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Abstract: Stress can be considered a mental/physiological reaction in conditions of high discomfort
and challenging situations. The levels of stress can be reflected in both the physiological responses and
speech signals of a person. Therefore the study of the fusion of the two modalities is of great interest.
For this cause, public datasets are necessary so that the different proposed solutions can be comparable.
In this work, a publicly available multimodal dataset for stress detection is introduced, including
physiological signals and speech cues data. The physiological signals include electrocardiograph
(ECG), respiration (RSP), and inertial measurement unit (IMU) sensors equipped in a smart vest. A
data collection protocol was introduced to receive physiological and audio data based on alterations
between well-known stressors and relaxation moments. Five subjects participated in the data
collection, where both their physiological and audio signals were recorded by utilizing the developed
smart vest and audio recording application. In addition, an analysis of the data and a decision-level
fusion scheme is proposed. The analysis of physiological signals includes a massive feature extraction
along with various fusion and feature selection methods. The audio analysis comprises a state-of-the-art
feature extraction fed to a classifier to predict stress levels. Results from the analysis of audio and
physiological signals are fused at a decision level for the final stress level detection, utilizing a machine
learning algorithm. The whole framework was also tested in a real-life pilot scenario of disaster
management, where users were acting as first responders while their stress was monitored in real time.

Keywords: stress detection; multimodal fusion; physiological signals; audio analysis

1. Introduction

The physiological reaction of a person, when exposed to challenges of high discomfort
and difficulty (also referred to as “stressor” [1]), is defined as stress. Stress can influence a
person’s performance and mental lucidity, thus making it one of the most important aspects
of disaster management applications. Apart from the short-term effects of stress, exposure
to stress for long periods of time can have serious effects on the health of a person. Some
of the most common health problems induced by chronic stress include post-traumatic
stress disorder (PTSD) and major depressive disorder [2], or other physical health problems,
such as sleep disturbances and musculoskeletal problems [3]. Thus, the monitoring of
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stress levels of first responders, who are often exposed to highly stressful situations, can be
essential both for their performance and their health.

Since stress is a physiological reaction, monitoring physiological signals can offer
valuable information for accurate stress detection. The recent developments in Internet
of Things (IoT) devices have led to increasing research in the field of automatic stress
detection by monitoring physiological signals. Among the most common physiological
sensors exploited for stress detection are the galvanic skin response [4] (GSR), heart rate [5]
(HR), respiration signals [6] (RSP), electrocardiograph signals [7] (ECG), or even studying
brain dynamics with sensors such as electroencephalography [8] (EEG). In other cases,
subjects’ movements may also reflect their stress levels. Thus, monitoring muscle activity
through electromyography (EMG) sensors or kinematic data through inertial measurement
unit (IMU) sensors has also been proposed as a solution for automatic stress detection [9].

Nevertheless, stress can also be reflected in human behavior as a result of abnormal
physiological functions, e.g., alteration in heart rate and heart rate variability, breathing
patterns, or even muscle tension of the vocal cords [10]. During stress, speech patterns
can be influenced, leading to alterations in speech jitter, energy in certain frequency bands,
or shift in the fundamental speech frequency [10,11]. Such physical alterations of the
speech signal can be captured by digital recording devices. The recorded speech signal is
processed, and specific acoustic features are extracted for analysis and prediction using
machine learning techniques. The development of devices such as smartphones, which
are equipped with microphones, allows for the monitoring of users’ speech and real-time
processing for accurate and effective speech-based stress detection.

The unique characteristics of physiological signals and speech patterns can complement
the task of automated real-time and accurate stress level detection. Therefore, the study of
fusing such data for the cause of stress detection is of great interest. Nevertheless, this fusion
scheme has not been adequately studied in the literature. One of the main reasons for this
knowledge gap is the lack of publicly available datasets that can allow researchers to develop
and compare multimodal fusion models for stress detection based on such data types. Our
work aims at introducing such a multimodal dataset for automatic stress detection including
physiological signals and speech cues. A data collection protocol was designed to induce
different levels of stress to the users in a controlled environment, while their physiological and
speech data were collected. The protocol is based on a sequence of well-known and frequently
applied stressors, both psychological and physical. For the collection of physiological signals,
a smart vest equipped with ECG, RSP and IMU sensors was designed, and users were
asked to wear it during the whole duration of the experiments. For the audio monitoring,
an application was developed allowing for recording and posting audio recordings in real
time. The ground truth values were self-annotated by the participants after the completion
of each stressor in a continuous-valued manner. The same configuration was also used in
a real-life scenario of disaster management, where subjects are serving as first responders
during a hypothetical flood emergency in Vicenza, Italy. We also present a proposed real-time
analysis of the collected data based on state-of-the-art physiological signals and audio analysis
methods and a decision-level fusion approach, where the laboratory experiment data were
used for training and the real-life pilot data for evaluation. The main contributions of our
paper include the following:

• We provide a multimodal dataset including physiological signals and speech cues for
stress detection. To our knowledge, this is the first dataset providing such data types for
the purpose of stress detection.

• Our dataset also includes data from a real-life disaster management scenario.
• We describe the decision-level fusion framework adopted that includes state-of-the-art

machine learning-based methods for the analysis of each modality.

The rest of the paper is organized as follows: In Section 2, a review of the state of
the art in the field of stress detection is presented, focusing on publicly available datasets
as well as analysis methods for physiological data, audio information, and their fusion.
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In Section 3, the methods for the data collection and the proposed analysis are described in
detail, followed by the results in Section 4. Finally, Section 5 concludes the paper.

2. Related Work

In this section, the current state of the art in the field of stress detection is reviewed,
investigating both the publicly available datasets in the literature as well as analysis
methods for stress detection based on physiological signals, auditory cues, and their fusion.

2.1. Analysis Methods
2.1.1. Physiological Signal-Based Stress Detection

Considering the physiological nature of stress, there has been increased interest in the
applications of monitoring physiological signals for automated stress detection.

In the work by Gil-Martin et al. [12], the authors proposed a multimodal physiological
signal solution for automated stress detection based on a convolutional neural network
(CNN) deep learning architecture and several signal processing techniques. For this cause,
they used the publicly available WESAD [13] dataset. Their results revealed that the com-
bination of all the signals using a Fourier transform and cube root processing techniques
can improve the overall performance, and when applying a constant Q transform over
the previous processing, the input data shape can be significantly reduced while main-
taining performance. They achieved an accuracy of 96.6% when dealing only with two
classes (stress–no stress). The same dataset has been extensively used in combination with
machine learning [14,15] or deep learning [16,17] algorithms in the context of the stress
detection problem.

2.1.2. Audio-Based Stress Detection

Detecting stress using audio-signal-based techniques requires two main processes:
(i) acoustic feature processing and extraction and (ii) prediction (or classification) of the
estimated level of stress. At a high level, these tasks can be described as audio-signal
processing, data processing, and statistical inference via machine learning algorithms.

In the MuSE challenge [18], several feature sets from several modalities (i.e., heart
rate, face movements, etc.) are used to predict stress annotations. The feature set that
outperforms the task of stress detection is precisely the acoustic feature set. Specifically,
they use the open-source software OpenSMILE 3.0 [19] with a predefined set of 88 acoustic
features, known as the eGeMAPs feature set [20]. Prediction of continuous values of stress
at 500 ms windows is performed, and an overall accuracy of 0.44 on the MuSE challenge’s
test set is reported. Such results can be used as a benchmark that highlights the non-trivial
nature of the task at hand for audio-based stress detection.

2.1.3. Fusion of Physiological Signals and Vocal Cues

Since stress detection can be addressed using either physiological signals or speech
information, the combination of these two modalities could be proved to be valuable in the
task of stress detection using wearables. Nevertheless, this field of research has not been
adequately studied. In the work of Kim et al. [21], the authors proposed a combination of
speech cues and physiological signals including ECG, EMG, RSP, and GSR for emotion
recognition during a virtual quiz simulation. Their results indicate that fusing speech
and physiological signals at the feature level using a feature selection method is the best-
performing method for emotion recognition. In their follow-up work [22], they proposed a
similar approach for emotion based on short-term observations, contrary to their previous
work. In both studies, they used the same dataset of the virtual quiz wizard. Their results
again revealed that feature-level fusion with feature selection outperforms other fusion
methods as well as unimodal methods. Kurniawan et al. [23] proposed a scheme for fusing
GSR and speech signals for stress detection induced by a mental workload of varying
difficulty. The authors tested two different fusion approaches; a feature-level fusion scheme
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and a decision-level fusion scheme. Their results indicate that the decision-level fusion
using a support vector machine (SVM) classifier achieved an accuracy score of 92.47%.

2.2. Public Datasets
2.2.1. WESAD Dataset

The WESAD dataset [13] is a physiological signals dataset for stress and amusement
detection using wearables that record physiological and motion data. The signal acquisition
was performed using two wearable devices; a chest-worn device equipped with a three-axis
accelerometer, ECG, electrodermal activity (EDA), electromyography (EMG), RSP sensor,
and temperature (TEMP) sensors and a wrist-worn device equipped with a three-axis
accelerometer, EDA, blood volume pulse (BVP), and TEMP sensors. The experiment was
based on alterations between amusement states, induced by funny videos, relaxation and
meditation, and stressful situations, through the Trier Social Stress Test stressor. The ground
truth was acquired from self-reports from the participants.

2.2.2. SWELL-KW

The SWELL-KW dataset [24] is a multimodal dataset for stress detection of workers
during typical knowledge work. The dataset was collected during an experiment, where
25 participants had to perform typical office knowledge work and time pressure and email
interruptions were used as the stressors. During the experiment, behavioral data, in terms
of facial expression from a camera, body postures from a Kinect 3D and computer logging,
and physiological signals from heart rate and skin conductance sensors were monitored.
The ground truth assessment was performed with validated questionnaires regarding the
task load, mental effort, emotion, and perceived stress.

2.2.3. DRIVE-DB

The DRIVE-DB dataset [25] is a multimodal dataset for detecting driver stress levels
from nine subjects. The dataset includes video data from the drivers’ heads to detect head
movement and also physiological signals from RSP, EMG, ECG, HR, and GSR sensors
captured in an ambulatory environment.

2.2.4. Comparison with Our Dataset

Even though other datasets exist, including physiological signals and behavioral
data, in terms of facial expression in the SWELL-KW dataset or driver’s head video in
the DRIVE-DB dataset, no dataset including physiological signals and auditory cues is
available. Since both modalities have been proven to be valuable in the task of stress
detection, the study of their possible complementary nature is of great interest. Compared
to face front videos, audio input as behavioral data has the benefit of not being prone
to positioning and occlusion problems, therefore being easier to implement in real-life
applications, such as the disaster management application described in this paper.

3. Methods
3.1. Stress Induction Protocol

The stress induction protocol was designed to differentiate between various levels of
stress and calmness in a controlled way. All subjects had to perform specific tasks, which
included well-known stressors and actions for relaxation. These tasks can be divided into
psychological and physiological tasks, according to the type of stress they are related to,
and they are the following:

• Psychological:

– The Stroop test (Figure 1a). It is a well-known stressor [26]. In the Stroop test,
certain words of color names are written in a different color than the one they
describe. The user, after seeing each slide of words for a short period of time, is
asked to describe the font color of each word.
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– The descending subtraction test (Figure 1b). It is also a commonly used stress
induction test [27], where the user is asked to begin counting backward from a
certain number, subtracting each time another certain number. In the context of
the training data collection experiment, the users were asked to begin with the
number 1324, subtracting 17, until 17. If the users make a mistake, they must
start over.

– Explain a stressful situation in your life.
– Explain how the day has been.
– Listen to relaxing music. The two later tasks are used to monitor situations of

calmness.

• Physiological:

– Place a hand in cold water (2 ◦C) for two minutes, make a pause, and then place
it again (Figure 1c).

– Ascend and descend four levels of stairs (Figure 1d).
– Tie and untie shoes after exercise (Figure 1e).

After each task, the subjects were asked to report their stress level as a continuous
value in the range of 0–100.

Figure 1. The psychological (upper half of the figure) and physiological (lower half of the figure)
stressors that users had to perform. (a) The Stroop test, (b) the descending subtraction test, (c) placing
hand in cold water, (d) ascend and descend stairs, (e) tie and untie shoes.

3.2. Data Acquisition

Most of the domain-specific data used for training and evaluating the sensor- and
audio-based stress detection modules were provided or generated by the Alto-Adriatico
Water Authority/Autorità di bacino distrettuale delle Alpi orientali (AAWA). An ethics
advisory board was monitoring all the research for ethical and legal compliance, and all
participants were asked to sign a consent form prior to the experiments. All methods
were carried out in accordance with relevant guidelines and regulations. All experimental
protocols were approved by the competent ethics authority. Informed consent was obtained
from all subjects and/or their legal guardian(s). The data acquisition techniques can be
divided into physiological and audio data collection.
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3.2.1. Physiological Data Collection

For the physiological data acquisition, a smart vest equipped with IMU, ECG, and RSP
sensors, which can be seen in Figure 2, was used. In more detail, the smart vest has
integrated textile sensors for the acquisition of ECG and RSP signals and a data logger
for the transmission of data via Bluetooth 2.1. The data logger has an integrated IMU,
including accelerometer, gyroscope, magnetometer, and quaternion sensors, which can
be used to monitor the movements of the trunk. The data logger has also a developed
software for extracting information from the monitored signals, such as heart rate from the
ECG signal and breathing rate from the RSP signal. A detailed description of the monitored
parameters, along with their sampling rates and units, is presented in Table 1.

Figure 2. Wearable smart vest architecture.

Table 1. Smart vest recorded parameters.

Recorded Parameter Description Values (per 1 Unit Metric) Sampling Rate

ECG Value Electric signal measuring the ECG 0.8 mV 250 Hz

ECG quality Value ECG signal quality 0–255 (0 = poor, 255 = excellent) 5 Hz

ECGHR Value Heart rate Beats/minute 5 Hz

ECGRR Value R-R intervals number of samples between R-R peaks 5 Hz

ECGHRV Value Heart rate variability ms 60 Hz

AccX-Y-Z Value Acceleration in X-Y-Z axes 0.9710−3 g 25 Hz

GyroX-Y-Z Value Angular velocity in X-Y-Z axes 0.122°/s 25 Hz

MagX-Y-Z Value Magnetic field in X-Y-Z axes 0.6 µT 25 Hz

Q0-Q1-Q2-Q3 Value Quaternions from main electronic
device (Q0, Q1, Q2, Q3 components) Q14 format 25 Hz

RespPiezo Value Electric signal measuring the chest
pressure on the piezoelectric point 0.8 mV 25 Hz

BR Value Breathing rate Breaths/minute 5 Hz

BA Value Breathing amplitude logic levels 15 Hz

3.2.2. Audio Data Collection

For training the audio-based stress detector, material from AAWA had been pro-
vided in the domain of citizens’ phone calls reporting emergencies. The dialogues were
simulated but closer to real-world emergency management contexts than any other ma-
terial previously used for developing the stress module. A total of 25 phone dialogues
between citizens and operators were provided, including mostly male voices usually per-
forming different roles (as citizen and as operator). The task of annotating this material
to gather training data for the stress module consisted of several steps: (i) choosing an
annotation tool, (ii) developing annotation guidelines, (iii) preparing the material for an-
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notation, (iv) following up the annotator’s completion of the task, and (v) processing the
material for training. We chose as our annotation tool the open source software NOVA
(https://github.com/hcmlab/nova) [28] due to its user-friendly interface and compatibil-
ity with Windows OS. NOVA allows frame-wise labelling for a precise coding experience
and value-continuous annotations for labelling, e.g., emotions or social attitudes, including
perception of stress in voice. The interface is customizable and allows loading and labelling
data of multiple persons. The resulting continuous annotation can be exported as a csv file
with timestamps.

Step-by-step annotation guidelines were provided to user partners from AAWA who
kindly helped out in the annotation task, including a demonstration video on how to use
the NOVA software. In order to have a minimum amount of material for training a model,
three annotations from different people are needed. The 20 dialogues were segmented into
dialogue turns to isolate each speaker utterance for the annotation task. A total of 262 audio
files were used for the annotation of stress. Three rounds of annotations were carried out,
and a total of 11 annotators took part in the process to split the amount of material and thus
efficiently distribute the task. Thus, the minimum required amount of three annotations for
each audio file were obtained.

For testing the multimodal stress detection, audio recordings were gathered along
with physiological signals in the experiment described in the “Stress Induction Protocol”
section above.

3.3. Participants

During the data collection experiments, a total of 5 subjects participated, of which 2
were female. Their age ranged from 30 to 50, with a mean age of 37.6 ± 7.6. The whole
duration of the experiments was about 32 min and 40 s for each participant, and during the
whole duration of the experiments, they were wearing the developed smart vest and they
were recorded through the developed smartphone application. All participants signed the
necessary consent forms. Along with the subjects, a supervisor was present during the
whole experiment to ensure the correct execution of the experimental process. During the
disaster management pilot, a total of 11 subjects participated, operating as first responders,
while wearing the developed smart vest and also sending audio reports through the
developed application.

3.4. Data Analysis
3.4.1. Physiological Data Analysis

The analysis of physiological data consists of two steps; preprocessing and feature
extraction. The whole physiological signals data analysis was performed in a sliding
window of 60 s with 50% overlap. Only the monitored physiological signals were used
in this analysis; those being the ECG data (ECG Value), RSP data (RespPiezo Value), and
IMU data (AccX-Y-Z Value, GyroX-Y-Z Value, MagX-Y-Z Value, and Q0-Q1-Q2-Q3 Value).
The parameters extracted from the physiological signals using the data logger software
(ECG quality Value, ECGHR Value, ECGRR Value, ECGHRV Value, BR Value, and BA
Value, see Table 1) were not used in this analysis. For the preprocessing of the physiological
signals, multiplication with simple weights has been performed as a first step in order to
convert the units of the signals into the metric system (see Table 1). After the first step
of preprocessing the data, each one of the modalities was processed differently to further
preprocess them and extract valuable features from them.

Regarding the IMU sensors, the only sensor that was further preprocessed was the
quaternion, in order to extract roll, pitch, and yaw angles from it. After the preprocessing is
completed, the feature extraction includes 10 time-domain features; namely mean, median,
standard deviation, variance, maximum value, minimum value, interquartile range, skew-
ness, kurtosis, entropy, and 6 frequency-domain features; namely energy, and 5 dominant
frequencies. These features were computed for each axis of the sensors integrated in the
IMU for a total of 192 features.

https://github.com/hcmlab/nova
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For the ECG analysis, before extracting features, two different filters were applied; a
5th-order Butterworth high-pass filter at 0.5 Hz, in order to remove baseline drift, and a
50 Hz notch filter to remove powerline frequency noise. Finally, the preprocessing of
the ECG signal also includes a peak detection technique in order to extract information
regarding the QRS complex peaks and the R-R intervals, which are the physiological
phenomenon of variation in the time interval between heartbeats. The R-R intervals can be
used to extract heart rate information, such as heart rate variability (HRV). The extracted
ECG features include time- and frequency-domain statistical features regarding the R-R
intervals and the HRV by using the hrv-analysis [29] and the neurokit [30] toolboxes,
resulting in a total of 94 ECG features.

The preprocess of the RSP signal was performed following the methods proposed
by Khodadad et al. [31], leading to the identification of the inhalation and exhalation
peaks. After the preprocessing of the RSP signals, time- and frequency-domain statistical
features were extracted regarding the breathing rate, respiratory rate variability, and breath-
to-breath intervals. The RSP signal analysis was also performed using the neurokit [30]
toolbox, resulting in a total of 28 RSP features.

After all the features were extracted, four different machine learning algorithms were
tested; namely random forest (RF), k nearest neighbor (kNN), SVM with linear basis,
and eXtreme gradient boosting tree (XGB), using 10-fold cross-validation. Different fusion
and feature selection methods were tested, which are described in detail in [32]. For the
ground truth values, each window received the self-reported stress level value that refers
to the task each user was performing during the certain window. The stress-level values
were normalized in the 0–1 range.

3.4.2. Audio Data Analysis

Post-processing of annotated material was needed. We processed inconsistent file
naming and computed the mean average score for each audio both as continuous values
of stress in each audio file (at 40 milliseconds frames) and as one overall score per audio
file. In addition, the material was split into training and testing sets for machine learning
experiments and validation.

There are only 262 audio files (accounting for speaker turns in a total of 20 citizen–
operator dialogues). Some speakers perform the roles of both citizen and operator. There is
only one female voice (acting as operator in 2 dialogues and as citizen in 1). Annotations are
normally distributed with a skewness towards the left, which means there are considerably
more annotations in quartile 1 (that is, stress level around 0.3 on a scale from 0 to 1), as seen
in Figure 3. Results from this analysis imply that the normal distribution of stress should
also be considered around level 0.3 in the output of the model.

For feature extraction, the OpenSMILE API [19] was used both locally and by calling
the available Python library in two different scenarios: (i) using the predefined configu-
ration extracting a feature set of 88 acoustic features from the whole audio file, known as
eGeMAPs feature set [20], and (ii) using the predefined configuration extracting 10 low-
level-descriptor (LLD) features at 25 ms windows with 10 ms steps. Two sets of acoustic
features were derived and post-processed for classification experiments to match the
ground truth values. These features were then used to train different classifiers using
the WEKA framework [33]. The best results were obtained with a Gaussian process [34]
regression model.

Alternatively, features can also be calculated on longer audio segments instead of
short windows. Having short overlapping windows is useful to produce a continuous
estimation of stress levels over time, and thus analyze the evolution of stress levels over a
longer time period (with a corresponding continuous audio recording). However, when
audio is only recorded intermittently, as was the case in the pilot tests performed in the
project (see section “Pilot Results” below), it can be useful to treat each recording (up to a
few seconds in length) as a single unit with a single predicted stress level.
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Figure 3. Distribution of manually annotated stress levels for audio-based detection.

3.5. Fusion of Physiological and Audio Stress Levels

After both the physiological sensor- and audio-based stress level detection modules
were trained, a decision-level multimodal fusion was performed in order to further improve
the performance of the system. The results from both the sensor- and audio-based models
were synchronized, and then different methods were tested for decision-level fusion. More
specifically, the performance of five different machine learning algorithms was tested;
namely kNN, RF, SVM with radial basis function, SVM with linear basis function, and XGB.
For the kNN algorithm, the number of neighbors was set to k = 5. The number of trees in
the RF model was set to 100. For both the SVM linear and SVM radial, the regularization
parameter was set to C = 1. Finally, the number of trees for the XGB algorithm was set
to 100. The results from both modalities were used as inputs for the fusion models as a
concatenated feature set. The performance of a GA-based weighted average method was
also evaluated. For all of the different methods, a 10-fold cross-validation technique was
incorporated and the MSE metric was used for the final evaluation.

4. Results
4.1. Training Results
4.1.1. Physiological Sensor Results

The results of the different early and late fusion methods used for the analysis of
physiological signals are presented in Table 2. From the table, it can be seen that the fusion
method achieving the lower MSE score is the feature-level fusion of all modalities using
the XGB machine learning algorithm; that being 0.0730. It is also worth noticing that
the IMU outperforms the other modalities, which might indicate that the physiological
stressors, which include specific body movements, might have a higher influence on the
users’ stress levels.

Table 2. MSE results of the different fusion techniques with all four different regressors.

ECG RSP IMU ECG + RSP ECG + IMU RSP + IMU ECG + RSP + IMU Late Mean Late Median

SVM 0.1709 0.1530 0.1305 0.1723 0.1306 0.1305 0.1305 0.1412 0.1363

kNN 0.1439 0.1553 0.1107 0.1285 0.1106 0.1106 0.1107 0.1170 0.1125

RF 0.1113 0.1280 0.0918 0.1073 0.0916 0.0871 0.0886 0.0984 0.1025

XGB 0.1237 0.1307 0.0844 0.1092 0.0835 0.0858 0.0730 0.0958 0.1006

In addition, three different feature selection methods were evaluated in terms of their
MSE score. Since the best-performing combination of features includes all the modalities,
the feature selection was performed on the combined feature set. The results of the different
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feature selection methods are presented in Table 3. Of the different feature selection
methods, the one having the best result is the GA-based feature selection. Again, the XGB
machine learning algorithm was the one having the lower MSE score; that being 0.0567.

Table 3. MSE results of the different feature selection techniques with all four different regressors.

RFE PCA GA

SVM 0.1052 0.1201 0.1305

kNN 0.1023 0.1106 0.1106

RF 0.0790 0.1044 0.0742

XGB 0.0772 0.0953 0.0567

Following these results, an XGB machine learning algorithm was trained based on the
subset of features selected using the GA-based feature selection method. This model was
deployed for the real-time stress-level prediction in the real-life pilot scenario.

4.1.2. Audio-Based Results

A train–test split was performed, where 237 samples were chosen as a training set and
the remaining 25 samples were chosen as the test set. Using a bagging machine learning
model, the results showed that the use of the whole 88 eGeMAPs feature set achieved an
MSE score of 0.01. These results of the 25 test samples are also presented in Figure 4. In the
figure, the x-axis represents each one of the test samples and the y-axis the stress levels in
the range of 0 to 1.

Figure 4. Results of audio-based stress-level detections versus ground truth values.

4.1.3. Fusion Results

For the multimodal fusion training and testing, both the sensor-based and audio-
based modules extracted results from the data acquired during the experimental protocol
described in the “Stress Induction Protocol” section above. The MSE results of the different
machine learning algorithms and the GA-based weighted averaging method applied for
the decision-level fusion of physiological signals and audio cues are presented in Figure 5.
From the figure, it can be seen that the machine learning methods have a much better
performance than the GA-based weighted averaging method. That might indicate that the
machine learning algorithms reveal higher-level correlations than the GA-based weighted
averaging technique. Out of the five different machine learning algorithms, the best
performing is the SVM with a radial basis function, achieving an MSE score of 0.0062.
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Figure 5. Physiological signals and audio decision-level fusion MSE results for different machine
learning algorithms. The best-performing method is outlined in red.

4.2. Pilot Results

For the disaster management real-life pilot scenario, the best-performing models for
each of the physiological-, audio-, and fusion-based stress level detection were trained and
deployed. In order to acquire the necessary physiological data, the users were wearing
the smart vest during the whole duration of the pilot. For the acquisition of audio data,
a smartphone application was developed, allowing users to send voice messages when
they decide to. The same application was also used for the stream of the physiological data
to feed them to the sensor-based model for stress detection.

The overall workflow of the pilot scenario data analysis is presented in Figure 6.
The workflow for the data analysis during the pilot is as follows:

• Physiological signals are continuously monitored using the smart vest.
• Physiological data are fed to the sensor-based stress-level detection module, which

has the following operation:

– Stack packages of data until one minute duration is reached. Since the smart
vest produces 5 s long packages of data, 12 packages are stacked each time.

– Features are extracted and selected as described in the previous sections.
– Feed selected features to the trained XGB model for physiological sensor-based

stress detection.

• If audio recordings are received, they are analyzed with the following operation:

– Audio signals are optionally segmented (especially for longer recordings).
– Feature extraction is performed following the procedure described in the “Audio

Data Analysis” subsection.
– Features are fed to the trained Gaussian process regression model for the audio-

based stress-level detection.

• Sensor-based stress level and audio-based stress level are fed to the fusion SVM model
for the fused stress-level detection.
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Figure 6. Graphical representation of the fusion stress-level detection pipeline during the pilots.
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The results from the pilot data are presented in Figure 7. Each sub-figure depicts
the results of 1 of the 11 subjects that participated in the pilots. The x-axis in each of the
sub-figures represents time and the y-axis represents the stress level on a scale from 0 to
1. The results of Figure 7 indicate that across all subjects, the stress levels remained at
a medium level throughout the whole pilot duration. This is a reasonable result since,
during the pilot experiments, there was not any real stressor, such as a real flood simulation,
that could induce high levels of stress.

Figure 7. Fusion results of stress over time results from the pilot data. Each sub-figure represents
the stress over time of one subject. The x-axis of each sub-figure represents time in seconds and the
y-axis represents stress levels in a range from 0 to 1.

5. Conclusions

In the current work, a dataset for continuous-valued stress level detection is presented.
The dataset contains multimodal physiological and audio data from five participants
following a stress-induction protocol that alternates between well-known stressors and
relaxation moments. The physiological signals include ECG, RSP, and IMU signals and
were acquired using a smart vest designed by us and equipped with all the aforementioned
sensors. The audio data include recordings of the speech of the users throughout the whole
duration of the experiments using a smartphone and a developed application.

In addition, a multimodal fusion solution based on audio and sensor data for accurate
and real-time stress level detection for first responders is suggested. The solution is based
on a decision-level fusion utilizing results from the physiological sensor and audio stress
detection. Physiological sensor stress detection is based on extracting features from the ECG,
RSP, and IMU signals, selecting the most relevant features utilizing a GA-based feature
selection technique, and performing a regression analysis using an XGB machine learning
algorithm. The audio analysis consists of segmenting the audio recording into smaller
windows, followed by a feature extraction process, and finally the numeric estimation
of the stress value using a Gaussian process regression model. The fusion of audio- and
sensor-based stress levels is performed by utilizing an SVM regressor. Results on training
data reveal that by fusing audio- and sensor-based stress levels, the MSE of the system
is reduced from 0.0567 to 0.0062, thus improving the overall performance of the system.
The whole system has also been tested in a real-life disaster management pilot scenario,
where first responders were in the field equipped with the designed smart vest and an
interface for recording their speech. The whole system operates in real-time and has
reasonable results, as indicated by the pilot results.
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