
Citation: Xu, F.; Tong, S.; Li, C.;

Du, X. Research on the Control of

Multi-Agent Microgrid with Dual

Neural Network Based on Priority

Experience Storage Policy. Electronics

2023, 12, 565. https://doi.org/

10.3390/electronics12030565

Academic Editor: Ali Mehrizi-Sani

Received: 7 December 2022

Revised: 12 January 2023

Accepted: 20 January 2023

Published: 22 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Research on the Control of Multi-Agent Microgrid with Dual
Neural Network Based on Priority Experience Storage Policy
Fengxia Xu 1,* , Shulin Tong 1, Chengye Li 2 and Xinyang Du 2

1 School of Mechanical and Electrical Engineering, Qiqihar University, Qiqihar 161006, China
2 State Grid Heilongjiang Provincial Electric Power Co., Ltd. Qitaihe Power Supply Company,

Qitaihe 154699, China
* Correspondence: xufengxia_hit@163.com

Abstract: In this paper, an improved dual neural network control method based on multi-agent
system is proposed to solve the problem of rating the frequency deviation and voltage deviation
of the microgrid system due to the uneven impedance distribution of the circuit. The microgrid
multi-agent system control model is constructed; the microgrid operation problem is transformed into
Markov decision-making process, and the frequency error model of distributed secondary control
adjusting system is established. In the course of training, the priority experience replay mechanism is
introduced to accelerate the training reward return by using the experience of high feedback reward,
and the frequency and voltage bias of the microgrid system are reduced. The model of isolated
island microgrid of distributed power supply communication topology is established, and the control
strategy of double neural network is simulated. Compared with the traditional sagging control
method, the double neural network algorithm proposed in this paper stabilizes the frequency of
the grid at rated frequency and improves the convergence speed. Simulation results show that the
proposed method is helpful to provide stable and high-quality power resources for enterprises.

Keywords: microgrids; multi-agent systems; deep reinforcement learning; neural network

1. Introduction

Microgrid are mini-grids composed of distributed power sources, loads, and energy
storage devices [1]. As an important model for future smart grids, they have received exten-
sive attention from scholars at home and abroad [2–4]. At present, the control architecture
of a microgrid is mainly divided into centralized and distributed; centralized controllers are
usually affected by network communication, etc., which leads to the failure of generation
fluctuation, while distributed control strategy is an ideal structure; each distributed power
controller is independent and equal to ensure the stability of the system and ensure the
information sharing of each distributed power [5–8], so it is widely used in the microgrid.
However, the flexibility of microgrid and the droop control method used by distributed
power supplies cause the frequency and voltage of the system to deviate from the rated
value [9,10], In Ref. [11] for the AC-DC microgrid, a distributed compensation dynamic
feedback method is proposed to improve the accuracy by droop gain and total load current
used in the distributed compensation strategy. However, the traditional control methods
are usually limited by the fuzzy microgrid itself parameters, and the instability of renew-
able energy sources, loads, and other factors in the microgrid has an enormous impact, so
regulating the output power of the distributed power supply by designing a secondary
frequency controller to control the frequency of the system becomes a vital issue.

With the development of artificial intelligence technology, multi-agent systems with
autonomous and spontaneous characteristics are suitable for distributed power control
of microgrids; the deep reinforcement learning algorithm has been observed by power
system personnel for solving sequential decision problems of microgrids [12]; the agents
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interact with the environment, and there are also complex relationships between agents
such as collaboration and competition so that the agents’ communication of multi-agent
systems can achieve cooperative transmission of information to achieve global control [13].
Over the years, deep reinforcement learning methods have become promising practical
issues in microgrids, such as energy management and load frequency control [14,15]. In
Ref. [16], the authors use multi-agent reinforcement learning algorithms to accomplish the
economic optimal control objectives of each microgrid under the premise of satisfying the
supply–demand balance. In Ref. [17], the authors combines artificial intelligence techniques
to ensure power quality in microgrids, maximizing the integrated performance of each
agent, so the algorithms using deep reinforcement learning (DRL) have received attention
from power system researchers for their ability to solve sequential decision problems [18].
The current reinforcement learning algorithms can be divided into two categories based on
value functions and policy gradients. In studying deep reinforcement learning algorithms
based on value functions, Ref. [19] establishes algorithms using Deep Q-Network to solve
the cooperative control problem of energy storage devices in the established microgrid
model. In Ref. [20], the authors used algorithms of DQN and DDQN to solve the power
usage optimization problem in the microgrid, and the overestimation problem solved by
the dual neural network reduces the error estimation suitable for minimizing the cost
problem. In another large class of research on deep reinforcement learning algorithms
based on policy gradients, in [21,22] the authors develop a microgrid model for solving the
cost minimization of optical energy storage and air conditioning systems to demonstrate
the feasibility of policy neural network dealing with uncertain models. The Actor-Critic
framework is proposed to be able to solve the continuous state space problem well accord-
ing to the deep reinforcement learning algorithm combining value function and policy
gradient [23–25]. In Ref. [26], the authors establish a hybrid AC-DC microgrid for droop
control problem using the multi-agent Actor-Critic method to solve the microgrid problem
in segments to meet the state scale of different systems. In Ref. [27], the authors solve the
microgrid DC bus voltage regulation problem using online reinforcement learning method
with deterministic policy gradients. The integrated performance, frequency response, and
voltage regulation of distributed power sources in smart grids all have important effects.
In [28], a collaborative RL algorithm for economic scheduling is proposed for the challenges
of trading between microgrids and upper primary networks and operational risks, but
frequency control and power scheduling are not considered.

Combining distributed control with the deep reinforcement learning algorithm in
this paper, we propose a Priority Experience Storage Actor-Critic Neural Network for the
control problem of frequency and voltage deviation due to primary control of the microgrid,
which treats the microgrid as a multi-agent system to achieve control frequency and voltage
stabilization of the system, which ensures the high precision optimal solution of the control
objective and makes the microgrid system have better dynamic performance.

The main structure of this paper is as follows. Section 2 describes the problem of
modeling microgrid systems at the primary control. Section 3 describes the modeling frame-
work and the application of the deep reinforcement learning algorithm PES-Actor-Critic
neural network in power grids. Section 4 is an experimental simulation with an example of
a distributed grid, and Section 5 is a summary of the whole paper giving conclusions.

Based on the above analysis, the main contributions of this paper are summarized
as follows:

(1) In order to solve the nonlinear coupling problem of microgrid systems, this paper
proposes an Actor-Critical Neural Network, which combines deep reinforcement
learning and the Priority Experience Storage Policy to improve the dual neural net-
work structure algorithm. The control mode adopts distributed method to realize
the information transmission between each neighboring agent so that the frequency
control of each agent reaches the optimal expectation.

(2) The improved dual neural network adopts the method of strategic gradient updating,
iterative optimal adjustment of data deviation caused by primary control layer of the
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microgrid using target value neural network and predictive value neural network,
solves the traditional neural network hoist problem, and ensures load sharing of
each agent.

(3) Compared with the traditional control algorithm, this paper combines the method of
preemptive experience playback to make the control algorithm have faster conver-
gence speed, and the analysis of plug-and-play characteristics of microgrid ensures
better robustness of grid system.

2. Microgrid Control System

This paper’s islanded microgrid control system mainly includes the battery, gas tur-
bine, wind turbine, photovoltaic, load, and interface with sizeable external grid, as shown
in Figure 1. In order to control the islanded microgrid system more conveniently and
accurately and improve the microgrid system’s agent decision-making level, the microgrid
is divided into primary control and secondary control. The primary control uses a droop
control method using a multi-agent system to realize distributed control strategies for
each distributed power source as different agents and to meet the global control objectives
through coordination between neighboring agents. The total consumption in the secondary
control multi-agent system is highly correlated with the agents that do not provide en-
ergy. The agents must be reasonably allocated to each intelligence after calculating the
power deviation, considering the power balance, output upper and lower limits, and
other constraints.
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Figure 1. The Microgrid control model. Indicates the deviation between the rated frequency and
power of the system.

2.1. Microgrid Distributed Power Device Model

1. Battery model

The battery model is an essential part of the microgrid and plays a role in mitigating
the uncertainty of renewable energy and load in the microgrid operation to some extent. In
this paper, the storage model is established by simulating the battery with a linear model
and considering the charging and discharging power and the storage state SOC; the charge
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state of the battery is related to the charge power in the previous period, and the charging
and discharging expressions are as follows:

Soct+1 = Soct − ∆t(
sdis

t pdis
t

ηdisSes
+

sch
t ηchPch

t
Ses

) (1)

where, sch
t , ssh

t is the energy storage charging and discharging state at time t; Pch
t , Pdis

t
corresponds to the charging and discharging power, respectively; ηch, ηsh indicates the
charging and discharging efficiency of the storage system; Ses is the rated capacity of the
energy storage device; ∆t is the interval time. The energy storage equipment charging and
discharging satisfies the constraints.

Soct, Pch
t , Psh

t ≥ 0 (2)

Socmin ≤ Soct ≤ Socmax (3)

Pch
t ≤ Pch

max (4)

Pdis
t ≤ Pdis

max (5)

where Pch
max, Pdis

max is the maximum charging and discharging power of the energy storage
device for the period, and Socmax, Socmin is the maximum and minimum value of the
capacity of the energy storage device.

2. Gas turbine model

The gas turbine is one of the distributed generation components and belongs to the
controllable generation unit of the microgrid. The role is to be able to provide an adjustable
power supply to the microgrid by using a generator of traditional fossil fuel natural gas,
effectively reducing the dependence of the microgrid on external sources. This paper uses a
gas turbine unit model as an example of a power generation model whose fuel cost function
is expressed as follows:

CMT
t = a(PMT

t )
2
+ bPMT

t + c (6)

where a, b, c are cost factors; CMT
t denotes the cost of fuel; PMT

t denotes the output power
of the gas turbine.

The constraint on the output power of the gas turbine is:

PMT
min ≤ PMT

t ≤ PMT
max (7)

PMT
down ≤ PMT

t − PMT
t−1 ≤ PMT

up (8)

where PMT
min , PMT

max is the minimum and maximum power of the gas turbine, and PMT
down, PMT

up is
the climbing constraint.

3. Wind and solar power units

Wind and solar power units belong both are among the components of distributed
generation units, which are renewable generation energy sources in the microgrid converted
to electrical power generation through natural resources, and due to their uncontrollability
the generation level is defined as Pres

t ; assuming that renewable energy generation at time
step t moments is sampled from the probability distribution, PPres

t defined as follows:

Pres
t ∼ PPres

t (Pres
t−1, . . . , Pres

t−n) (9)

In this paper, the data of renewable generations are represented by real data of isolated
microgrids, and the distribution PPres

t is indexed by time t to represent the variation of
generation power.
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4. Power balance

The bus of the microgrid needs to maintain power balance in each distributed power
source access, including the full grid connection of renewable energy sources, controllable
generations, and storage, and the system’s constraints have been given above, from which
a model can be established as follows:

Pres
t + PMT

t + PES
r + Pgrid

t = PK
t (10)

where Pgrid
t denotes the value of the power input to the microgrid from the larger grid;

PMT
t PES

t Pres
t represent the power output of the gas turbine, the battery charging and dis-

charging power, and the control of the renewable generations at moment t, respectively.
In the microgrid multi-agent system, the agents are designed for distributed control

based on the neighbor information of the communication network, corresponding to the
distributed power supply in the microgrid system; represented by the graph, G is defined
as the ensemble {N, α, A}, where N denotes a single agent, N = {1, 2 . . . n}; α ⊆ N × N
denotes the set of edges; A is the adjacency matrix reacting to the degree of interaction of
each node; the elements of A are defined as A = (a ij)n×n

the communication line from
node j to i.The interaction of information is generally expressed using the Laplace matrix
L = D− A, where D is the incoming degree matrix representing the received information
about the neighboring agents; L is defined as follows:.

L =

lij = ∑
i 6=j

aij, i = j

lij = −aij, i 6= j
(11)

2.2. Droop Control of the Microgrid

The primary microgrid control uses the droop control method to regulate the active
and reactive power of the microgrid, using the output active and reactive power of the
inverter in the simulated traditional power system to handle the frequency and voltage
in the microgrid or to control the active and reactive power in response to the change of
frequency and voltage in the system. Then, the power is reasonably distributed in each
distributed power source. Generally, P-f and Q-V droop control are used in medium-
and high-voltage power systems, and P-V and Q-f inverted droop control are used in
low voltage power systems, and the nodal currents of the lines are schematically shown
in Figure 2.
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Where Vi∠δi is the voltage (i = 1, 2 . . . ) of the inverter output of the distributed power
supply, (DGi), EL∠δL is the common side AC bus voltage; Ri and jXi are the resistance
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and inductance; the line impedance line is denoted as Zi∠θ = Ri + jXi. The resulting
expressions for the active and reactive power of the inverter are as follows:{

P = V
Z [(V − E cos δ) cos θ + E sin δ sin θ]

Q = V
Z [(V − E cos δ) cos θ − E sin δ sin θ]

(12)

Normally the angle of power δ is minimal and defaults to cos δ ≈ 1, sin δ ≈ δ Bringing
in the power equation gives:{

P = V
Z [(V − E) cos θ + Eδ sin θ]

Q = V
Z [(V − E) sin θ − Eδ cos θ]

(13)

It can be seen that the power of the inverter is related to the impedance angle θ. When
the line impedance is inductive, the active power P is mainly related to the power angle δ,
and the reactive power Q is primarily associated with the voltage drop V − E, and usually,
P-f and Q-V droop control is used at this time; when the line impedance is resistive, the
active power P is mainly related to the voltage drop V − E, and the reactive power is
primarily related to the power angle δ, and usually P-V, and Q-f droop control is used at
this time.

Microgrids are usually low-voltage grids, and the output frequency and voltage of the
distributed power inverter can be directly controlled by using P-f and Q-V droop control,
which corresponds to the expression of the relationship.{

f = f0 −mi(P− P∗)
V = V0 − ni(Q−Q∗)

(14)

where f 0 is the rated frequency; P∗ is the rated active power; mi is the active droop factor;
V0 is the voltage amplitude; Q∗ is the rated reactive power; ni is the reactive droop factor.
The resulting characteristic curve for droop control is shown in Figure 3.
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Figure 3. Droop control characteristic curve. A represents rated power and moves to point B when
the system load increases.

The rated frequency f0 of the system at point A during stable operation corresponds
to the active power of the system as p∗ and the output voltage V0 in the V-Q curve reach
the reactive power of Q∗. When the load in the microgrid system increases, the operating
point of the system moves from A to B. The design remains stable when the frequency and
voltage decrease and the active power and reactive power increase; thus, droop control is
used to achieve the power balance of the microgrid system.

However, the traditional droop control will affect the frequency and voltage stability
of the system to produce deviation; the allowable range of frequency fluctuation of our
power quality standard is ±2%, and the content of voltage fluctuation is ±5%. We thus
propose a secondary control algorithm to reduce the system frequency and voltage error so
that the micro-grid system can operate more stably.
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3. Secondary Control Based on PES-ACNN Model Framework

In order to cope with the frequency deviation problem of conventional microgrid
systems, an improved deep reinforcement learning algorithm based on the PES_ACNN
model for the multi-agent system is proposed to train the control parameter data of the
microgrid sub-frequency system optimally based on the frequency deviation of the micro-
grid, which is received by the agent at certain intervals ∆ f as the optimization target of
secondary control.

In the multi-agent systems of microgrids, due to each agent model system having
an independent Actor-Critic neural network structure, all data are processed by feature
extraction of the neural network as input, and the error between the predicted value and
the target value in the model is updated iteratively by the strategy gradient descent and
finally as output after passing the activation function. To make efficient use of experience
during the network model training, a preferred experience pooling strategy is introduced
to improve the speed of convergence of the algorithm to ensure a timely solution to energy
optimization problems in microgrids. The model training flow chart is shown in Figure 4.
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3.1. Deep Reinforcement Learning Algorithms

The reinforcement learning algorithm is based on the Q-Learning algorithm, whose
main framework consists of the agent and the environment. The core of its algorithm in
the microgrid system is the interaction between the distributed power source and the grid,
which is continuously updated with strategies to achieve optimal control.

The distributed agent of the microgrid takes different actions with the environment
through its state for the feedback, thus choosing to adjust the following action to change its
state process. This process can be seen as the Markov decision process, using Q table to
store the system state and action corresponding to the value function Q(s, a). According to
the Bellman equation as follows:

Gt = Q(s, a) = E[Rt

∣∣∣st = s, at = a] = E[rt + γQ(st+1, at+1) + γ2(st+2, at+2) + . . . γn(st+n, at+n)] (15)

In this training process, a tuple of Q-valued training model devices (st, at, rt, st + 1) is
built as samples for training using the Markov decision process; st is the current state; at is
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the present action; rt is the immediate reward after performing the action; st + 1 is the next
state; t is the moment; the Q function recursive update strategy is:

Qt+1(st, at)← Qt(st, at) + α(rt + γmax
at+1

Q(st+1, at+1)−Q(st, at)) (16)

where α is the learning rate, and γ is the discount factor.
Since the state and action of the Q function in the reinforcement learning algorithm

have a high-dimensional complexity, to solve this problem, a neural network Q(s, a; ω)
can be introduced as a function approximator to estimate the Q(s, a) function, denoted
as a deep Q network DQN and compared to Q-Learning, which approximates the input
function of the state and action of the Q function as the Q of the action obtained after the
analysis of the neural network values and selects the maximum Q value as the following
action, as shown in Figure 5.
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Figure 5. Neural network value function approximation.

The weight ω in a deep neural network represents the mapping of the system state
to the Q value, which solves the problem of the state space being continuous, so a loss
function Li(ω) needs to be defined to update the neural network weights ω with the
corresponding Q values. The loss function is the difference between the objective function
and the prediction function.



Electronics 2023, 12, 565 9 of 19

yt = Es[rt+1 + γmax
at+1

Q(st+1, at+1; ωt)] (17)

Li(ωt) = Es[(yt −Q(s, a; ωt))
2] (18)

Update the weights of the agents by finding the gradient of the loss function and
performing stochastic gradient descent:

∇ωt Li(ωt) = Es[(rt + γmax
at+1

Q(st+1, at+1; ωt
−)−Q(st, at; ωt))∇ωt Q(st, at; ωt)] (19)

The secondary frequency control of the microgrid is used to reduce the frequency
deviation by optimizing the generation of distributed power sources. The frequency
deviation of the microgrid is discretized through the proposed model framework defined
as (∆ f1, ∆ f2, ∆ f3, . . . ∆ fn), which corresponds to an ambient state of S(s1, s2, s3 . . . sn). The
value of the environment state interval affects the convergence speed and accuracy of
the controller; the space defined too densely affects the convergence speed leading to
reduction and too sparsely affects the accuracy difficulty of achieving the required goal.
The frequency regulation range of the power system is 50 ± 0.2 hz; in order to make the
system more accurate, set the control target of the controller as 50 ± 0.05 hz. Therefore,
the state space S of this model is defined as {(−∞, −0.05), [−0.05, −0.01), [−0.01, −0.005),
[−0.005, 0.005), [0.005, 0.01), [0.01, 0.05), [0.05, +∞)}. In the microgrid, the S defined control
actions based on the state distribution shall be discrete controller regulation commands,
including actual power load, output power, and charge; discharge power, defining A as
{−0.1, −0.5, −0.01, −0.05, 0, 0.05, 0.01, 0.5, 0.1} Define the reward function as follows:

ri(s, a)


0

−µ1·|∆ f |
−µ2·|∆ f |
−µ3·|∆ f |
−µ4·|∆ f |

|∆ f | ≤ 0.05
0.005 < |∆ f | ≤ 0.01
0.01 < |∆ f | ≤ 0.05
0.05 < |∆ f | < 0.1
|∆ f | ≥ 0.1

(20)

where the regulation dead zone is considered as |∆ f | ≤ 0.005 when the intelligence receives
zero rewards and the remaining intervals receive the corresponding negative reward value;
−µ1~−µ4 is the reward factor set to 5, 10, 15, and 20. The setting of the reward function
is the key to the control of the controller, and the control target can be clarified by the
reward function.

The traditional DQN model can enormously impact the agent systems due to accuracy
issues. For the deviation of predicted and actual values, we propose the PES-ACNN model
to reduce this error.

3.2. Actor-Critic Neural Network

The Actor-Critic Neural Network is a neural network approach based on the combi-
nation of value network function and policy network function with complex mapping
ability to handle unstructured and inaccurate data adaptively. The Actor network
makes a probability-based selection of behavior; the Critic network scores based on the
Actor’s behavioral algorithm, and the Actor network then modifies its own behavior
selection based on the score of the Critic network. The state value function is expressed
as follows:

V(s; θ, ω) = ∑ aπ(a|s; θ)·q(s, a; ω) (21)

where π(a|s; θ) denotes the strategy network; θ is the strategy network parameter, and
the purpose is to learn and optimize the strategy to make the strategy perform better;
q(s, a; ω) is the value network; ω is the value network parameter, and the purpose
is to learn and evaluate the value function to make the value function evaluation
more accurate.
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Critic networks can be considered reinforcement learning algorithms based on value
network functions, the core of which is to evaluate improvement strategies using value
functions. The core of the dynamic programming-based reinforcement learning algorithm
is the bootstrap algorithm, which inevitably generates overestimation problems, and the
model has uncertainty; based on the Monte Carlo approximation method, due to probability,
the impact problem leads to tension, so the value function uses time difference algorithm
to make the intelligence constantly interact with the environment to update and use the
current value function to update the strategy, according to the Bellman equation state value
function formula expressed as follows:

Vπ(st) = EAt[Qπ(st, At)]
= EAt[Est+1 + [Rt + γVπ(st+1)]]
= EAt ,st+1 [Rt + γVπ(st+1)]

(22)

The iterative update of the neural network using the Monte Carlo approximation is
represented as follows:

V(st+1) = v(st) + α[Rt + γv(st+1)− v(st)]
= v(st) + αδt

(23)

where, α is the hyperparameter learning rate, and δt is the error.
To make the error of the value network function less, updating the neural network

parameters using gradient descent can be expressed as follows:

ω ← ω− α·δt·
∂v(st; ω)

∂ω
(24)

The Actor network can be considered a reinforcement learning method based on policy
network functions, which utilizes a scoring of the Critic network value function learning
evaluation to select actions. The policy update network is stochastic; the action space can
be continuous, and the reinforcement learning update method based on the policy gradient
function utilizes parameterizing the function. Thus, a gradient ascent is used to update the
parameters until convergence corresponds to the optimal policy. The policy gradient-based
reinforcement learning objective function is expressed as follows:

maxJ(θ) = Eπ [Gt|St = s0] = vπ(s0) (25)

The approximate policy gradient is used in the formula to update the policy network,
and the policy gradient WITH BASELINE is expressed as follows:

∂Vπ(st)

∂θ
= EAt∼π [

∂ ln π(At|st; θ)

∂θ
·(Qπ(st, At)−Vπ(st))] (26)

where θ is the neural network parameters; Vπ(st) is the baseline, which does not affect
the expectation but can reduce the variance to accelerate convergence. Calculating
the expectation in the strategy gradient for random sampling of the strategy gradient
using the Monte Carlo approximation for unbiased estimation of the strategy gradient is
as follows:

g(at) = ∂ ln π(at |st ;θ)
∂θ (Qπ(st, at)−Vπ(st))]

= ∂ ln π(at |st ;θ)
∂θ (Rt + γ·Vπ(st+1; ω)−Vπ(st; ω))

= ∂ ln π(at |st ;θ)
∂θ δt

(27)

The strategy gradient up update network parameter θ is as follows:

θ ← θ + β·δt
∂ ln π(at|st; θ)

∂θ
· (28)

where β is the hyperparameter learning rate, and δt is the error.
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The Actor-Critic based reinforcement learning method is combined with the integra-
tion idea of the value function and policy function, using the policy network to learn the
optimization strategy to choose a better policy method and using the value network to
output the value function and learning the evaluation to make the evaluation of the value
function more accurate. It is an excellent solution to the reinforcement learning framework
to deal with continuous state space problems and also to deal with continuous action space
problems with good stability and to realize an incremental iterative online reinforcement
learning strategy.

However, this method also brings relative drawbacks; the training experience data
extracted by the agents in the microgrid system based on the state features are generated
once per iteration in the Actor-Critic network, which leads to low utilization of experience
and slow convergence rate to meet the requirements. To make the samples more efficient in
solving the instability problem, the offline strategy of DQN is invoked, using the strategy
of priority experience storage to reuse the training experience and disrupting the order of
experience to reduce the correlation work of the samples.

3.3. Priority Experience Storage Policy

In the framework of the Actor-Critic algorithm, the performance of the agents can
be substantially improved by using experience replay. The experience data (st, at, rt, st+1)
obtained by the distributed power agents in the microgrid interacting with the environment
are stored in a portfolio. These experiences replay arrays are repeatedly used afterwards to
train the neural network for updating, and since the size of the experience pool is fixed,
noted as b, only b data can be retained in the array, and as the training proceeds, the newly
acquired experience overwrites the old experience until the new experience gradually
reaches a consistent representation of the algorithm convergence of the algorithm. Usually,
the size of the array b is a hyperparameter that needs to be tuned, which affects the training
results; b is usually 105~106.

In practice, it is necessary to wait for enough experience with playback data before
the neural network starts to update. The probability of the intelligence receiving a high
reward experience at the early stage of exploration is much lower than that of a low
reward experience. Due to the exploratory influence of the algorithm, it is difficult for
intelligence to reuse the high reward experience even if it explores it and explores other
experiences, leading to unsatisfactory training results and fluctuations and resulting in
reduced efficiency.

Priority experience replay is a special method of experience replay where weight is
added to the quaternion of experience replay. Then non-uniform random sampling is
conducted based on the weights. The weight of the data is noted as the absolute value of
the error |δt|, and the sampling probability is as follows:

pt ∝ |δt|+ ε (29)

where ε is a minimal value to prevent the sampling probability from approaching zero and
is used to ensure that all samples are sampled with a non-zero probability. Samples with
significant errors have a high possibility of being sampled, and the sampling probability is
used in the non-uniform sampling method to adjust the learning rate α, setting the learning
rate to:

αt =
α

(b·pt)
τ (30)

where b is the total number of samples played back empirically; τ ∈ (0, 1) is a hyperparameter.
The Priority Experience Storage Actor-Critic Neural Network Algorithm 1 is

described below.
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Algorithm 1: Priority Experience Storage Actor-Critic Algorithm

Initialize network parameters θ randomly
Initialize training memory with capacity Tbmax
Initialize agent memory
For episode = 1,Max_episodes do:

For t = 0, D-1 do:
Get initial state St
Take action a with ε− greedy policy-based
On π(st, θ)
Receive new state St+1 and reward Rt
Store transition (st, at, rt, st+1) in agent memory

End for
Calculate Pt for each transition in the agent memory
Store (st, at, Pt) in the training memory.
Reset agent memory
Reset environment
If training memory is full:

Calculate Qπ(St, At) ln π(at|st; θ) L(θ) for the whole batch
Perform a gradient descent step on θ

Reset training memory
End for

4. Experimental Validation and Analysis
4.1. Model Simulation

In this section, an islanded microgrid model consisting of four inverter-based dis-
tributed power sources with communication topology is constructed by numerical sim-
ulation using the Simulink toolbox of MATLAB2020b software. This microgrid model is
220 V/50 Hz to verify the power distribution and frequency and voltage regulation of
each distributed power source based on the deep reinforcement learning secondary control
strategy proposed in this paper validity is shown in Figure 6. The circuit parameters of the
microgrid are shown in Table 1.

Table 1. Circuit parameters of the microgrid.

DG1 DG2 DG3 DG4

DGs
C1/F 15 × 10−5 C2/F 15 × 10−5 C3/F 15 × 10−5 C4/F 15 × 10−5

L1/mH 0.2 L2/mH 0.2 L3/mH 0.2 L4/mH 0.2
R1/Ω 0.01 R2/Ω 0.01 R3/Ω 0.01 R4/Ω 0.01

load
Load1 Load2 Load3 Load4

P1/kW 90 P2/kW 90 P3 /kW 60 P4/kW 50
Q1/kVar 30 Q2/kVar 20 Q3 /kVar 30 Q4/kVar 20

Line1 Line2 Line3

routes
R1/Ω 0.18 R2/Ω 0.21 R3/Ω 0.20

L1/mH 0.302 L2/mH 0.302 L3/mH 0.82

In the four distributed power supplies DG1~DG4, each distributed power supply acts
as an agent that can transfer information with neighboring agents to complete distributed
coordination control. In contrast, the communication topology between each agent is
connected and contains a minimal directed spanning tree so that the agent system can
achieve consistent convergence.
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4.2. Neural Network Model Validations

Before the input data of the proposed secondary frequency control model for microgrid,
offline numerical simulation is required to determine the appropriate number of hidden
neurons for the structure of the Actor policy model and Critic value network model. The
neural network contains an input, hidden layer, and output, and the layers are connected
by weights, thresholds, and activation functions.

The number of neurons affects the accuracy and speed of the neural network. More
neurons mean that the neural network can fit the input–output relationship more accurately,
but it also takes more time. Taking the Actor action neural network model as an example to
verify the influence of the number of neurons on the algorithm and choosing the input as
the state feature and the output as the action distribution, we set the number of neurons
in the hidden layer as 1–10; the influence of the number of neurons on the convergence is
shown in Figure 7; when the number of neurons is less than four the output of the neural
network is difficult to achieve convergence; when the number of neurons is greater than
four can converge, in order to prevent the excessive number of neural network neurons
leads to overfitting affecting the convergence speed, the change of neural network structure
can be determined. Take the neural network of one of the distributed power DG1 as an
example. The number of neurons n on the neural network is represented in Figure 8. Under
the same data set built in the neural network, the greater the number of neurons, the better
the neural network recognition effect is; when the number of neurons n = 4, the control
input–output relationship of the algorithm can be accurately expressed convergence when
the number of neurons continues to increase the neural network will reach the overfitting.
When the number of neurons continues to increase, the neural network will reach the
overfitting state and expand the network computation time.



Electronics 2023, 12, 565 14 of 19

Electronics 2023, 12, x FOR PEER REVIEW 15 of 20 
 

 

the input as the state feature and the output as the action distribution, we set the number 

of neurons in the hidden layer as 1–10; the influence of the number of neurons on the 

convergence is shown in Figure 7; when the number of neurons is less than four the output 

of the neural network is difficult to achieve convergence; when the number of neurons is 

greater than four can converge, in order to prevent the excessive number of neural net-

work neurons leads to overfitting affecting the convergence speed, the change of neural 

network structure can be determined. Take the neural network of one of the distributed 

power DG1 as an example. The number of neurons n on the neural network is represented 

in Figure 8. Under the same data set built in the neural network, the greater the number 

of neurons, the better the neural network recognition effect is; when the number of neu-

rons n = 4, the control input–output relationship of the algorithm can be accurately ex-

pressed convergence when the number of neurons continues to increase the neural net-

work will reach the overfitting. When the number of neurons continues to increase, the 

neural network will reach the overfitting state and expand the network computation time. 

  

Figure 7. Effect of the number of neurons on convergence. 

  

(a) n = 1 (b) n = 2 

  
(c) n = 3 (d) n = 10 

Figure 8. The effect of the number of neurons on the neural network. 

0 10 20 30 40 50
0

2

4

6

8

10

Co
nt
ro
l 
in
pu
t

Iteration

×10-3

n=1

n=2

n=3

n=4-10

Figure 7. Effect of the number of neurons on convergence.

Electronics 2023, 12, x FOR PEER REVIEW 15 of 20 
 

 

the input as the state feature and the output as the action distribution, we set the number 

of neurons in the hidden layer as 1–10; the influence of the number of neurons on the 

convergence is shown in Figure 7; when the number of neurons is less than four the output 

of the neural network is difficult to achieve convergence; when the number of neurons is 

greater than four can converge, in order to prevent the excessive number of neural net-

work neurons leads to overfitting affecting the convergence speed, the change of neural 

network structure can be determined. Take the neural network of one of the distributed 

power DG1 as an example. The number of neurons n on the neural network is represented 

in Figure 8. Under the same data set built in the neural network, the greater the number 

of neurons, the better the neural network recognition effect is; when the number of neu-

rons n = 4, the control input–output relationship of the algorithm can be accurately ex-

pressed convergence when the number of neurons continues to increase the neural net-

work will reach the overfitting. When the number of neurons continues to increase, the 

neural network will reach the overfitting state and expand the network computation time. 

  

Figure 7. Effect of the number of neurons on convergence. 

  

(a) n = 1 (b) n = 2 

  
(c) n = 3 (d) n = 10 

Figure 8. The effect of the number of neurons on the neural network. 

0 10 20 30 40 50
0

2

4

6

8

10

Co
nt
ro
l 
in
pu
t

Iteration

×10-3

n=1

n=2

n=3

n=4-10

Figure 8. The effect of the number of neurons on the neural network.

In order to verify the influence of the neural network on the microgrid, the number of
neurons n = 4 was selected to predict the load of grid. Power load projections were made
using city electricity data from 1 January 2018 to 31 December 2018 for a city.

The first 361 data points were used as the training model for data input, and the
last four data points were used as the test model to obtain the final experimental results
compared with the real data of the original power load. Changes in data projections are
shown in Figure 9.
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(b) power load prediction for a city in 2018.

The training results of the traditional control method combined with the PES-AC
neural network algorithm for the multi-agent system are shown in Figure 10. It can be
seen from the figure that as the training proceeds, the reward experience obtained by
the neural network rises continuously, and the reward obtained by the algorithm can
be stabilized in the corresponding interval at about 1000 rounds of training; adding
priority experience replay can make the neural network preferentially use the ex-
perience pool with higher reward experience during training, reduce the training
fluctuation, and accelerate the convergence speed to achieve satisfactory results, as
shown in Figure 11.
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4.3. Distributed Secondary Frequency Control Simulation

The experiments in this section are conducted to verify the effectiveness of the role
of the proposed secondary frequency control. The simulation of the conventional control
method is performed in the constructed microgrid model, and the simulation results of
the proposed secondary regulation control in this paper are compared with the same
parameters throughout the simulation. At the initial moment, the microgrid test system
works the load of each node is matched with the nominal frequency of the generation unit.

The microgrid system can achieve proportional active power distribution under de-
centralized primary control with droop control, but the frequency of the system decreases
below the rated frequency and finally stabilizes as shown in Figure 12.
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When secondary frequency regulation is used, the system ensures power distribution
under the same conditions while allowing the system to also operate at a frequency that
quickly recovers to the microgrid rated frequency permitted error, as shown in Figure 13.
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Figure 13. Parameter Results of Secondary Control System Used in Microgrid System (a) Frequency
variation of the system (b) Variation of active power of the system (c) Variation of reactive power of
the system.

To verify the robustness of the microgrid, both the activity and reactivity of the system
are increased to match the load variation when the load increases under the same conditions,
assuming that the dynamic response of the load can be accessed at the microgrid test system
with stable operation at the rated frequency.

In the traditional microgrid control method, the load connected to 20 kw at t = 0.4 s
shows that the frequency of the distributed power supply in the system is stable at 49.55 hz,
and the load connected to 25 kw again at t = 0.6 s, and the system frequency eventually
stabilizes at 49.6 hz, with a large deviation from the rated frequency shown in Figure 14.
After using the improved dual neural network algorithm, the microgrid system is connected
to 20 kw load at t = 0.4 s, and it can be seen from the figure that the system resumes stable
operation at t = 3 s, and the frequency returns to within the allowable deviation from
the rated frequency, and the active and reactive power simulation results of the system
are shown in Figure 15. The results show that the microgrid system has plug-and-play
characteristics and is robust using a secondary frequency control strategy.

Electronics 2023, 12, x FOR PEER REVIEW 18 of 20 
 

 

   

(a) (b) (c) 

Figure 13. Parameter Results of Secondary Control System Used in Microgrid System (a) Frequency 

variation of the system (b) Variation of active power of the system (c) Variation of reactive power 

of the system. 

To verify the robustness of the microgrid, both the activity and reactivity of the sys-

tem are increased to match the load variation when the load increases under the same 

conditions, assuming that the dynamic response of the load can be accessed at the mi-

crogrid test system with stable operation at the rated frequency. 

In the traditional microgrid control method, the load connected to 20 kw at t = 0.4 s 

shows that the frequency of the distributed power supply in the system is stable at 49.55 

hz, and the load connected to 25 kw again at t = 0.6 s, and the system frequency eventually 

stabilizes at 49.6 hz, with a large deviation from the rated frequency shown in Figure 14. 

After using the improved dual neural network algorithm, the microgrid system is con-

nected to 20 kw load at t = 0.4 s, and it can be seen from the figure that the system resumes 

stable operation at t = 3 s, and the frequency returns to within the allowable deviation 

from the rated frequency, and the active and reactive power simulation results of the sys-

tem are shown in Figure 15. The results show that the microgrid system has plug-and-

play characteristics and is robust using a secondary frequency control strategy. 

  
(a) (b) 

Figure 14. Parameter results of microgrid system under primary droop control (a) Frequency of 

access load 20 kw (b) Frequency of access load 25 kw. 

0 1 2 3 4
49.2

49.4

49.6

49.8

50.0

50.2

50.4

50.6

50.8

51.0

F
r
e
q
u
e
n
c
y
 
(
f
/
H
Z
)

Time (s)
0 1 2 3 4

49.2

49.4

49.6

49.8

50.0

50.2

50.4

50.6

50.8

F
r
e
q
u
e
n
c
y
 
(
f
/
H
Z
)

Time (s)

Figure 14. Parameter results of microgrid system under primary droop control (a) Frequency of
access load 20 kw (b) Frequency of access load 25 kw.
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5. Conclusions

This paper proposes a multi-agent deep reinforcement learning microgrid control
method based on the PES-ACNN model. Compared with the traditional algorithm intro-
ducing a priority experience storage strategy, this method converts online reinforcement
learning to offline learning. It improves the convergence speed and stability of the Actor-
Critic neural network training process by accumulating experience through a large number
of offline learning. The improvement of the algorithm reduces the frequency deviation of
the distributed power supply in the isolated microgrid under droop control and reduces
the frequency error of the distributed power supply in the microgrid multi-agent system,
and each agent solves the power distribution problem by exchanging information with
neighboring agent bodies, combines the economic environment and other benefit objectives
to achieve the optimal control action of the microgrid, and accelerates the rapid regulation
capability of the microgrid under external disturbances.
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