
Citation: Zhao, D.; Wang, H.; Kou, L.;

Li, Z.; Zhang, J. Dynamic Malware

Detection Using Parameter-

Augmented Semantic Chain.

Electronics 2023, 12, 4992. https://

doi.org/10.3390/electronics12244992

Academic Editor: Fabio Grandi

Received: 6 November 2023

Revised: 11 December 2023

Accepted: 12 December 2023

Published: 13 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Dynamic Malware Detection Using Parameter-Augmented
Semantic Chain
Donghui Zhao 1, Huadong Wang 2, Liang Kou 1,* , Zhannan Li 1 and Jilin Zhang 1,*

1 College of Cyberspace, Hangzhou Dianzi University, Hangzhou 310018, China; zhaodh@hdu.edu.cn (D.Z.);
zhannan@hdu.edu.cn (Z.L.)

2 DBAPPSecurity Co., Ltd., Hangzhou 310051, China; jim.wang@dbappsecurity.com.cn
* Correspondence: kouliang@hdu.edu.cn (L.K.); jilin.zhang@hdu.edu.cn (J.Z.)

Abstract: Due to the rapid development and widespread presence of malware, deep-learning-based
malware detection methods have become a pivotal approach used by researchers to protect private
data. Behavior-based malware detection is effective, but changes in the running environment and
malware evolution can alter API calls used for detection. Most existing methods ignore API call
parameters while analyzing them separately, which loses important semantic information. Therefore,
considering API call parameters and their combinations can improve behavior-based malware
detection. To improve the effectiveness of behavior-based malware detection systems, this paper
proposes a novel API feature engineering method. The proposed method employs parameter-
augmented semantic chains to improve the system’s resilience to unknown parameters and elevate the
detection rate. The method entails semantically decomposing the API to derive a behavior semantic
chain, which provides an initial representation of the behavior exhibited by samples. To further
refine the accuracy of the behavior semantic chain in depicting the behavior, the proposed method
integrates the parameters utilized by the API into the aforementioned semantic chain. Furthermore,
an information compression technique is employed to minimize the loss of critical actions following
truncation of API sequences. Finally, a deep learning model consisting of gated CNN, Bi-LSTM, and
an attention mechanism is used to extract semantic features embedded within the API sequences
and improve the overall detection accuracy. Additionally, we evaluate the proposed method on
a competition dataset Datacon2019. Experiments indicate that the proposed method outperforms
baselines employing vocabulary-based methods in both robustness to unknown parameters and
detection rate.

Keywords: privacy protection; malware detection; deep learning; feature hashing; API sequences

1. Introduction

With the development of information technology, security of cyberspace, which is
mostly threatened by malware, has become more important than ever. According to
the malware report released by AV-TEST, the amount of malware has been growing at a
tremendous rate, which is 50 million on average per year in the past decade [1]. In the face
of such an abundance of malicious software, the privacy data of any internet user is under
significant threat. Therefore, it is crucial to have effective malware detection approaches to
protect this private information and data.

In past decades, the mainstream of malware detection methods proposed by re-
searchers can be divided into two: static analysis and dynamic analysis, respectively.
Static analysis mostly focuses on signature-based analysis, which creates a specific signa-
ture that is unique enough to represent the whole file by scanning the binary byte streams,
such as printable strings and n-gram [2,3]. Static analysis can finish analyzing tasks at a fast
rate, but it is easy to be evaded by some malware with specific technologies, such as code
obfuscation [4]. Also, it is hard for static analysis to detect new malware, which probably

Electronics 2023, 12, 4992. https://doi.org/10.3390/electronics12244992 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12244992
https://doi.org/10.3390/electronics12244992
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-4625-4271
https://doi.org/10.3390/electronics12244992
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12244992?type=check_update&version=1

Electronics 2023, 12, 4992 2 of 14

uses a zero-day attack [5]. On the contrary, dynamic analysis is more robust to malware
using evasion technology [6] by monitoring the behavior generated by a target sample in
an isolated environment, which is something like IntelligentMonitor proposed by [7]. This
captured behavior information often contains API calls, network activities, memory usage,
etc. Moreover, all such information can serve as valuable reference material for judging a
malware. For example, Herrera-Silva et al. [8] collected the behavior information reports
of ransomware and selected features—including file, PID, network, and more—that are
of interest for ransomware detection. Moreover, due to such behavior, dynamic analysis
exerts a higher detection rate and precision.

The system API call sequence is the most representative among all the captured
behavior information, including file manipulation operation, network access, and register
key modification, etc. [9]. API sequences consist of API calls and their parameters, in which
case text processing methods such as N-grams can be applied to support API sequences
analysis, which is commonly used by researchers.

With the rapid rise of deep learning in recent years, researchers have also started
to apply deep learning models such as CNN, RNN, and LSTM to the field of malware
detection. These deep learning models can effectively mine the feature information in
a sequence to train a malware detector with high accuracy. Although many researchers
have proposed API-sequence-based malware detection methods [10,11], most of these
methods only focus on the API itself and not on the parameters of the API. Methods such
as those in [10,12] show a significant improvement in methods that combine APIs and their
parameters compared to methods that only consider the APIs themselves. Indeed, [13,14]
dealt with both the API and its parameters but did not consider the semantic information
hidden in the API itself. Furthermore, [13] uses a rule-based clustering algorithm to deal
with the parameters in the API, which also means that it requires a great deal of expertise
and is more complicated. Although [15] constructs a semantic chain with the information
hidden in the API sequence, it also does not consider the influence of the parameters on
the semantics.

Furthermore, the most prevalent approach to handling text in the NLP field is by
utilizing a dictionary—initially segmenting the text into tokens and building a dictionary,
followed by substituting the tokens in the original text with their respective indices in the
dictionary. Under this kind of method of feature engineering, deep learning struggles,
in some cases, to handle text that is outside the dictionary. In the case of malware detection,
the parameters are determined by the malware developers, meaning that any text could
potentially appear in these parameters, especially parameters like url and file paths. A
similar situation exists in the field of recommender algorithms, such as the ID, which is
usually a combination of numbers and letters of streaming media on YouTube, where such
features typically cannot be processed using a standard dictionary and cannot be ignored.

In this paper, a novel API sequence feature extraction method is proposed to solve the
problems mentioned above. Inspired by [9,15], we use feature hash to encode the semantic
chain of APIs with added parameters. Text can be directly transformed into vectors by
hashing algorithms without a middle step by using feature hashing, which means feature
hashing is able to handle all the text that can be hashed. Thus, the problem of unknown
input from parameters is effectively solved, which allows the model to handle unknown
samples effectively. By semantic analysis of the APIs, the actions and objects representing
the API operations and operation objects are extracted from the APIs, and the statistics
of the actions and objects appearing in the API sequences are counted as supplementary
information of the sequences. Secondly, in order to preserve the semantic information to
the maximum extent and to reduce the overhead of feature engineering, only the simplest
formatting of the parameters is performed. Finally, the obtained semantic chains are
encoded using feature hash to generate feature vectors. Due to the complexity of the
parameters in the API sequences, the ordinary method of constructing a word list and
replacing them would consume a great deal of time and memory, and the model cannot
effectively handle unknown inputs. Using feature hash can be a good solution to this

Electronics 2023, 12, 4992 3 of 14

challenge without constructing a word list, and it can also make the model robust to
unknown inputs. Finally, we put the obtained feature vectors after encoding into a deep
network for training, which consists of gated CNN, Bi-LSTM, and attention.

The main contributions of this paper include

1. In this paper, a new API feature extraction approach is proposed from the perspective
of semantic information and the characteristics of API sequences. This approach
maximizes the description of the behavior of the samples by referring to both the
semantic information of the API itself and its parameters. We semantically decompose
the APIs and use the parameters of the APIs as an augmentation of the semantic
information to extract a semantic chain containing complete semantic information
from the API sequences.

2. This paper refers to the common practice in recommender systems and applies feature
hash to behavior-based dynamic malware detection to solve the dynamic input prob-
lem caused by API parameters. It enables the malware detection system to handle
unknown inputs more efficiently, thus alleviating the problem of an aging detection
system to a certain extent.

3. A new API sequence information compression method is proposed. Therefore, this
paper borrows the method of dealing with extra-long sequences in NLP, i.e., using key
sentences instead of whole paragraphs. The statistical information of the sequence is
used as the “key sentence” of the whole sequence, which is used as the complement
of the API sequence and solves the problem of losing the key behavior caused by
truncating the API sequence. The final experimental results prove that this approach
is very effective in dynamic detection.

4. We evaluate the recognition performance of this method on a competition dataset.
Comparison experiments with other baseline models are also conducted. The fi-
nal experimental results show that our method is significantly better than various
baseline models.

2. Related Work
2.1. Static Analysis

Static analysis was widely used in malware detection in the past. Thanks to its high
detection efficiency, static analysis is still active in malware detection. Static analysis
methods create signatures by scanning the raw input (such as binary byte streams of
software) and judging the target sample by created signatures. Downing et al. [16] proposed
DEEPREFLECT, which is a tool that is capable of localizing and identifying malicious
components inside a malware. The authors used an unsupervised deep neural network and
a semi-supervised cluster analysis to classify the components. Saxe et al. [17] extracted three
different types of complementary features, which are context bytes features, PE import
features, and string 2-dimension histogram features, respectively. Raff et al. [18] proposed
a novel approach for malware detection that involves utilizing the entire raw binary file
as a lengthy sequence for identification purposes. This method eliminates the need for
conventional reverse engineering techniques, thereby significantly reducing the human
effort required in the malware detection process.

Due to the fact that static methods do not require running samples, static methods can
be used to analyze samples in a short period of time. However, the disadvantage of static
detection methods is also obvious, namely that they cannot effectively identify unknown
samples. Also, static detection is susceptible to interference from technical means, such as
encryption and code obfuscation.

2.2. Dynamic Analysis
2.2.1. API-Sequence-Based Methods

Researchers focused on API sequences and the associated features early on. Lee et al. [19]
introduced two new machine learning techniques that exhibit high sustainability using API
calls and obtained the highest accuracy of 97.8% and an F1-score of 98.8%. Ahmadi et al. [20],

Electronics 2023, 12, 4992 4 of 14

on the other hand, focused on frequently repeated parts of the API sequences, and they
argued that malware developers often use a number of cyclic operations to perform actions
such as decrypting encryption or infection. Ravi et al. [21] used a 4-gram to model the
API sequences and classified the samples by comparing the average confidence of all the
4-grams. Cheng et al. [22] also considered APIs and their parameters, and used information
retrieval theory to detect the samples. Fang et al. [23] also used feature hash to transform
API name, return value, and module name into a fixed-length feature vector and used the
machine learning algorithm XGBoost to mine the feature vector. Tian et al. [24] used a
hash table to represent the string, i.e., API name and parameters, and used a random forest
algorithm to classify the samples. Zhang et al. [25] created a “behavioural chain” based on
API names and the order of calls between APIs to aid detection. All the above methods are
based on some human-defined rules for analysis and have limited feature mining.

2.2.2. Deep-Learning- and Sequence-Encoding-Based Methods

With the rise of deep learning, researchers have proposed many approaches based
on sequence coding using the way sequences are handled in NLP as a reference object.
Tran et al. [26] used paragraph vectors to semantically segment API sequences and assigned
weights to each API using TF-IDF. TF-IDF is typically used to transform sequences of n-
grams divided into word elements into numeric vectors that can be processed by deep
learning models. Amer et al. [10] used word embedding to represent each API name as a
feature vector containing contextual information. However, both the above approaches only
consider the API names without considering the parameters and the semantic information
of the APIs themselves.

Agrawal et al. [12] used an n-gram to obtain the N lexical elements with the highest
number of occurrences in the parameters and used one-hot to encode the API and the
obtained N lexical elements to obtain the feature vector. As for the work of Zhang et al. [9],
a comprehensive analysis of the parameters of the API was performed and different
encoding methods were used for different parameter types. In addition, the number of
occurrences of each type of parameter in the parameters was counted. Chen et al. [13]
performed a clustering analysis of the various parameters of the API by formulating rules,
from which the API parameters were mined for possible malicious parameter combinations,
and replaced the cumbersome parameters in the sequence using labels indicating the degree
of maliciousness, and finally encoded the API and parameter labels separately using word
embedding. Although [9,13] both analyze API parameters in detail, they do not consider
the semantic information of the API itself, and also ignore the global information of the
API sequence.

3. Methodology
3.1. Overview of the Design

The overview of dynamic malware detection using parameter-augmented semantic
chain is shown in Figure 1. At the beginning of our detection process, we need to collect the
behavior reports, which are conducted by virtual environment like sandbox, of all the target
samples. Then, we analyze the reports and extract parameter-augmented semantic chain
from these reports. Eventually, we would convert obtained semantic chain into feature
vectors and analyze by a deep learning network.

3.2. Feature Vector Generation

Most API-sequence-based detection methods miss the information implied by the
parameters of the API, which, in all likelihood, is the key information to determine whether
the sample is malicious or not. For example, for NtWriteFile, the parameters indicate what
file the sample will write. If the file to be written is a system file, then the sample is likely
to be malicious; however, if the target to perform the write operation is just a file of little
use, then the sample is relatively less likely to be malicious. It can be seen that, although it

Electronics 2023, 12, 4992 5 of 14

is the same API, its semantic information in the sequence can vary very much depending
on the parameters.

Virtual environmentSamples

Behavior reports
Deep learning

network

Malware detection

Parameters augmented

semantic chain

Figure 1. System overview.

Likewise, the API itself contains some information. This is because the developers of
the operating system define the API in a principle to a specific naming convention, usually
semantic-based naming [27]. For example, NtWriteFile contains both write as an action.
Thus, the API name contains some semantic information that reflects the behavior of the
API and the object it operates on. Based on this principle, we think it is meaningful to
semantically segment an API name, to separate API into actions and objects, rather than
just simply handle the whole API or split it by words, which is exactly what is conducted
in [9]. Therefore, when we combine the API and parameter information together, we can
obtain the complete semantic information. Inspired by the work in [9], we use the hash
method proposed in [28] to encode the action, object, and parameter of the API separately.
The whole process of generating feature vector is shown in Figure 2.

...

...

...

...

...

...

Figure 2. API sequence to semantic chain.

3.3. Action and Object

Both action and object are extracted directly from the API. The action dictionary
proposed in [15] was consulted and some updates were completed based on it. Moreover,
78 different actions are available, most of which are verbs, such as add, create, etc. The
remaining parts of the API can be regarded as objects. “W” only represents a different
coding style, and its impact on semantics can be ignored. Table 1 contains almost all the
actions in the API.

Electronics 2023, 12, 4992 6 of 14

Table 1. Actions.

Actions #

Bind, Accept, Acquire, Add, Adjust, Allocate, analyze, Assign, check, Close, Compress, Connect, Control, Copy,
Crack, Create, Decode, Decompress, Decrypt, Delete, Detect, Download, Draw, Duplicate, Encode, Encryp, Enum,
Exec, Exit, Export, Find, First, Free, Gen, Get, Hash, inject, Initialize, Is, Ki, listen, Load, Lookup, Make, Map, Move,
Next, Obtain, Open, power, Protect, Put, Query, Queue, Read, Recv, Register, Remove, Resume, Save, Search, Select,
Send, Set, shutdown, Sizeof, Socket, Start, Status, suspend, Terminate, Unhook, Uninitialize, Unload, Unmap, unpack,
Unprotect, Write

78

After the action and object are extracted, they are transformed into a feature vector of
a specific length using the formula in [28]. The process of conventing string to a vector is
shown in the middle part in Figure 3. Suppose a random variable x represents a sequence
of elements, each of which is a string or a character. m represents the number of dimensions,
and the value of the i-th dimension is computed by Equation (1).

σi(x) = ∑
p: f (xp)=i

ϕ
(
xp

)
(1)

where f is the hash function, mapping xp to a number m ∈ {1, . . . , M} as a dimensional
index. ϕ is another hash function, mapping elements to {−1,+1}.

...

...

...

...

...

...

...

...

...

...

Figure 3. Feature hashing.

3.4. Parameters

The parameters in the API sequence also contain a great deal of semantic information.
In terms of type, there are only two types of parameters in API sequences, string and integer.

The process of encoding integer type parameters is shown in the uppermost part in
Figure 3. For integer type parameters, the semantic information is not available for a single
number but needs to be combined with the API name. For example, under the API name
Connect, the parameter 22 represents the port number, while under other API names it
may represent the file size. Therefore, we need to include the API name information when
encoding the integer type parameters, as shown in Equation (2).

σi(x) = ∑
p: f (xAPI

p)=i

ϕ
(

xAPI
p

)
log

∣∣∣xvalue
p

∣∣∣+ 1 (2)

Electronics 2023, 12, 4992 7 of 14

We locate the position of the parameter in the feature vector based on the API name,
i.e., f

(
xAPI

p

)
= i , and place the integer value into that position. However, if we directly

put the original value into the feature vector, it may cause the value to fluctuate too much
and the distribution to be sparse. Therefore, we only take its logarithm and put it into the
feature vector. The rest of the symbols in the formula are the same as those in Equation (1).

For string type parameters, we need to conduct some cleaning of the parameters before
converting them into feature vectors, considering the complexity of the parameters. First,
we remove the hash values from the parameters. Most of these hashes represent a certain
area in memory, i.e., virtual addresses, and these virtual addresses change with different
devices, so virtual addresses are not such important information for dynamic detection
methods based on API sequences [29,30], and hashes are more difficult to handle compared
to other parameters. Therefore, the hash values in the parameters are not processed. Also,
we filtered out the parameters that belong to API like LoadSystemModulue because we
have observed a significant occurrence of such parameters in every single sample, no matter
benign or malware. According to our statistics number, the average proportion of such API
is expected to reach 40% of the total API length in one sample. More importantly, the values
of parameters that belong to API like LoadSystemModule exhibit a remarkably high degree
of redundancy. Due to the aforementioned reasons, we are led to believe that these values
lack significant reference value, and we choose to filter them out. Finally, we format the
chosen parameters, which includes standardizing the capitalization and the delimiters in
the paths. After completing the parameter processing, the parameters of string type are
also encoded by Equation (1).

3.5. Action and Object Summary

When processing sequences using deep neural networks, it is common to use trunca-
tion or complementary methods to make the sequences the same length. If the complemen-
tary approach is used, using padding characters to make all the sequence lengths equal to
the longest sequence, it will undoubtedly consume very much storage space. Therefore,
the truncated sequence approach is more common in NLP problems. However, truncating
sequences can result in missing sequence information. For malware, only a few specific
behaviors are needed to achieve the final goal, and these behaviors may appear anywhere
in the sequence.

In order to reduce the information loss caused by truncating the sequence, we add the
global statistics of the sequence represented by each feature vector to the head of the vector.
That is, the count statistics of the actions and objects in the sequence. In order to make
the added information spliceable with the original sequence, the dimensions of action and
object are each half of the total dimension of the sequence, as shown in the Figure 4.

..

API_1(params_1, params_2, ...)

API_2(params_1, params_2, ...)

API_3(params_1, params_2, ...)...

Action summary, Object summary

Action summary (64dim) Object summary (64dim)

Action (8dim) Object (8dim) String (96dim)Integer (16dim)

Figure 4. Feature engineering.

The feature vectors of statistical information are similarly calculated via Equation (2).
The generation of summary vector is shown in the bottom part in Figure 3. The specific
position of the number in the feature vector space is located by action and object, i.e.,
f
(

xaction
p

)
= i and f

(
xobject

p

)
= i.

3.6. Deep Learning Network Architecture

In order to reduce the probability of losing key behaviors due to truncated sequences,
it is necessary to retain as much behavioral information in the sequences as possible, i.e., to
preserve the length of the sequences as much as possible. This paper chooses to use the

Electronics 2023, 12, 4992 8 of 14

combination of TextCNN and Bi-LSTM, which can process longer text sequences with
less computational resources than the pre-trained model. Also, this paper makes some
improvements to this combination by adding GatedCNN, which has better attention and
text processing; deep learning network architecture can be seen in Figure 5.

Gated CNN

Conv1D

Conv1D

LSTM

LSTM

LSTM

BiLSTM
Batch

Normalization
Batch

Normalization

LSTM

LSTM

LSTM

Attention

σ(x)

+

.
.
.

Parameters augmented

semantic chain

+

+

X

Attention

Matrix

Figure 5. Network architecture.

3.6.1. Gated CNN

The input feature vectors will be fed into gated CNN after batch normalization. Gated
CNN [31] allows the selection of important and relevant information, making it more
competitive with recurrent models on language tasks with fewer computation resources.
To be more detailed, the input will be fed into two different convolution layers: letXA be
the output of the first convolution layer, XB be the output of the second convolution layer,
and then the final output of gated CNN will be XA ⊗ σ(XB), where ⊗ is an element-wise
multiplication operation, σ is the sigmoid function, σ(x) = 1

1+e−x . σ(XB) represents the
gate unit that controls the information from XA to the next layers.

3.6.2. Bi-LSTM

After convolutional filters, we apply bidirectional LSTM to capture the hidden patterns
in the sequences. Although LSTM can predict future information based on past information,
this also means that, in a text sequence, LSTM can only predict the following in conjunction
with the information above. This is a more serious drawback when dealing with text data
because there is basically no strict temporal order in text, and the semantic environment
of the context affects the semantics of the word at the current position. By stacking two
LSTMs in different directions, this makes the model save both past information and future
information. The result of the i-th word after BiLSTM hi can be calculated by Equation (3).

ht = [
−→
hi ⊕

←−
hi] (3)

where
−→
hi and

←−
hi are the results of the forward and reverse calculations of Bi-LSTM, respectively.

3.6.3. Attention

After learning sequential patterns from Bi-LSTM module, we apply a word-level
attention mechanism [32] to learn the part that contributes to the result most. Let H ∈ Rd×n

be the output of the bi-LSTM, which is a matrix of hidden status h1, h2, . . . , hn. d denotes
the size of the hidden layers in bi-LSTM, which is, in our case, 200. Furthermore, n denotes
the number of words in a sequence. Let hij be a hidden status in H, and the hidden
representation uij of hij is calculated by Equation (4).

uij = tanh(Wwhi j + bw) (4)

where Ww and bw are the weights and bias, respectively. Then, we can measure the
importance of the word, a normalized importance weight vector α, which would be the
similarity of uij and a context vector uw that is randomly initialized and learned during
training. The importance weight vector of αij can be calculated by Equation (5).

αij =
euT

ij

∑j euT
ij uw

(5)

Electronics 2023, 12, 4992 9 of 14

And the final weighted output r would be calculated by Equation (6).

r = HαT (6)

4. Experiment
4.1. Experimental Environment

An experimental environment can be generally divided into hardware environment
and software environment.

Hardware Environment: The hardware environment of the experimental machine is
as follows: CPU is i7-10700 with 8 cores and 32 GB memory; GPU is GeForce RTX 3060.
The specific hardware parameters are shown in Table 2.

Table 2. Hardware parameter table.

Hardware Configuration

CPU i7-10700
Cores 8

Threads 16
GPU GeForce RTX 3060

Memory 12 GB
RAM 32 GB
Disk 2 TB

Software Environment: The experimental software environment is mainly configured
as follows: the operating system is Windows 10, and the programming language used is
Python 3.9. The third-party libraries required for the construction of the text detection
model and the text recognition model are shown in Table 3, and the functions of each library
are briefly introduced in the table. For specific usage methods, refer to the user manuals of
each dependent package.

Table 3. Software environment.

Name Version Function

torch 1.8.0 A deep learning framework open-sourced by Facebook, which supports GPU-based tensor
computation and automatic gradient calculation.

numpy 1.19.4 The fundamental package for scientific computing with Python, providing a large number of matrix
calculation functions.

math 3.10.10 Performs various advanced mathematical operations.

pandas 0.25.1 Used for simplifying large-scale structured data operation and analysis, supporting various matrix
operations, data cleaning, and other functions.

matplotlib 3.1.1 A commonly used plotting library in Python for data visualization and creation of various charts.

scikit-learn 0.21.3
A third-party module that encapsulates commonly used machine learning methods, used for

learning classification, regression, dimensionality reduction, and clustering the four major machine
learning algorithms.

4.2. Dataset

We use the dataset from competition Datacon2019, which contains 69,207 behavior
reports of different samples generated by sandbox for training our deep learning network.
In those behavior reports, 20,000 of them are from benign samples; the remaining 49,207 re-
ports are produced by malware. We divide the dataset into training set and validation set,
70% for training and 30% for validation. Additionally, we collated 2500 newest samples,
which consist of both benign and malware in the real network to evaluate.

Electronics 2023, 12, 4992 10 of 14

4.3. Hyperparameters

In order to retain the behavioral information in the original sequence as much as possi-
ble, the maximum length of the API sequence is set to 3000. In addition, the dimensionality
of each feature vector is set to 128, i.e., 7 times of 2 to speed up the computation in this
paper. The convolutional kernel size in gated CNN is set to 3, and the number of LSTM
units in each direction in Bi-LSTM is 100, totaling 200 LSTM units. The detailed parameters
are shown in the table.

4.4. Metrics

In this paper, we evaluate this method by calculating the accuracy, precision, recall,
and F1-score of the final classification results and compare them with other methods.
In addition, the ROC curve and the AUC score are used to compare the methods.

In the process of metrics calculating, we used TP and TN. TP denotes true positive,
i.e., the number of samples correctly classified as POSITIVE (correctly classified as malware),
and TN denotes true negative, i.e., the number of samples correctly classified as NEGATIVE
(correctly classified as benign). FN denotes false negative; i.e., the number of samples
incorrectly classified as FN denotes the number of samples incorrectly classified as negative
(malicious samples are judged as benign samples), and FP denotes the number of samples
incorrectly classified as positive (benign samples are judged as malicious samples).

4.5. Baselines

In this paper, machine learning algorithms such as SVM and MLP are used as baseline
models. The feature vectors obtained after semantic chain transformation of API sequences
are put into the baseline model for feature mining and examining the indicators such as
accuracy to evaluate the model performance in this paper. In addition, a widely used
sequence processing method, embedding + TextCNN, is selected as the baseline for com-
parison in this paper. The results of the experiments can be observed in Table 4; the ROC
curve is shown in Figure 6. Obviously, the method proposed in this paper outperforms all
the baseline models.

0.0 0.1 0.2 0.3 0.4 0.5
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

mlp auc: 0.9371
random_forest auc: 0.8383
svm auc: 0.9129
SC auc: 0.9987
text_cnn auc: 0.9987

Figure 6. Comparison with baselines.

Electronics 2023, 12, 4992 11 of 14

Table 4. Comparison with baselines.

Methods Accuracy Presicion Recall F1-Score

SVM 86.9190 86.7813 96.0866 91.1972
RandomForest 84.8239 85.3460 94.7479 89.8015

MLP 87.0827 89.0900 93.0815 91.0420
Embedding + TextCNN 98.5599 99.6882 98.2652 98.9716

Proposed method 99.1925 99.5428 99.3054 99.4264

5. Discussion
5.1. Robustness to Unknown Input

In order to demonstrate that the proposed method can enhance the robustness of the
model to unknown inputs, 2500 up-to-date samples existing in a real network environment
are collected and the behavior reports of the samples are obtained by running the samples
in a Cuckoo sandbox [33]. Three different methods are used to detect these 2500 samples
and determine whether they are malware or not; the results are shown in Table 5.

Table 5. Robustness to unknown input.

Methods Accuracy Presicion Recall F1-Score

Embedding + TextCNN 75.21 78.68 76.26 84.97
Proposed method (without API parameters) 74.03 79.34 81.74 83.63
Proposed method 86.32 84.54 85.30 91.59

It is obvious from Table 4 and Figure 6 that the difference is small between the final
detection rate of the proposed method and the method using embedding+TextCNN in
the same dataset. The difference is small, and the proposed method in this paper has less
advantage in detection rate. However, in Table 5, it can be seen that the proposed method
has stronger robustness facing an unknown input, and it can obtain more information
about the sample behavior from the unknown input, thus improving the detection rate
of the model for unknown samples. Meanwhile, the experimental results also show
that the detection rate of the model has a very significant improvement after adding the
parameters. It is proved that the information carried by the parameters can greatly improve
the recognition rate of unknown samples.

5.2. Influence of Summary

To verify whether the supplementary information used in the method has a positive
effect on the truncated sequences, an additional set of experiments is set up in this paper. In
this set of experiments, different lengths are truncated from the API sequences. Considering
that the maximum length that the pre-trained model BERT can handle is 512, three different
lengths of 100, 300, and 500 are set in this paper. In addition, an experimental group with
sequence length of 3000, which cannot be handled by the general model, is also set in this
paper. For each sequence length, two experiments are conducted in this paper, i.e., with
and without the addition of supplementary information. The final F1-score is shown in
Table 6, and the ROC curve is shown in Figure 7. As is shown in Table 6, the F1-score
obtained by sequences with summary is significantly better than those without summary,
which means summary information is indeed useful for complementing the truncated
chain information. Furthermore, with an increase in the length of sequences, the results that
belong to sequences without summary maintain a trend of decreasing, which means that
the detection performance would reduce with longer sequences without complementary
information. On the other hand, the results conducted by sequences with summary showed
a curved trend. Initially, a decrease occurs as the sequence length increases, but an increase
begins after reaching a certain length. The reason, according to our analysis, can be that
it is more easy for a deep learning network to fit when the sequence length is short, and,

Electronics 2023, 12, 4992 12 of 14

when the length is not so short, the model’s degree of fit will decrease for a while. After
that, as the sequence length is further increased, the summary information will play a more
prominent role.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
FPR

0.80

0.85

0.90

0.95

1.00

1.05

TP
R

100
100_no_summary
3000
3000_no_summary
300
300_no_summary
500
500_no_summary

Figure 7. Influence of summary.

Table 6. Influence of summary.

Length of API With Summary Without Summary

100 99.20 92.79
300 98.90 92.35
500 98.19 91.53

1000 98.21 91.12
3000 98.26 90.26

5.3. Limitations and Future Work

Although the method proposed in this paper is obviously better than the baseline
model, the method currently has many shortcomings. First, the APIs studied in this paper
are basically from the Windows environment, so the method is currently only applicable
to malware detection in the Windows environment. If there is a sample that will only
perform malicious behavior under Linux, the method cannot perform accurate analysis of
the sample. In addition, the text does not fundamentally address the problem of concept
drift, although it uses feature hash to enhance the robustness of the model to unknown
inputs. If the behavior pattern of a sample changes, the model still needs to be retrained to
adapt it to the new behavior pattern.

In future work, we plan to investigate the second deficiency mentioned above in more
depth, i.e., to more deeply investigate the concept drift that occurs in deep learning models
on new data. The problem of gradual aging of the model on new datasets is mitigated by
taking certain optimization measures on the deep learning model.

Electronics 2023, 12, 4992 13 of 14

6. Conclusions

In this paper, we propose a novel manner for API sequences encoding. We obtain
semantic chains by deconstructing the API and employing the parameters of the API to
augment the semantic information. Moreover, the use of feature hash to solve the dynamic
input problem arising from the processing of parameters enhances the robustness of the
model in the face of unknown inputs. In addition, we mitigate the effect of sequence
truncation by incorporating sequence statistics. Finally, we use deep neural networks to
mine the features in the API sequences and complete the detection. In addition, we also
design experiments to demonstrate that adding the overall information of the sequence
as a complement to the truncated sequence can effectively solve the problem of missing
key information.

Author Contributions: Conceptualization, L.K.; Methodology, D.Z.; Validation, H.W.; Data curation,
Z.L.; Writing—original draft, J.Z. All authors have read and agreed to the published version of
the manuscript.

Funding: This paper has been supported by the Key Technology Research and Development Program
of Zhejiang Province under Grant 2022C01125 and the General Research Program of the Department
of Education under Grant Y202044517.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: Huadong Wang was employed by the company DBAPPSecurity Co., Ltd. The
remaining authors declare that the research was conducted in the absence of any commercial or
financial relationships that could be construed as a potential conflict of interest.

References
1. AV-TEST. AV-TEST Report. 2022. Available online: https://www.av-test.org/en/statistics/malware/ (accessed on 1 December

2022).
2. Santos, I.; Penya, Y.K.; Devesa, J.; Bringas, P.G. N-grams-based file signatures for malware detection. In International Conference on

Enterprise Information Systems; SCITEPRESS: Setúbal, Portugal, 2009; Volume 9, pp. 317–320.
3. Griffin, K.; Schneider, S.; Hu, X.; Chiueh, T.C. Automatic generation of string signatures for malware detection. In Proceedings of

the International Workshop on Recent Advances in Intrusion Detection, Saint-Malo, France, 23–25 September 2009; Springer:
Berlin/Heidelberg, Germany, 2009; pp. 101–120.

4. You, I.; Yim, K. Malware obfuscation techniques: A brief survey. In Proceedings of the 2010 International Conference on
Broadband, Wireless Computing, Communication and Applications, Fukuoka, Japan, 4–6 November 2010; pp. 297–300.

5. Bilge, L.; Dumitraş, T. Before we knew it: An empirical study of zero-day attacks in the real world. In Proceedings of the 2012
ACM conference on Computer and Communications Security, Raleigh, NC, USA, 16–18 October 2012; pp. 833–844.

6. Damodaran, A.; Troia, F.D.; Visaggio, C.A.; Austin, T.H.; Stamp, M. A comparison of static, dynamic, and hybrid analysis for
malware detection. J. Comput. Virol. Hacking Tech. 2017, 13, 1–12. [CrossRef]

7. Thantharate, P. IntelligentMonitor: Empowering DevOps Environments with Advanced Monitoring and Observability. In
Proceedings of the 2023 International Conference on Information Technology (ICIT), Amman, Jordan, 9–10 August 2023; pp. 800–
805.

8. Herrera-Silva, J.A.; Hernández-Álvarez, M. Dynamic feature dataset for ransomware detection using machine learning algorithms.
Sensors 2023, 23, 1053. [CrossRef] [PubMed]

9. Zhang, Z.; Qi, P.; Wang, W. Dynamic malware analysis with feature engineering and feature learning. AAAI Conf. Artif. Intell.
2020, 34, 1210–1217. [CrossRef]

10. Amer, E.; Zelinka, I. A dynamic Windows malware detection and prediction method based on contextual understanding of API
call sequence. Comput. Secur. 2020, 92, 101760. [CrossRef]

11. Catak, F.O.; Yazı, A.F.; Elezaj, O.; Ahmed, J. Deep learning based Sequential model for malware analysis using Windows exe API
Calls. PeerJ Comput. Sci. 2020, 6, e285. [CrossRef] [PubMed]

12. Agrawal, R.; Stokes, J.W.; Marinescu, M.; Selvaraj, K. Neural sequential malware detection with parameters. In Proceedings of
the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April
2018; pp. 2656–2660.

13. Chen, X.; Hao, Z.; Li, L.; Cui, L.; Zhu, Y.; Ding, Z.; Liu, Y. CruParamer: Learning on Parameter-Augmented API Sequences for
Malware Detection. IEEE Trans. Inf. Forensics Secur. 2022, 17, 788–803. [CrossRef]

14. Salehi, Z.; Sami, A.; Ghiasi, M. MAAR: Robust features to detect malicious activity based on API calls, their arguments and return
values. Eng. Appl. Artif. Intell. 2017, 59, 93–102. [CrossRef]

https://www.av-test.org/en/statistics/malware/
http://doi.org/10.1007/s11416-015-0261-z
http://dx.doi.org/10.3390/s23031053
http://www.ncbi.nlm.nih.gov/pubmed/36772092
http://dx.doi.org/10.1609/aaai.v34i01.5474
http://dx.doi.org/10.1016/j.cose.2020.101760
http://dx.doi.org/10.7717/peerj-cs.285
http://www.ncbi.nlm.nih.gov/pubmed/33816936
http://dx.doi.org/10.1109/TIFS.2022.3152360
http://dx.doi.org/10.1016/j.engappai.2016.12.016

Electronics 2023, 12, 4992 14 of 14

15. Li, C.; Lv, Q.; Li, N.; Wang, Y.; Sun, D.; Qiao, Y. A novel deep framework for dynamic malware detection based on API sequence
intrinsic features. Comput. Secur. 2022, 116, 102686. [CrossRef]

16. Downing, E.; Mirsky, Y.; Park, K.; Lee, W. DeepReflect: Discovering Malicious Functionality through Binary Reconstruction. In
Proceedings of the USENIX Security Symposium, Online, 11–13 August 2021; pp. 3469–3486.

17. Saxe, J.; Berlin, K. Deep neural network based malware detection using two dimensional binary program features. In Proceedings
of the 2015 10th International Conference on Malicious and Unwanted Software (MALWARE), Fajardo, PR, USA, 20–22 October
2015; pp. 11–20.

18. Raff, E.; Barker, J.; Sylvester, J.; Brandon, R.; Catanzaro, B.; Nicholas, C. Malware detection by eating a whole exe. arXiv 2017,
arXiv:1710.09435.

19. Lee, H.; Cho, S.j.; Han, H.; Cho, W.; Suh, K. Enhancing Sustainability in Machine Learning-based Android Malware Detection
using API calls. In Proceedings of the 2022 IEEE Fifth International Conference on Artificial Intelligence and Knowledge
Engineering (AIKE), Laguna Hills, CA, USA, 19–21 September 2022; pp. 131–134.

20. Ahmadi, M.; Sami, A.; Rahimi, H.; Yadegari, B. Malware detection by behavioural sequential patterns. Comput. Fraud. Secur.
2013, 2013, 11–19. [CrossRef]

21. Ravi, C.; Manoharan, R. Malware detection using windows api sequence and machine learning. Int. J. Comput. Appl. 2012,
43, 12–16. [CrossRef]

22. Cheng, J.Y.C.; Tsai, T.S.; Yang, C.S. An information retrieval approach for malware classification based on Windows API calls.
In Proceedings of the 2013 International Conference on Machine Learning and Cybernetics, Tianjin, China, 14–17 July 2013;
Volume 4, pp. 1678–1683.

23. Fang, Y.; Yu, B.; Tang, Y.; Liu, L.; Lu, Z.; Wang, Y.; Yang, Q. A new malware classification approach based on malware dynamic
analysis. In Proceedings of the Australasian Conference on Information Security and Privacy, Auckland, New Zealand, 3–5 July
2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 173–189.

24. Tian, R.; Islam, R.; Batten, L.; Versteeg, S. Differentiating malware from cleanware using behavioural analysis. In Proceedings of
the 2010 5th International Conference on Malicious and Unwanted Software, Nancy, France, 19–20 October 2010; pp. 23–30.

25. Zhang, H.; Zhang, W.; Lv, Z.; Sangaiah, A.K.; Huang, T.; Chilamkurti, N. MALDC: A depth detection method for malware based
on behavior chains. World Wide Web 2020, 23, 991–1010. [CrossRef]

26. Tran, T.K.; Sato, H. NLP-based approaches for malware classification from API sequences. In Proceedings of the 2017 21st Asia
Pacific Symposium on Intelligent and Evolutionary Systems (IES), Hanoi, Vietnam, 15–17 November 2017; pp. 101–105.

27. Hart, J.M. Win32 Systems Programming; Addison-Wesley Longman Publishing Co., Inc.: Reading, MA, USA, 1997.
28. Weinberger, K.; Dasgupta, A.; Langford, J.; Smola, A.; Attenberg, J. Feature hashing for large scale multitask learning. In

Proceedings of the 26th Annual International Conference on Machine Learning, Montreal, QC, Canada, 14–18 June 2009;
pp. 1113–1120.

29. Jindal, C.; Salls, C.; Aghakhani, H.; Long, K.; Kruegel, C.; Vigna, G. Neurlux: Dynamic malware analysis without feature
engineering. In Proceedings of the 35th Annual Computer Security Applications Conference, San Juan, PR, USA, 9–13 December
2019; pp. 444–455.

30. Avllazagaj, E.; Zhu, Z.; Bilge, L.; Balzarotti, D.; Dumitras, , T. When Malware Changed Its Mind: An Empirical Study of Variable
Program Behaviors in the Real World. In Proceedings of the 30th USENIX Security Symposium (USENIX Security 21), Virtual,
11–13 August 2021; pp. 3487–3504.

31. Dauphin, Y.N.; Fan, A.; Auli, M.; Grangier, D. Language modeling with gated convolutional networks. In Proceedings of the
International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 933–941.

32. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In
Advances in Neural Information Processing Systems 30, Proceedings of the Annual Conference on Neural Information Processing Systems
2017, Long Beach, CA, USA, 4–9 December 2017; Curran Associates, Inc.: Red Hook, NY, USA, 2017.

33. Foundation, C. Cuckoo Sandbox. 2019. Available online: https://cuckoosandbox.org/ (accessed on 1 January 2019).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.cose.2022.102686
http://dx.doi.org/10.1016/S1361-3723(13)70072-1
http://dx.doi.org/10.5120/6194-8715
http://dx.doi.org/10.1007/s11280-019-00675-z
https://cuckoosandbox.org/

	Introduction
	Related Work
	Static Analysis
	Dynamic Analysis
	API-Sequence-Based Methods
	Deep-Learning- and Sequence-Encoding-Based Methods

	Methodology
	Overview of the Design
	Feature Vector Generation
	Action and Object
	Parameters
	Action and Object Summary
	Deep Learning Network Architecture
	Gated CNN
	Bi-LSTM
	Attention

	Experiment
	Experimental Environment
	Dataset
	Hyperparameters
	Metrics
	Baselines

	Discussion
	Robustness to Unknown Input
	Influence of Summary
	Limitations and Future Work

	Conclusions
	References

