
Citation: Wu, G.; Niu, B.; Li, Q.

Trajectory Tracking Control of Fast

Parallel SCARA Robots with Fuzzy

Adaptive Iterative Learning Control

for Repetitive Pick-and-Place

Operations. Electronics 2023, 12, 4995.

https://doi.org/10.3390/

electronics12244995

Academic Editor: Christos Volos

Received: 1 November 2023

Revised: 9 December 2023

Accepted: 12 December 2023

Published: 13 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Trajectory Tracking Control of Fast Parallel SCARA Robots with
Fuzzy Adaptive Iterative Learning Control for Repetitive Pick-
and-Place Operations
Guanglei Wu and Bin Niu * and Qiancheng Li

School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China;
gwu@dlut.edu.cn (G.W.)
* Correspondence: niubin@dlut.edu.cn

Abstract: Aiming at enhanced suppression of external disturbances and high-precision trajectory
tracking of parallel SCARA robot dedicating to fast pick-and-place operations, this work presents the
integrated control design of iterative learning algorithm, adaptive control and fuzzy rules, namely,
fuzzy adaptive iterative learning control, for such type of robots. A step-design approach is adopted
to ensure the adaptability of the designed control law, which is reflected in two aspects: ¬ the
feedback gain of the controller is adjusted by the fuzzy rules;  the adaptive unknown parameters
are obtained by means of iterative learning estimation to suppress the uncertainties and external
disturbances. The stability of the designed controller is analyzed and proved by the Lyapunov
theory, and the effectiveness is verified by observing the tracking errors in joint space along with
the testing pick path, in comparison with different iterative learning based algorithms. After the
first-iteration learning, the motion errors of the four actuated joints can be reduced by 56.5%, 45.8%,
46.4% and 39.8%, respectively, and after 15 iterations of learning control, the final angular errors
by the designed control law converge to 0.7 × 10−4 degree maximally. The varying maximum,
root-mean-squared and mean angular displacement errors of the actuation joints can converge to
zero values with the increasing iterations rapidly, which shows the robustness, effectiveness and
advantages of the designed control law. The designed control law can be generalized to high-speed
parallel pick-and-place robot to ensure high-precision trajectory tracking for high-quality material
handling tasks.

Keywords: trajectory tracking control; pick-and-place application; parallel robot; fuzzy control
theory; iterative learning

1. Introduction

Lightweight parallel robots featuring SCARA motion (the term “SACRA” means Selec-
tive Compliance Assembly Robot Arm, a.k.a., Schönflies motion, namely, three independent
translations and one rotation around an axis of fixed direction) have been extensively de-
ployed in production lines for material handling [1], which usually carry out repetitive
tasks. Considering the continuous execution of identical trajectory tracking, this results in
the accumulated motion errors in the motion process. If the previous problem cannot be
handled effectively in time, the robot will eventually deviate from the expected trajectory,
leading to the reduced work quality. Besides, the presence of uncertainties in the working
environment will also decrease the control quality of the robot [2]. In this light, the key
issue to improve the tracking accuracy lies in the avoidance of error accumulation and
improved robustness of the system. The focus of this work is the control design for this
type of robot.

The trajectory tracking control of a robot means that it is essential to design a reasonable
control law for robotic joints with a determined trajectory, which makes the real end-effector
position, velocity and accelerations consistent with the expected motion parameters [3].
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The PID control has been commonly adopted for various robots since it was proposed,
thanks to the simple control scheme and eased parameter tuning. On the other hand, the
uncertainties cannot be readily handled in the use of this type of control law, and therefore,
the PID control is usually designed in combination with other control algorithms to improve
the tracking accuracy [4–10], e.g., feedforward [11], adaptive [12,13], robust [14], fuzzy
control [15], etc. Besides, a number of different control algorithms have been proposed
and applied to the parallel pick-and-place (PnP) robots, such as computed-torque control
(CTC) [16] and sliding mode control (SMC) [17,18], but these heavily depends on the
accurate dynamic model of the robots, which is a challenging task due to the highly
nonlinear coupled system. Other robust control, such as H2 [19] and H∞ [20] controls,
are suitable for noise signals with known power spectral density or for the condition of
satisfying energy boundedness without enough information about the noise signal [21]. In
light of the repetitive tasks of the family of parallel SCARA robots, an algorithm of iterative
learning control (ILC) is well adapted with the repetitive characteristics, compared to the
commonly used control laws.

The concept of iterative learning originated from the experienced learning knowledge
and was proposed by Uchiyama in 1978 [22], which is free of feedback control to overcome
the presence of disturbance and uncertainties in the control. Modifications and improve-
ments to ILC algorithm have been made to enhance the trajectory tracking performance for
the robots. As an open-loop control algorithm, ILC algorithms can be designed combining
P, D and PD units of PID control, of which the architecture of the integrated control laws
can be classified into open-, closed- and open-closed-loops. In Ref. [23], an open-loop
PD-ILC is designed for Delta robots, which requires multiple iterations for convergence
of tracking errors, leading to increased computational burden. Aiming at suppression of
the longitudinal slippage disturbance, an open-closed-loop P-ILC algorithm is designed
and applicable to a mobile robot [24]. It is difficult for the previous control law to be
compatible with learning stability and feedback convergence, since the single proportion
gain is simultaneously in charge of the feedback task of the control system and learning
gain. In addition, optimization algorithm, such as the artificial bee colony algorithm, can
also be adopted to optimize the initial parameters of the iterations, which can produce a
better performance compared to the ILC with a constant gain [25]. To improve the control
performance of nonlinear systems, a discrete high-order PID-ILC is proposed, which is
complicated in the real control due to that it requires the numerous information of foregoing
iterations rather than the current iteration [26]. Aiming to suppress aperiodic external
disturbance, an ILC algorithm with forgetting factor (i.e., working as a filter) is proposed,
which can effectively reduce the accumulated disturbance varying with the iterations and
can make the tracking error converge to a certain range [27,28]. The fuzzy rules can be
integrated to ILC algorithm for real-time tuning of control parameter to resist external
disturbances in fewer iterations, compared to the classic PD-ILC [29]. Combining neural
network, a high-order ILC is designed, consisting of two aspects, namely, neural network
feedforward item and high-order P-type iterative feedback item, which corresponds to the
suppression of periodic disturbance and the control stability [30]. In view of the present
ICL-based control laws, an integrated fuzzy adaptive ILC algorithm is to be designed to
discard the shortcomings of a single control law, for the enhancement of the trajectory
tracking accuracy.

In this work, the adaptability of the combined ILC control law is reflected in two
aspects: ¬ the feedback gain of the controller is adjusted by the fuzzy rule;  the adaptive
unknown parameters are obtained by means of iterative learning estimation to suppress
the uncertainties and external disturbances caused by the unknown parameters to improve
the trajectory tracking performance of the system. The stability of the controller is proved
with the Lyapunov theory. The proposed algorithm was verified in comparison with the
different ILC-based algorithms, of which the results show the robustness and effectiveness
of the proposed algorithm, resulting in high tracking accuracy of the robot.
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2. Pick-and-Place Robot and Dynamic Model

Figure 1 shows a parallel SCARA robot, which is composed of four identical revolute-
revolute-parallelogram-revolute (i.e., RRΠR) linkages and a screw pair-based mobile plat-
form. In each limb, the driving link is to provide the power to the parallelogram structure
from the actuation unit of servo motor and reducer. The parallelogram, a.k.a., Π joint, is
made up of carbon fiber, for a lightweight design as well as increased rigidity and stabil-
ity of the robot structure. The corresponding parameterized CAD model is depicted in
Figure 2.

Figure 1. A parallel SCARA robot with four identical limbs and a screw pair-based mobile platform
for pick-and-place application [31].

Figure 2. CAD model of the SCARA robot with parameterized linkage [32].

Prior to the control design of the robot, the dynamic model is to be derived, which can
be expressed as:

τ = M(q)q̈ + C(q, q̇)q̇ + G(q) + ω(q, q̇, t) (1)

where τ ∈ R4 represents a vector of the driving torque, q =
[
θ1 θ2 θ3 θ4

]T represents
the generalized coordinates, and q̇, q̈ denote the corresponding joint angular velocities
and accelerations, respectively. The term ω(q, q̇, t) represents the modeling error due to
parameter uncertainties and external disturbance by changed environment. Moreover,
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M(q), C(q, q̇) and G(q) stand for the inertia matrix, Coriolis and centrifugal term and
gravity term, respectively, expressed as:

M(q) = JT
1 M1J1 + JT

2 M2J2 + Ib (2a)

C(q, q̇) = JT
1 M1J̇1 + JT

2 M2J̇2 (2b)

G(q) = −
(

JT
1 M2 + JT

2 M2 + Mb

)
g (2c)

with:

M1/2 = (m1/2 + 2ml)diag
[
1 1 1 0

]
(3a)

Ib =

(
1
3

mb + ml

)
b2I4 (3b)

Mb =

(
1
2

mb + ml

)
diag

[
cos θ1 cos θ2 cos θ3 cos θ4

]
(3c)

J1 =
[
(ci − bi)

T −mod(i + 1, 2) h
2π (ci − bi)

Tk
]

(3d)

J2 =
[
(ci − bi)

T −mod(i, 2) h
2π (ci − bi)

Tk
]

(3e)

g =
[
0 0 −1 0

]T (3f)

where J1 and J2 represent the Jacobian matrices mapping the velocities between the active
joints and the upper/lower sub-platforms, respectively, bi and ci represent the Cartesian
coordinates of points Bi and Ci in the reference frame and k denotes the unit vector of z-axis.
Moreover, I4 is a four-dimensional identity matrix. Skipping the details, the kinematic and
dynamic models have been well documented in the previous works [2,31], together with
the link dimensions and mass properties listed in Table 1.

Table 1. Geometric and mass parameters of the parallel robot.

Parameters Meaning Value Unit

(ax, ay) x-/y-coordinates of joint position (286, 132) mm
b/l lengths of proximal/distal links 300/600 mm
r radius of moving platform 100 mm
h pitch of lead screw 10 mm
mb/ml masses of proximal/distal links 0.5101/0.2670 kg
m1/m2 masses of upper/lower sub-platforms 0.9789/0.8914 kg

3. Fuzzy Adaptive Iterative Learning Control Design

In this section, the controller design for the robot under study is accomplished by the
integrated design of ILC and adaptive control law as well as fuzzy rules.

3.1. Design of the Iterative Learning Control Law

Considering the nonlinear time-varying robotic system with repetitive work over a
finite interval time t ∈ [0, T], the following reasonable assumptions can be made:

Assumption 1. The robotic system can meet the boundary condition, i.e., qk(0) = qd(0),
q̇k(0) = q̇d(0), where qk and qd(0) stand for the real and expected trajectories, respectively,
and k depicts the iteration number in the control law.

Assumption 2. The external disturbance τ(q, q̇, t) of the robot is bounded, which can meet an
inequality sup‖τ(q, q̇, t)‖ ≤ l, with l being a positive constant.

For a general robotic manipulator, the dynamic system can have the following
three properties:
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Property 1. For the bounded and positive-definite inertia matrix M(qk, t) of a robot, there exists
the constants δ and ζ to meet the inequality:

0 < δ < ‖M(qk, t)‖ < ζ, 0 < δ < ζ (4)

Property 2. Since the inertia matrix can meet the global Lipschitz condition [33], there is a positive
constant L to hold the following inequality:

‖M(qk, t)−M(qk−1, t)‖ ≤ L‖qk(t)− qk−1(t)‖ (5)

Property 3. The Coriolis, centrifugal and gravitational terms of the dynamic equation can meet the
condition of C(qk, q̇k)q̇d + G(qk) = Φ(qk, q̇k)γk(t), where Φ(qk, q̇k) ∈ Rn×m represents the
regression matrix to depict the motions of robotic joints and γk(t) ∈ Rm×1 is a vector of unknown
parameters with regard to the robot.

With the aforementioned conditions and constraints, an iterative learning algorithm is
able to be designed to make full use of the effective information stored in the system for
learning, which can ensure that the output variables converge to the bounded threshold of
desired values, expressed as [34]:

τk+1(t) = τk(t) + τf ore + τback (6)

where τ represents the input torque and τf ore, τback stand for the feedforward and feedback
compensation torques, respectively, which take the following form:

τf ore = Kpek(t) + Kdėk(t) (7a)

τback = (1− α)Kpek+1(t) + (1− β)Kdėk+1(t) (7b)

where Kp and Kd are, respectively, diagonal positive gain matrices for proportion and
differential PD parameters in the feedforward control, ek(t) and ėk(t) represent the joint
errors in terms of angular displacements and velocities, respectively, in the kth iteration
and α and β stand for the gain coefficients.

3.2. Fuzzy Controller Design

In the control design, the fuzzy rule is adopted to adaptively adjust the gain of the
controller for the improved suppression of the disturbance of the system. A particular
control algorithm is formulated as:

Kp = Kp0 + ∆Kp (8a)

Kd = Kd0 + ∆Kd (8b)

where Kp0 and Kd0 represent the initial values of the gain and ∆Kp, ∆Kd are the corre-
sponding compensation values of the fuzzy control output.

Let us define a fuzzy set with seven fuzzy subsets, i.e., {NB, NM, NS, ZO, PS, PM, PB},
which, respectively, stand for Negative Big, Negative Medium, Negative Small, Zero, Posi-
tive Small, Positive Medium and Positive Big in the fuzzy control language [35]. Taking the
motion errors of angular displacement e and velocity ė of the actuated joints as the input
variables of the controller, the physical domains of angular displacement e and velocity
ė errors of joints 1 and 3 are, respectively, set to {−0.05, 0.05} and {−0.01, 0.05}, while
the physical domains of motion errors e and ė for joints 2 and 4 are, respectively, set to
{−0.01, 0.01} and {−0.01, 0.05}, in accordance with the parameter tuning determined in
previous research [32]. On the other hand, the controller gain compensations ∆Kp and ∆Kd
are used as output variables, of which the ranges are set to {−500, 2000} and {−80, 120},
respectively. The fuzzy domains are defined in its generalized form, for which the values
are set to {−3, 3}. Moreover, the physical and fuzzy domains are mapped by means of
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scaling factors. To this end, the membership functions for the input and output variables
of the controller are depicted in Figure 3. Here, the triangular membership function is
adopted to ease the control algorithm for fast computation, while Z/S-shaped membership
functions are used at the boundaries of the output parameters to realize the parameter
regulation for enhanced adaptability of the controller.

Figure 3. The membership functions for the input and output variables of the fuzzy controller.

When the robot moves with angular displacement and velocity errors, which offsets
from the expected trajectory, the fuzzy subset of gain compensations can be obtained from
the fuzzy rule table. Based upon the analysis of the influence of proportional and differential
gains onto the performance of the controller, the fuzzy strategies are summarized in
Tables 2 and 3, respectively. After the operation of defuzzification, the surfaces of varying
proportional and differential gains of fuzzy algorithm for joint 1 is plotted in Figure 4, and
the surfaces of the remaining joints have the similar distributions over different physical
domains as previously mentioned.

Table 2. Fuzzy rule table of proportional gain tuning.

∆Kp de

e NB NM NS ZO PS PM PB

NB PB PB PM PM PS PS ZO
NM PB PB PM PM PS ZO ZO
NS PM PM PM PS ZO NS NM
ZO PM PS PS ZO NS NM NM
PS PS PS ZO NS NS NM NM
PM ZO ZO NS NM NM NM NB
PB ZO NS NS NM NM NB NB
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Table 3. Fuzzy rule table of differential gain tuning.

∆KD dĖ

ė NB NM NS ZO PS PM PB

NB NB NB NM NM NS ZO ZO
NM NB NB NM NM NS ZO ZO
NS NM NM NM NS ZO PS PM
ZO NM NS NS ZO PS PM PM
PS NS NS ZO PS PS PM PM
PM ZO ZO PS PM PM PM PB
PB ZO ZO PS PM PM PB PB

Figure 4. Surface of varying proportional and differential gains of fuzzy controller for joint 1.

3.3. Adaptive Iterative Learning Law

The use of the ILC algorithm is to learn the useful information from previous move-
ments to correct the current state, which can effectively suppress the repetitive uncertain
disturbances. On the other hand, there exists some non-repetitive external disturbances in
a real situation. In order to make the robot adaptive to the external environment and to
improve the trajectory tracking precision, an adaptive [36] ILC law is designed below:

τk(t) = Kpek(t) + Kdėk(t) + ξ(qk, q̇k, yk)γk(t) + ωk(t) + Dsat(yk(t)) (9)

with:
γk(t) = γk−1(t) + αξT(qk, q̇k, yk)yk(t) (10)

where {Kp, Kd} ∈ Rn are the gain matrices corresponding to the proportion and differential
parts in PD control and ek(t) = qd(t)− qk(t), ėk(t) = q̇d(t)− q̇k(t) represent the motion
errors of the actuated joints in terms of angular displacement and velocity, respectively. For
the vector of unknown parameters of the robot γk(t), γk−1(t) = 0 exists. The generalized
error is expressed as yk(t) = ėk(t) + Λek(t), Λ being a positive constant. The expression
‖ω(l)

k+1(t)−ω
(l)
k (t)‖ ≤ D exists, where ω(l) depicts the repetitive external disturbance. Let

us define ξT(qk, q̇k, yk) =
[
φ(qk, q̇k) sat(yk)

]
, with sat(yk) being the saturation form of

the generalized error, which can decrease the influence of discontinuous torques caused by
the switching function, to ensure the controller have continuous output.

3.4. Integration of Fuzzy Adaptive ILC

On the basis of previously designed control laws, the integrated control scheme is
designed as depicted in Figure 5, which consists of three major control laws, i.e., adaptive
control of parameter tuning, adaptive feedback control of gains and compensation robust
control of external disturbances. The adaptive parameters are updated in the time and
iterative domains simultaneously, where the parameter correction term includes a partially
linearized dynamic model of the robot and a saturated generalized error. The design of
the generalized error as a saturated function is able to learn from the displacement and
velocity errors, to reduce the joint buffetings in the function switching. Moreover, the fuzzy
controller for the adaptive feedback of gain can work to adjust PD gains in real time, which
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can ensure the stability of the closed-loop system. The robust control item can help to
suppress periodic disturbances.

Figure 5. The overall control scheme of the fuzzy adaptive ILC law.

3.5. Controller Stability Analysis Using the Lyapunov Theory

The dynamic system of a robotic manipulator can meet the following two conditions, namely:

• The inertia matrix M(qk) is a positive-definite and bounded matrix, and thus, there
exists ‖M(qk)q̈d − dk‖ ≤ Γ with ∀t ∈ [0, T], Γ ∈ R

• Matrix Ṁ(qk) − 2C(qk, q̇k) is a skew-symmetric matrix, which meets qT
k [Ṁ(qk) −

2C(qk, q̇k)]qk = 0, ∀qk ∈ R. This existing skew asymmetry can be helpful in the
control law design for robots.

Let us define ζ(t) =
[
qT Γ

]
, and ζ̃k = ζ − ζ̂k, the Lyapunov function [37] can be

built below:

Wk(qk, q̇k, ek, ėk) = Vk(qk, ek, ėk) +
1

2α

∫ t

0
ζ̃k(τ)ζ̂k(τ)dτ (11)

with:
Vk(qk, ek, ėk) =

1
2

ėT
k M(qk)ėk +

1
2

eT
k Kpek (12)

As a consequence, the following equation is obtained:

∆Wk = Wk −Wk−1

= Vk −Vk−1 +
1

2α

∫ t
0

(
ζ̃T

k ζ̃ − ζ̃T
k−1ζ̃k−1

)
dτ

= Vk −Vk−1 − 1
2α

∫ t
0

(
ζ̄T

k ζ̄ + 2ζ̄T
k−1ζ̄k−1

)
dτ

(13)

where ζ̄k = ζ̂k − ζ̂k−1, and Vk(qk, ek, ėk) can be written as:

Vk(qk, ek, ėk) = Vk(qk(0), ek(0), ėk(0)) +
∫ t

0

(
ëT

k M(qk)ëk +
1
2

ėT
k Ṁ(qk)ėk + eT

k Kpek

)
dτ (14)

(1) Proof of the compound energy function Wk being a non-incremental function

Let Vk(0) = Vk(qk(0), ek(0), ėk(0)), in accordance with the control law in
Equation (9) and the two foregoing conditions; thus, one obtains:

Vk(qk, ek, ėk) = Vk(0) +
∫ t

0 ėT
k
[
M(qk)(q̈d − q̈k) + ėT

k C(qk)ėk + eT
k Kpek

]
dτ

≤ Vk(0) +
∫ t

0 ėT
k [M(qk)q̈d − dk + C(qk, q̇k)qd + G(qk)

− ξ(qk, q̇k, yk)q̂k(t)−Kdėk −Dsat(yk)]dτ

≤ Vk(0) +
∫ t

0 ėT
k [φ(qk, q̇k)ζ + Γsat(yk)− ξ(qk, q̇k, yk)q̂k(t)

−Kdėk −Dsat(yk)]dτ

≤ Vk(0) +
∫ t

0

[
ėT

k ξ(qk, q̇k, yk)q̃k(t)− ėT
k Kdėk

]
dτ

(15)
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It is known that Vk(qk(0), ek(0), ėk(0)) = 0, and thus:

∆Wk = Vk −Vk−1 − 1
2α

∫ t
0

(
ζ̄T

k ζ̄ + 2ζ̄T
k−1ζ̄k−1

)
dτ

≤ −Vk−1 +
∫ t

0

[
ėT

k ξ(qk, q̇k, yk)q̃k(t)− ėT
k Kdėk

]
dτ

− α
2

∫ t
0

[
yT

k (t)ξ(qk, q̇k, yk)ξ
T(qk, q̇k, yk)yk(t)

]
dτ

−
∫ t

0

[
yT

k (t)ξ(qk, q̇k, yk)q̃k(t)
]
dτ

(16)

Substituting the generalized errors yk(t) = ėk(t) + Λek(t) into the previous equation
leads to:

∆Wk ≤ −Vk−1 − α
2

∫ t
0

[
yT

k (t)ξ(qk, q̇k, yk)ξ
T(qk, q̇k, yk)yk(t)

]
dτ

−
∫ t

0 ėT
k Kdėkdτ −

∫ t
0

[
ΛeT

k ξ(qk, q̇k, yk)q̃k(t)
]
dτ ≤ 0

(17)

from which it turns out that the energy increment ∆Wk is a non-positive value with the
increasing iterations, and thus, Wk with the increasing iteration constitute a decreasing
sequence, namely, a non-incremental function.

(2) Proof of boundedness and convergence of motion errors

The next step is to prove that W0 is bounded, and considering k = 0, the differentiation
of Equation (11) results in:

Ẇ0 = V̇k(0)(qk(0), ek(0), ėk(0)) +
1

2α
ζ̃k(τ)ζ̃(τ) (18)

Combining Equation (15) with the foregoing expression yields:

Ẇ0 ≤ ėT
0 [ξ(q0, q̇0, y0)q̃0 −Kdė0 −Dsat(y0)] +

1
2α ζ̃T

0 ζ̃0
≤ ėT

0 [ξ(q0, q̇0, y0)q̃0 −Kdė0] +
1

2α ζ̃T
0 ζ̃0

(19)

Due to the presence of q̂−1(t) = 0, in accordance with Equation (10), the following
equation exists:

γ0(t) = αξ(q0, q̇0, y0)y0(t) (20)

which can be substituted into Equation (21):

Ẇ0 ≤ −ėT
0 Kdė0 +

1
α

γT
0 ζ̃0 +

1
2α

ζ̃T
0 ζ̃0 ≤ −ėT

0 Kdė0 −
1
2

ζ̃T
0 α−1ζ̃0 + ζTα−1ζ̃0 (21)

Based upon Young inequality [38], the following can be obtained:

ζTα−1ζ̃0 ≤ η‖α−1ζ̃0‖+
1

4η
‖ζ‖2 (22)

Consequently, the following inequality can be deduced:

Ẇ0 ≤ −
[

1
2

λmin(α
−1)− ηλmax(α

−1)

]
‖ζ̃0‖2 − λmin(Kd)‖ė0‖2 +

1
4η
‖ζ‖2 (23)

with:

η ≤ λmin(α
−1)

2ηλ2
max(α

−1)
(24)

where λmin(·) and λmax(·) stand for the minimum and maximum eigenvalues of (·), re-
spectively. Since ‖ė0‖, ‖ζ̃0‖ and ‖ζ‖ are bounded in the time domain [0, T], W0 is bounded,
from which the following condition can be derived:

lim
k→∞

ek(t) = 0 & lim
k→∞

ėk(t) = 0, ∀t ∈ [0, T] (25)
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The foregoing equation implies that the motion errors have the characteristics of iterative
convergence, and when the expected errors do not vary with the iterations, the errors
converge to null.

To this end, the stability of the designed controller is analyzed and proved.

4. Results and Discussions of the Control Design

In order to verify the effectiveness of the designed control algorithm, the SCARA
parallel robot (see Figure 2) is tested along with a PnP trajectory with the dimension
of 25× 305× 25 mm, which is written as a B-spline curve [39] for trajectory smoothing.
Figure 6 shows the testing trajectory as well as the motion profiles of the end-effector, and
the traveling time is 0.25 s, which means that the working frequency is 120 CPM (i.e., cycles
per minute [40]).

Figure 6. The motion profiles of the robot end-effector for trajectory tracking.

To simulate the designed control algorithm, a control platform is built with the Mat-
lab/Simscape of version 2020a, which consists of five modules in terms of trajectory
planning, control law of fuzzy AIL, external disturbance, robot system and sensor measure-
ment, as depicted in Figure 7. The input motion parameters in the module of “trajectory
generation” are calculated from the inverse kinematics according to the tracked trajectory,
as displayed in Figure 6. The designed control algorithm depicted in Figure 5 is embodied
in the “fuzzy-AIL control” block, and the external disturbance is managed with “Flag_Ft”
function as the Switch to be included in the simulation or not. The multi-body system in the
“Parallel Robot” module is generated and imported from SolidworksTM 2016 through the
Matlab-Solidworks interface addon “Simscape Multibody Link” for mechanics simulation,
and the torque feedforward control is adopted as the close-loop control law based on the
dynamic model, as depicted in Figure 8. The “measurement” module outputs the sensor
data attached to the joints in the Simscape package.

In the previous work [2], torque feedforward control was designed and the PD param-
eters were optimized by minimizing the trajectory tracking errors. Comparing the tracking
accuracy with different local optimums of the control parameters, the control parameters
of the gains are selected as:

Kp = diag
[
2.4 2.4 2.4 2.4

]
× 104, Kd = diag

[
1.2 1.2 1.2 1.2

]
× 102 (26)
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and the adaptive parameters are set to:

α = diag
[
82 82 82 82 82

]
, Λ = 340 (27)

Figure 7. Simulation platform of the fuzzy adaptive iterative learning control algorithm.

When the robot tracks the planned path in Figure 6, the sampling time and the number
of iterations are set to 1 ms and 15, respectively. Here, three indices, the maximum (Emax),
mean (Eave) and root-mean-squared (Erms) angular errors of the joints, are defined for the
evaluation of the tracking accuracy. Figure 9 depicts the varying angular errors of the joints
with respect to the times from the first to final iterations, from which it can be seen that
the angular errors of all the joints in the initial iteration are large and converge to very



Electronics 2023, 12, 4995 12 of 16

small values in the last iteration. The varying motion errors verify the convergence of the
designed control law with the increasing iterations.

Figure 8. The closed-loop torque-based feedforward PD control diagram.

Figure 9. The varying angular errors of the actuated joints with the iterations.

Moreover, the convergence curves of the angular errors Erms for all joints varying
with the iterations are given in Figure 10. It can be observed that in the first iteration
without controller learning to store the previously information, the errors of angular
displacements are relatively large. After the learning of first iteration, the errors of each
joint can be reduced by 56.5%, 45.8%, 46.4% and 39.8%, respectively. With the iterations
increasing, all the angular errors of joints gradually become smaller; particularly, the errors
significantly decrease in the first five iterations. The convergence curves of Erms errors
of all the joints turn to be stable after the ninth iteration, and finally almost converge to
zero. The aforementioned evaluation indices of angular displacement errors are listed in
Table 4, which are close to zero, which shows the effectiveness of error convergence by the
designed controller.

To verify the robustness of the control system, periodic τdis_re = k sin(λt + ϕ) and
non-periodic disturbance τdis = 2 sin(qd)− sin(q̇d) are designed to simulate the external
disturbances that can affect the tracking accuracy, such as the assembly errors, joint friction,
unpredictable external environment during the production process, etc. The trajectory
tracking errors of angular displacements with/without disturbances in the final iteration
are depicted in Figure 11, from which the comparison shows that the two curves of the
trajectory tracking errors are almost consistent. This means that even if there is an external
disturbance, the designed controller can make the robot track the expected trajectory with
ignorable errors, which implies that the designed control algorithm can well suppress
various periodic and non-periodic disturbances with good robustness. Besides, the angular
velocity errors of the actuated joints are shown in Figure 12, from which it can be seen that
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the errors are very small and smooth except at the start and end of the trajectory with the
higher accelerations.
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Figure 10. The convergence of the angular errors Erms of the joints with the increasing iterations.

Table 4. The final converged angular displacement errors by the designed control law.

Joint No. Emax Eave Erms

1 4.0× 10−5 6.4× 10−6 1.1× 10−5

2 2.5× 10−5 3.2× 10−6 5.7× 10−5

3 7.0× 10−5 7.4× 10−6 1.6× 10−5

4 6.4× 10−5 8.4× 10−6 1.6× 10−5
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Figure 11. The angular errors of the actuated joints in the final iteration.
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Figure 12. The angular velocity errors of the actuated joints in the final iteration.

In order to show the advantage of the designed fuzzy adaptive ILC algorithm, a
comparative study is carried out with the classical D-type and PD-type ILC algorithms.
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Figure 13 shows the comparison of the maximum initial and final converged angular errors
of all the joints. It can be seen that the maximum initial angular errors generated by the D-
type and PD-type ILC algorithms are equal to 0.87 and 0.61 degrees [34], respectively, which
are much larger than that of fuzzy adaptive ILC, where the maximum initial angular error
is equal to 0.028 degrees. Moreover, after 15 iterations of learning control, the final angular
errors by the three control laws converge to 1.9× 10−4, 1.5× 10−4 and 0.7× 10−4 degree
maximally, respectively, which shows that the designed fuzzy adaptive ILC algorithm can
speed up the convergence in fewer iterations and can make the trajectory tracking errors
converge to smaller values. Compared to other ILC-based control laws, the fuzzy adaptive
ILC designed in this work can ensure high-precision trajectory tracking for high-quality
material handling tasks.
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Figure 13. Comparison of the maximum initial and final converged angular errors with different
ILC-based control laws.

It is noteworthy that the previous implementation of simulation is carried out with
64-bit Windows 7 operation system, of which the processor is an Intel i5-9400f with 8 GB of
RAM. The computational time of the designed control algorithm in each iteration is about
0.3–0.5 s, and thus, the optimal control parameters can be converged in seconds, which
implies that the presented control law is suitable for stable repetitive pick-and-place tasks.

5. Conclusions

This paper presents the integrated control design of iterative learning algorithm, fuzzy
rules and adaptive control, i.e., fuzzy adaptive ILC, for the parallel SCARA robot, aiming
to improve the trajectory tracking accuracy for high-quality material handling tasks. A
step-design approach is adopted to ensure the adaptability of the designed control law that
is reflected in two aspects: ¬ the feedback gain of the controller is adjusted by the fuzzy
rules;  the adaptive unknown parameters are obtained by means of iterative learning
estimation to suppress the uncertainties and external disturbances caused by the unknown
parameters for high-precision trajectory tracking of the robot. The stability of the controller
is analyzed and proved with the Lyapunov theory.

The effectiveness of the designed control algorithm is verified by observing the track-
ing errors in joint space, where the robot tracks along with a PnP testing trajectory. It turns
out that the varying maximum, root-mean-squared and mean angular displacement errors
of the actuation joints converge to almost zero values with the increasing iterations rapidly.
Moreover, two kinds of external disturbances, i.e., periodic and non-periodic ones, are
designed to simulate the external working environment of the robot, from which the results
show that the designed control scheme can well suppress various disturbances with good
robustness. Compared to different ILC-based control laws, the designed fuzzy adaptive
ILC algorithm in this work can speed up the convergence of tracking errors to smaller
values, which can ensure high-precision trajectory tracking. The presented results show
the robustness, effectiveness and advantages of the designed control law, which can be
generalized to the high-speed parallel PnP robots of this family.
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