF).

[14] G. Wang The Cramer–Rao is lower bound in order to indicate the unbiased estimator’s
performance was proposed.

[75] Carquex, Rosenberg and Bhattacharya Firstly, in order to improve the accuracy, the PASE method with EnKF has
been proposed.

[36] Jiao IEEE 14-bus and 33-bus distribution systems were tested by the proposed
heuristic algorithm and indicated an acceleration of up to 50% inaccuracy

[37] Hassannejad Marzouni, Zakariazadeh and Siano
In order to show the exact robustness of the method proposed by the authors,
some conditions have to be developed, and, to achieve this, the Monte Carlo
simulation is used

[38] Švenda, Strezoski and Kanjuh
Real-time measuring points were optimized to improve accuracy and, for this
purpose, the authors proposed a heuristic algorithm thus optimizing the
deployment of the real-time measurement points

[39] De Oliveira-De Jesus, Celeita and Ramos The estimation of NEVs, a novel PMU-DSSE formulation, was proposed.

[40] Ahmad The performance analysis of WLS (static estimator), as well as EKF and UKF
(dynamic state estimators), was proposed.

[41] Deoliveira-Dejesus Earthing resistances are incorporated as both state variables and field
measurements in the optimization problem.

[42] Baran and McDermott The operating condition can be estimated using the BCSE method, i.e., branch
current-based state estimation.

[43] Chusovitin, Polyakov and Pazderin Performance analysis of two different models of the grid with respect to the
state estimation results.

[44] S. Wang and Liu The advantages of the proposed hybrid algorithm of the state estimation were
clarified in the numerical simulation process using the IEEE 13-bus system.

[45] Ramesh
Two aspects, i.e., of a smart meter placement and hybrid state estimator were
proposed and an algorithm was formulated and verified with both the IEEE and
the TNEB benchmark systems.

[46] Soares The proposed technique was evaluated by calculating the mean percentage
errors of the estimated pseudo measurements.

[35] Haughton and Heydt A state estimation algorithm in smart distribution systems was proposed.
[47] Gholami The reliability of satisfying accuracy constraints was postulated

[48] Zhou
A study of the mathematical model and methods of state estimation of the
electricity-gas interconnected integrated energy system was proposed; in
addition to this, distribution state estimation calculations were formulated.



Electronics 2023, 12, 603 11 of 16

Table 1. Cont.

Ref. No. Authors Proposed Work/Technique/Method

[49] Carcangiu In order to improve the accuracy of distribution state estimation, a load
forecasting model based on an artificial neural network was proposed.

[55] Carquex, Rosenberg and Bhattacharya First, in order to improve accuracy, the PASE method with EnKF was proposed

[50] L. Liu A novel information fusion estimation methodology for distributed networked
systems.

[51] Khan, Rehman, and Ahmad A methodology where branch currents were considered to be state variables was
proposed and working for a weak meshed distribution system was presented.

[52] Da Silva A low-voltage power distribution system in the state estimation domain
was analyzed

[12] Prasad and Kumar A detailed discussion of state estimation methods, computational intelligence
techniques, and heuristic algorithms for state estimation was proposed.

[53] Zamani and Baran A study of various topological changes in distributed energy systems
were proposed

[54] M. Liu
State estimation based on the WLS technique was proposed. Analysis of the
various effects of installing AMI and PMU for the estimation of accuracy for the
DSSE was proposed.

[55] Fatima Testing and verification of a novel two-step MASE algorithm was proposed.
[56] Logic and Heydt The methodology for estimating network parameters was discussed.
[57] Dubey, Chakrabarti and Terzija A novel PS-RHSE algorithm was proposed.

[58] Dzafic, Jabr and Hrnjic A high-performance DSSE method was proposed and analyzed. In addition to
this, Hachtel’s matrix method was presented.

[59] Almutairi, Miao and Fan
A comparative analysis of the branch current-based DSSE in polar and
rectangular coordinates was presented in addition to
Micro-PMU measurements.

[60] Radhoush, Shabaninia and Lin The singular value decomposition (SVD) method and Principal component
analysis (PCA) algorithm were proposed.

[61] Jia, Liu, Tang and Zhang
Analysis of the state of risk in the distribution network was conducted, and
safety-related indicators for the distribution network were calculated based on
the state estimation results.

[62] Majdoub A detailed overview of the DSSE-based WLS algorithm and evaluation
algorithms were presented.

[63] Zhang, Wang, Weng and Zhang Topology identification and estimation of line parameters were conducted by
introducing a numerical method.

[64] Puddu
The line parameters in a three-phase distribution network were estimated using
a PMU-based algorithm, and the method of isolating systematic errors from
random errors was presented.

[65] Chauhan, Reddy and Sodhi A prefiltering method was proposed in order to avoid the errors which arise due
to the presence of spectral leakage.

[95] Dechang Yang

A data-driven optimization approach for a dynamic reconfiguration of the
distribution network was proposed. The main advantage of the data-driven
optimization approach is that it uses historical data to obtain the optimal
control strategy.

[92] Hasala Dharmawardena A distributed data-driven framework based on cellular computational networks
(CCN) for power distribution system modeling was presented.

[93] Nayara Aguiar, Vijay Gupta A data-driven technique for the detection of incidents relevant to the operation
of energy storage systems in distribution networks was proposed.

[96] Matthew J. Reno The creation of a fundamental change from models based on manual entry to
data-driven modeling.

[97] H. Xu, A. D. Domínguez-García, V. V. Veeravalli
and P. W. Sauer

Development of a data-driven framework for controlling distributed energy
resources (DERs) in a balanced radial power distribution system.

[98] Rizwan, M.; Waseem, M.; Liaqat, R.; Sajjad, I.A. Selective particle swarm optimization technique-based model was formulated to
reduce distribution loss by optimal sizing and placing of DGs.

The advantages, disadvantages, and applications have been presented in Table 2.

Table 2. Advantages, disadvantages, and applications of various DSSE methods.

DSSE Method Advantages Disadvantages Applications

WLS Simple and fast Sensitivity issues Solar PV systems
LMS high robustness, less sensitive to data high computational cost, huge memory usage PV systems and wind turbine systems
EKF used for non-linear systems Huge system complexity Solar PV systems, EV charging

ANN Good sensitivity and more accuracy Proper data base is recommended PV systems and wind turbine, systems
UKF Used for non-linear systems Less recommendation method PV and Wind
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5. Conclusions and Future Scope

This paper discusses a review analysis of distribution system state estimation (DSSE).
In addition to this, D-PMU and its block diagram were explained. The concept of distribu-
tion state estimation methods and applications to distribution systems were also discussed
in detail. According to the study, the majority of the authors mostly focused on modified
state estimation methods to improve efficiency. The mathematical analysis of DSSE has
been presented. The weighted least squares method was found to be more efficient when
compared to other methods in terms of various factors such as robustness, accuracy, and
time of computation. The scope of this review is setting up a wide range of platforms for
future studies to realize the vision of smarter grids. According to the study, most authors
have focused on modified state estimation methods aimed at improving efficiency. A
mathematical analysis of DSSE was presented. The scope of this review is to set a broad
platform for future studies to realize the vision of smarter grids. In the future, algorithms
based on machine learning will be used to solve the DSSE problems. In our future papers,
we aim to explore how various types of distributed generations, such as wind power plants,
small-scale hydropower plants, and energy storage in distribution systems, could change
the performance of the proposed approach.
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