
Citation: Wang, T.; Liu, Z.; Han, Z.;

Zhou, L. Efficient Decision-Making

Scheme Using Secure Multiparty

Computation with Correctness

Validation. Electronics 2023, 12, 4840.

https://doi.org/10.3390/

electronics12234840

Academic Editors: Rashid Mehmood

and Andrei Kelarev

Received: 18 October 2023

Revised: 25 November 2023

Accepted: 27 November 2023

Published: 30 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Efficient Decision-Making Scheme Using Secure Multiparty
Computation with Correctness Validation
Tao Wang 1, Zhusen Liu 2, Zhaoyang Han 1 and Lu Zhou 1,*

1 College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics,
Nanjing 210000, China; tao.wang@nuaa.edu.cn (T.W.); sunrisehan@nuaa.edu.cn (Z.H.)

2 Research Center for Basic Theories of Intelligent Computing, Research Institute of Basic Theories,
Zhejiang Lab, Yuhang District, Hangzhou 310000, China; liuzs@zhejianglab.com

* Correspondence: lu.zhou@nuaa.edu.cn

Abstract: In the era of big data, it is essential to securely and efficiently combine the large amounts
of private data owned by different companies or organizations to make correct decisions. Secure
Multiparty Computation (SMPC) works as a general cryptographic primitive, which enables dis-
tributed parties to collaboratively compute an arbitrary functionality without revealing their own
private inputs. While SMPC may potentially address this task, several issues, such as computation
efficiency and correctness validation, have to be overcome for practical realizations. To tackle these
issues, we designed a secure and efficient decision-making scheme to enable clients to outsource data
and computations to cloud servers while ensuring the integrity and confidentiality of the input and
output, in addition to the correctness of the results. Moreover, we implemented our scheme based on
an SMPC computation framework named MP-SPDZ. The experimental evaluation results showed
that our proposed scheme is feasible and efficient for practical realizations.

Keywords: secure multiparty computation; health insurance; decision-making; correctness validation

1. Introduction

With the flourishing development of the big data era, data are growing at an exponen-
tial rate every year, especially private data in business environments. Most companies and
organizations that possess private data, such as healthcare centers, electronic commerce
companies, online banks, and insurance companies, are unwilling to trade data in plaintext
form. In today’s distributed network environment, which uses vulnerable and diverse
communication channels, performing various computations on data in plaintext form
inevitably comes with the issues of private data or confidential information leakage caused
by network deception attacks or eavesdropping [1]. Therefore, a solution to combine
data owned by different companies or organizations to make correct decisions while also
protecting data privacy is urgently needed and will greatly increase the value of the data.

In general, traditional privacy-preserving techniques used in industry mainly include
data anonymization [2], anonymity algorithms [3], differential privacy [4], and data encryp-
tion. These different privacy-preserving techniques protect privacy by changing sensitive
data to conceal or erase the original sensitive information. Our goal was to find a solution
that can combine large amounts of sensitive data from different companies or organizations
while ensuring the confidentiality of the data. Unfortunately, data anonymization and
anonymity algorithms may lose their effectiveness in protecting data privacy under the
powerful data analysis capabilities of big data. For example, by conducting correlation
analyses and carrying out deep mining on multi-source data, users’ privacy information
can be easily restored. Differential privacy achieves privacy preservation by transforming
the original data or adding noise to the statistical results, but for some complex queries,
the addition of noise may lead to excessive errors. Data encryption utilizes cryptographic

Electronics 2023, 12, 4840. https://doi.org/10.3390/electronics12234840 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12234840
https://doi.org/10.3390/electronics12234840
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics12234840
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12234840?type=check_update&version=2

Electronics 2023, 12, 4840 2 of 16

techniques to transform sensitive data into ciphertext, attempting to not reveal any in-
formation about the original data unless it can be inferred from the task output. Secure
Multiparty Computation (SMPC) is a typical cryptography-based method. In recent years,
SMPC has been widely applied in real-world applications to achieve privacy protection,
such as disease diagnosis [5], bank customer risk prediction [6], etc., because it is more
effective and efficient than other methods. SMPC enables distributed parties to collabo-
ratively compute any function without revealing their own private inputs and outputs.
For large-scale data in real-world scenarios, it can also support efficient fixed-point and
floating-point operations [7], and arithmetic operations can be achieved with controlled
linear complexity [8]. Due to these advantages, researchers have shifted their focus from
purely theoretical research to real-world applications. However, there are still some prob-
lems, such as efficiency, computational overhead, and validation, that need to be addressed
in practical applications.

Traditional SMPC is often unable to address the issues of low efficiency and unverifi-
able results when it comes to solving privacy-preserving computations across institutions.
In this paper, we considered a novel real-world scenario, i.e., health insurance, to bridge
the medical field with the financial sector’s data to achieve secure and efficient privacy-
preserving health insurance decision-making. To support these requirements, we utilized
the SPDZ protocol [9,10] hypothetically under a malicious security model. Meanwhile,
in a realistic situation, insurance companies typically need a third-party institution for
notarization or verification when making health insurance decisions. Towards this end,
we extended the SPDZ protocol by adding an Honest Validator (HV) as a third party to
verify the results. Doing so increases the computation and communication costs of SMPC
nodes, but a slight loss of efficiency is deemed tolerable for the real application. We im-
plemented the proposed protocol using the open-source MP-SPDZ framework [11] and
safely calculated the decision-making results with it. To further accommodate potential
real-world applications, we designed programs that can support parallel computing to
improve the efficiency. In summary, our goal in this work was to design a scheme that
combines data owned by various companies or organizations to make correct decisions
while also safeguarding data privacy.

The primary contributions of this paper are as follows:

• For the health insurance scenario, based on data vectorization, Pedersen commitments,
and non-interactive zero-knowledge proofs, we designed and implemented an efficient
scheme to ensure the security of private data. To the best of our knowledge, this is the
first work that applies Secure Multiparty Computation to the health insurance scenario.

• We propose a specific Secure Multiparty Computation protocol based on our scheme.
In detail, we extended the SPDZ protocol by adding a third party, i.e., an Honest
Validator (HV), to verify the correctness of the result.

• We implemented the proposed scheme on the open-source MP-SPDZ framework and
carried out experiments with a large amount of real-world data. The key performance
metrics, transmission data size, bytecode size, and execution time, demonstrated the
feasibility and effectiveness of our model for health insurance decision-making scenar-
ios. Furthermore, compared to traditional approaches, where any computing party can
act as a validator, our scheme demonstrated approximately 10% improved efficiency.

The rest of this paper is organized as follows. In Section 2, we briefly introduce related
works on SMPC and its applications in the medical field and the financial sector. Then, in
Sections 3 and 4, we introduce our system framework, threat model, and some fundamental
knowledge of our scheme. The proposed scheme for the health insurance scenario is
discussed in Section 5. In Section 6, we present the experimental results of our scheme to
show its effectiveness. Finally, we summarize this work and discuss our future work.

2. Related Work

Collecting data from multiple parties to make correct decisions is an important task.
Secure Multiparty Computation works as a general cryptographic primitive, which enables

Electronics 2023, 12, 4840 3 of 16

joint computing in a privacy-preserving manner. Yao [12] first proposed the problem of
secure two-party computation and its solution in 1982. Then, researchers extended secure
two-party computation to the case of multiple parties [13,14] and developed many high-
performance multiparty protocols with the help of techniques such as oblivious transfer, secret
sharing, zero-knowledge proofs, garbled circuits, and homomorphic encryption. The SPDZ
(pronounced “speedz”) protocol [10] was one of them. It emerged as one of the most-effective
and practical because it shifted the vast majority of computation to an offline phase (also
known as preprocessing phase), which can be performed locally in advance. In the following
decade, researchers have proposed several variants of the protocols [15–17] based on the
SPDZ protocol further to improve its computation and communication efficiency, while also
paying attention to specific applications.

There have been many works to investigate the application of SMPC in the medical
field or financial sector. The study in [18] demonstrated that Secure Multiparty Compu-
tation using garbled circuits is a viable technology for addressing clinical use cases that
require cross-institutional data exchange and collaboration. Li et al. [5] proposed a se-
cure and efficient assisted multiparty decision-making scheme appropriate for Internet of
Medical Things applications. Garofalakis [19] leveraged SMPC to provide an end-to-end
infrastructure for computing privacy-preserving analytics on confidential healthcare data.
The authors in [6,20] analyzed private data in the financial sector such as banks, insur-
ance, and securities using SMPC. However, we noticed that most of the work using SMPC
applications has not yet addressed the implementation in cross-institutional scenarios.
In this paper, we overcame the obstacles and united different fields soundly to perform
secure computation.

Concerning the validability of the results, to the best of our knowledge, this was
first employed in electronic voting systems [21] and was termed public verifiability. Later,
widely known publicly auditable voting protocols such as [22,23] were proposed. Among
these voting systems, most use commitment mechanisms and zero-knowledge proofs to
enforce verifiability. Baum et al. [24] first integrated Pedersen commitments [25] with an
efficient information-theoretic SPDZ protocol [10] and proposed a protocol for which any
party could function as an auditor, with approximately twice the efficiency of the original
SPDZ protocol. Then, the work in [26–29] built on this foundation and proposed protocols
with higher security requirements or efficiency. Our work utilized a single-party HV as the
validator, which has the merit that the validation phase can be executed simultaneously
with the computational protocol.

3. System Model

In this section, we introduce a detailed model of the health insurance scenario system,
including the roles of all participants and their functions.

3.1. System Model

The scheme has four distinct types of participants, as shown in Figure 1.
Users: When purchasing health insurance, visiting a hospital when sick, and the

reimbursement of the costs occurs, the user’s personal information, including sensitive
data such as occupation and annual income, as well as the records of the medical visits, are
stored in the relevant institutions.

Healthcare institutions: These include healthcare centers and insurance companies.
They each own a large amount of information about users and desire to leverage both
parties’ resources to make health insurance decision-making for financial benefit. Before
that, they need to perform unified preprocessing of their respective data according to
trusted third parties’ standards.

Cloud providers: They are also referred to as SMPC nodes. They receive the data from
healthcare institutions and perform secure calculations using SMPC while transmitting the
parameters required for subsequent verification to the validator.

Electronics 2023, 12, 4840 4 of 16

Honest validator: This is also a cloud provider, unless it validates the result from the
SMPC nodes, thus guaranteeing the computation’s correctness.

Users

Healthcare Center

Insurance Company Cloud Provider #1

Cloud Provider #x Honest Validator

② Shares of the

inputs

TLS 1.2

② Shares of the

inputs

③
P

rep
ro

cess

③ Preprocess:

provide randomness

of validation

③ Preprocess:

provide randomness

of validation

④
C

o
m

p
u

te
⑤ Shares of

the outputs

⑤ Shares of

the outputs

⑥ Return the result after validation

⑥ Return the result after validation

⋮

Figure 1. System scheme with Secure Multiparty Computation.

3.2. Threat Model

As depicted in Figure 1, the scheme consists of four participants, including one honest
validator, which can be relied upon for its credibility. The remaining three participants,
however, may not be trustworthy. In this scenario, we assumed the presence of an adversary,
denoted as A, who may gain access to data outside of the honest validator.

Amay launch an attack on the cloud to obtain encrypted data stored by users there.
Similarly, A can obtain encrypted data from all parties by eavesdropping the network
communication link. The worst-case scenario is that A may be able to collaborate with
other participants to deduce users’ private information from the ciphertext. Security and
efficiency will be realized through the proposed protocol to address these concerns in
this system.

4. Preliminaries

In this section, we introduce some crucial notations, define the secret-sharing primitive,
and give a basic overview of the SPDZ protocol, the Pedersen commitment, and non-
interactive zero-knowledge proofs.

Notions: The protocol we present for the health insurance scenario in this paper
considers arithmetic circuits over p-order fields, where p is a large Sophie Germain prime,
that is q = 2p + 1 is also a prime. Zp refers to the field {0, . . . , p− 1}; Z∗p refers to Zp\{0} =
{1, . . . , p− 1}. We claim that an element g of a cyclic group G is a generator of this group
only if ∀x ∈ G, ∃a satisfies ga = x. We write 〈x〉i to denote the share of value x in the
original SPDZ protocols and use [x]i to denote the share of the validation phase x.

We use Pi ∈ P = {P1, . . . ,Pn} to identify a compute party (i.e., a server in the
client–server model) and use P I

i ∈ P I =
{
P I

1 , . . . ,P I
m
}

to identify an input party (i.e., a
client). We use C ⊆ P for the set of statically corrupted parties and H = P \ C for the
setting of honest parties. The input side P I

i can also be statically corrupted, but all our
results are independent of the exact set of corrupted input sides C .

4.1. The SPDZ Protocol

SDPZ is a state-of-the-art SMPC protocol, which operates on secret-sharing principles,
enabling joint computation of arithmetic circuits. It allows shareholders to compute linear
functions of secret inputs while ensuring that they learn nothing beyond the final output of

Electronics 2023, 12, 4840 5 of 16

those functions. Moreover, SPDZ secret sharing exhibits homomorphic properties, which
means that addition operations can be performed on the shares without revealing the
underlying values. To illustrate this, suppose X and Y are shared as x1, x2 and y1, y2,
respectively, where X = ∑ixi mod p and Y = ∑iyi mod p for some prime p. In that case,
(x1 + x2) and (y1 + y2) will also be shares of (X + Y). The SPDZ protocol operates in two
phases: an offline preprocessing phase, which generates the necessary raw materials, and
an online evaluation phase, which executes the circuit.

Offline phase: This utilizes the Somewhat Homomorphic Encryption (SHE) [30] scheme
to generate an ample supply of triples that can be used in multiplication operations based
on Beaver’s method [31]. For instance, to compute 〈xy〉, given some 〈x〉 and 〈y〉, it is
necessary to possess three secret-sharing values called a triple: 〈a〉, 〈b〉, and 〈c〉, where
c = ab. It is worth noting that this phase can generate as many triples as required in
advance, independent of the input data and function to be computed.

Besides, in the primitive SPDZ protocol, a global private key denoted by α is gener-
ated during the offline phase. This key serves as a Message Authentication Code (MAC)
and is utilized by the participating nodes to verify the “correctness” of the computation
results. Notably, α is distributed secretly among the nodes, such that α = ∑iαi and each
node possesses αi. Unfortunately, despite its efficacy in guaranteeing the integrity and
authenticity of transmitted messages, MACs alone cannot verify the results’ correctness.

Online phase: The online phase evaluates the function. Some operations on shares, like
addition or multiplication by a constant, can be performed without communication among
computation nodes. Then, we define a share of x as

〈x〉 = {(x1, . . . , xn), (δ(x)1, . . . , δ(x)n)}

where x = ∑n
i=1xi and α · x = ∑n

i=1δ(x)i. Moreover, we define

〈x〉+ 〈y〉 = {(x1 + y1, . . . , xn + yn), (δ(x)1 + δ(y)1, . . . , δ(x)n + δ(y)n)}
〈x〉 · s = {(x1 · s, . . . , xn · s), (δ(x)1 · s, . . . , δ(x)n · s)}

〈x〉+ s = {(x1 + s, x2, . . . , xn), (δ(x)1 + α1 · s, . . . , δ(x)n + αn · s)}

where y = ∑n
i=1yi and s is a constant. When opening a shared value 〈x〉, parties first

broadcast their shares xi and compute x. To ensure that x is correct, they then check the
MACs by committing to and opening δ(x)i − x · αi and checking that these shares sum up
to zero.

4.2. The Pedersen Commitment

Considering the linear nature of the existing SPDZ framework, our proposal entails
leveraging a Pedersen commitment [25] scheme as a means of validating the correctness
of the computation results. Let g and h be elements of G such that nobody knows logg h.
When the protocol is initialized, these elements should be chosen in the offline phase. When
the committer commits himself/herself to an x ∈ Zp, the commitment function chooses
r ∈ Zp at random and computes

W(x, r) = gxhr ∈ G.

Such a commitment can be later revealed by x and r. It is straightforward to prove
thatW(x, r) indicates no information about x and that the committer opens a commitment
to x as x

′ 6= x unless he/she can find logg h. Thus, we can say the Pedersen commitment
scheme is hiding and binding.

4.3. Non-Interactive Zero-Knowledge Proofs

To achieve the audibility property in the offline phase of our proposed protocol, we
utilized efficient Non-Interactive Zero-Knowledge Proofs (NIZKPs) [32]. This is a two-party
protocol between a prover and a verifier, where the prover convinces the verifier that a
statement is accurate and the verifier learns nothing beyond the claim statement. It can be
expressed as follows:

Electronics 2023, 12, 4840 6 of 16

(1) The prover chooses t1, t2 ∈ Zn, then computes T = gt1 ht2 and sends T to the verifier.
(2) The verifier chooses c ∈ Zn and sends c to the prover.
(3) After receiving c, the prover calculates s1 = t1 + cx mod φ(n) and s2 = t2 + cr mod

φ(n) and sends s1, s2 to the verifier.
(4) Finally, the verifier checks Tcc = gs1 hs2 mod φ(n).

The prover proves knowledge of an element x and decommitment value r such that
Com = gxhr mod n.

5. Our Scheme

In this section, we will provide a detailed description of our scheme.

5.1. Overview

As shown in Figure 1, we designed a novel and efficient scheme to combine private
information about users in healthcare centers and insurance companies to make valuable
decisions while validating the correctness of decision-making results. The scheme is
based on the SPDZ protocol and Pedersen commitments and is divided into offline and
online phases. The offline phase primarily provides the necessary preprocessing and
information exchange for the subsequent online computation phase and generates the
required parameters for validation. The online phase enables the participants to securely
compute the decision results together, without revealing their respective private inputs
and ultimately returns the results to HV for correctness validation. The decision-making
algorithm used in the online computation phase is derived from real-world applications,
which will be described in detail in the last subsection of this section.

Online phase: In this phase, SMPC nodes carry out the computational steps and
obtain the required decision-making results while protecting privacy. However, to validate
the results, modifying the shared values in the original SPDZ protocol with Pedersen
commitments is essential. On the other hand, we assumed that there is a transcript ε on
the HV to store the communication data sent by the computational nodes, and we used
Algorithm 1 to keep an eye on all values needed for validation.

Algorithm 1: Store_Load—algorithm for storing and loading message on the
transcript ε.

Input:
(tag, i, msg)→ The communication data sent by SMPC nodes
N ∈ Z+ → The number of SMPC nodes
Output:
(tag, i, msg) or (a)→ The data to be validated or the error flag

1 // store message on the transcript ε
2 for j = 0 to N − 1 do
3 store (tag, i, msg) on ε;
4 end
5 // load message on the transcript ε
6 foreach loadmsg do
7 if (tag, i) on ε then
8 load (msg) to HV for validation;
9 else

10 return a;
11 end
12 end

Offline phase: As the name suggests, this phase can be completed in advance, allowing
it to generate the necessary randomness for the online computation phase. For example,
it can createsecret keys for message authentication codes, ample multiplication triples,

Electronics 2023, 12, 4840 7 of 16

commitment parameters required for result validation, etc. These preprocessing and
generation of necessary parameters in the offline phase significantly enhance the efficiency
of online computation. The SMPC nodes run the offline phase of the protocol, preparing
all correlated randomness for the online phase, including some parameters necessary for
the validator.

5.2. Online Phase

To enforce the validation of the output, it is essential to modify the shared values in
the original SPDZ protocol. Specifically, we propose altering the inputs, opened values,
and outputs of the computational nodes at the point of their commitment. These modified
values are then transmitted to the transcript ε on the HV, where the correctness of all
intermediate steps can be verified. The Pedersen commitment scheme is information-
theoretically hiding during the whole computation process. When we open a Pedersen
commitmentW(x, xr), we reconstruct both x and xr, and the HV can check that it is correct.

Let x, xr ∈ F, g, h ∈ G, and then, we define the new way to represent shared value x
with a Pedersen commitment as

[x] = {〈x〉, 〈xr〉,W(x, xr)},

where 〈x〉 is a representation of x as introduced in Section 4.1. Similarly, with this new
linear representation, we can perform the same operations linearly as in Section 4.1. We
can still employ Beaver’s circuit randomization technique for the multiplication of [x] and
[y] since the representation is linear.

Given that operations in the online phase depend on multiplication triples and the
randomness required for the validation phase, we define the functionality Fo f f line that
describes the behavior and output of the preprocessing. In general, Fo f f line must perform
the following: (1) establish an additively secret-sharing MAC key α; (2) generate random
[xr] shared values to be used during Input; (3) generate [a, b, c] shared Beaver triples for
every multiplication to be performed in the online phase.

In Figure 2, we present the protocol of the online phase. It uses Fo f f line for the offline
phase and the transcript ε for all communication.

At the beginning step Prepare, the parties P generate the parameters g, h of the
Pedersen commitment via a Common Reference String (CRS), establish the secret shared
MAC key α, as well as produce views for random triples a, b, c, where c = a · b. Once the
offline phase is called to obtain the initial randomness, a new input-independent view
[r]i can be utilized to generate the values for the Input step. Each party P I

i ∈ P I submits
a value xi ∈ F to the computation, where each P I

i uses the new [r]i to secretly open it.
Then, each can check the correctness of the commitment on it and use mi = xi − ri to mask
his/her input.

Similarly, in Compute, the provided triples ([a], [b], [c]) will be used in the computation.
They are used to multiply with linear operations as follows:

[x · y] = [c] + σ · [b] + τ · [a] + σ · τ.

[σ] = [x]− [a] and [τ] = [y]− [b] are opened values. Other linear operations (addition,
subtraction, or with publicly known constants) can be performed locally. The last operation
left for the step is outputting the results. Here, we ran the MAC check to verify the result y
and its correlated y; thus, the parties can open the output and send the result to transcript ε
pending further validation.

In the final step Validate, the validator HV will execute the calculation process gate
by gate as was performed by Pi. For the records on the transcript ε, the HV checks every
opened value. When this is performed, the result of the computation and the commitment
of [y] will finally be checked for correctness against the views on ε.

Electronics 2023, 12, 4840 8 of 16

Π𝑂𝑛𝑙𝑖𝑛𝑒

Assume that each party 𝒫𝑖 can obtain validated randomness and triples from ℱ𝑜𝑓𝑓𝑙𝑖𝑛𝑒.

1. Prepare: Parties choose commitment parameters 𝑔, ℎ ∈ 𝔾 at random via Common Reference

String. Then send them to ℱ𝑜𝑓𝑓𝑙𝑖𝑛𝑒, and get the shares 𝛼𝑖 , sufficient Input 𝑟 and Triples

𝑎 , 𝑏 , 𝑐 . If ℱ𝑜𝑓𝑓𝑙𝑖𝑛𝑒 return ⊣, abort.

2. Input: Each party 𝒫𝑖
𝐼 ∈ 𝒫𝐼 inputs a value 𝑥𝑖 ∈ 𝔽, and then each 𝒫𝑖

𝐼 ∈ 𝒫𝐼, 𝒫𝑖 ∈ 𝒫 do the same

operations:

– Let 𝑟 𝑖 be a new random value, and it is opened as 𝑟𝑖, ҧ𝑟𝑖 only to 𝒫𝑖
𝐼. 𝐶𝑜𝑚𝑟𝑖 is the

commitment of 𝑟 𝑖 on the transcript 휀. 𝒫𝑖
𝐼 check that 𝐶𝑜𝑚𝑟𝑖 = 𝒲(𝑟𝑖, ҧ𝑟𝑖). If not, abort.

– Then 𝒫𝑖
𝐼 ∈ 𝒫𝐼 computes 𝑚𝑖 = 𝑥𝑖 − 𝑟𝑖 and sends to all 𝒫𝑖 and the 휀.

– All 𝒫𝑖 ∈ 𝒫 compute 𝑥𝑖 = 𝑟𝑖 +𝑚𝑖 locally.

3. Compute: There are two basic operations in the online phase, and other operations can be varied

from these two ones.

a. Add: Given two values 𝑥 , 𝑦 with corresponding tags 𝑡𝑎𝑔𝑥 , 𝑡𝑎𝑔𝑦.

– Each party 𝒫𝑖 ∈ 𝒫 computes 𝑧 = 𝑥 + 𝑦 locally, and assigns a new tag 𝑡𝑎𝑔𝑧 to it.

b. Multi: Let 𝑥 and 𝑦 are multiplied with tags 𝑡𝑎𝑔𝑥 , 𝑡𝑎𝑔𝑦. It is inevitable to use the

multiplication triple (𝑎 , 𝑏 , 𝑐) where 𝑐 = 𝑎 ∙ 𝑏.

– All parties compute 𝜎 = 𝑥 − 𝑎 and 𝜏 = 𝑦 − 𝑏 .

– Then they reconstruct 𝜎, ത𝜎, 𝜏, ҧ𝜏 in public and send these values to 휀.

– Each 𝒫𝑖 ∈ 𝒫 locally computes 𝑧 = 𝑐 + 𝜎 ∙ 𝑏 + 𝜏 ∙ 𝑎 + 𝜎 ∙ 𝜏, and assigns a new tag

𝑡𝑎𝑔𝑧 to it.

c. Result: All parties open the output 𝑦 (maybe 𝑦 is the output in the case of addition,

multiplication or other combinations).

– Parties do MACs check, compute 𝛼 ∙ 𝑦 − 𝛿 𝑡 = 0 and 𝛼 ∙ ത𝑦 − 𝛿 ത𝑦 = 0. If not, abort.

– Then parties open the output 𝑦 and send it to 휀.

4. Validate: For each gate in the calculation process, HV do the following operations:

– The HV adds 𝑥 (with tag 𝑡𝑎𝑔𝑥) and 𝑦 (with tag 𝑡𝑎𝑔𝑦) to 𝑧 (with a new tag 𝑡𝑎𝑔𝑧). Set

𝐶𝑜𝑚𝑡𝑎𝑔𝑧 = 𝐶𝑜𝑚𝑡𝑎𝑔𝑥 ∙ 𝐶𝑜𝑚𝑡𝑎𝑔𝑦.

– The HV multiplies 𝑥 and 𝑦 to 𝑧 with sufficient random values 𝑎 , 𝑏 , 𝑐 , 𝜎 , 𝜏

(with corresponding respective tag). Set

𝐶𝑜𝑚𝑡𝑎𝑔𝑧 = 𝐶𝑜𝑚𝑡𝑎𝑔𝑐 ∙ 𝐶𝑜𝑚𝑡𝑎𝑔𝑏
𝜎 ∙ 𝐶𝑜𝑚𝑡𝑎𝑔𝑎

𝜏 ∙ 𝒲(𝜎 ∙ 𝜏, 0),

and then check 𝐶𝑜𝑚𝑡𝑎𝑔𝑥 = 𝐶𝑜𝑚𝑡𝑎𝑔𝑎 ∙ 𝒲(𝜎, ത𝜎) and 𝐶𝑜𝑚𝑡𝑎𝑔𝑦 = 𝐶𝑜𝑚𝑡𝑎𝑔𝑏 ∙ 𝒲(𝜏, ҧ𝜏). If

not, abort.

– Let 𝑦 be the output and 𝐶𝑜𝑚𝑦 be the commitment for the output value 𝑦 . If

𝐶𝑜𝑚𝑦 = 𝒲(𝑦, ത𝑦), return 𝑦 to all 𝒫𝑖
𝐼. Otherwise, return ⊣.

Figure 2. Protocol ΠOnline.

5.3. Offline Phase

As described above, the offline phase has to produce views of secure MAC key α,
views of Beaver triples, and a masked input m.

We reused a homomorphic encryption scheme like Damgård et al. in [10] to achieve
these goals. Let S = (KeyGen, Enc, Dec) be such a scheme. It must support the evaluation
of circuits with polynomially many additions and one homomorphic multiplication. It
should also facilitate distributed vital generation. Each participant obtains a share of the
secret decryption key in this process, while all parties possess the public encryption key.
Then, the secret-sharing decryption key will be utilized for distributed decryption, which
involves processing a ciphertext and distributing the resulting plaintext to each party
involved. Here, each participant can employ NIZKPs to guarantee the correctness and
security of scheme S .

The first step is to generate a secret-sharing MAC key α, which is used to calculate the
product with the input shared value and, then, Reshare the result. As shown in Algorithm 2,
it is a functionality for distributed MAC key generation. Its result is a ciphertext, and we can
learn the value by using distributed decryption in S . However, we really need a [x]-shared

Electronics 2023, 12, 4840 9 of 16

value. A sub-protocol ΠReshare (shown in Algorithm 3) can produce a ciphertext as a plain
[x]-shared value.

Algorithm 2: MacKeyGen—algorithm for generating a secret-sharing MAC key.
Input:
(pk, 〈sk〉i)→ The public encryption key and the sharing of the decryption key for
the SHE scheme S
N ∈ Z+ → The number of SMPC nodes
Output:
α ∈ Zp → The secret MAC key

1 for j = 0 to N − 1 do
2 // randomly choose a number
3 αi = random(Zp);
4 // compute the ciphertext along with an NIZKPs
5 eαi = Enc(pk, αi) and ceαi

= NIZKPs(eαi);
6 send (eαi , ceαi

) to all other parties and the transcript ε;
7 end
8 when receiving ciphertexts and the corresponding NIZKPs from all other parties
9 foreach (eαi , ceαi

) do
10 if c−1

eαi
= eαi then

11 // use additive homomorphic properties of the scheme S
12 eα = ∑N−1

i=0 eαi ;
13 else
14 return a;
15 end
16 end

With the algorithm Reshare, similarly, we can easily generate a [x]-shared random
value. Now, the rest of the preprocessing phase is how to generate Beaver triples. Like the
above functionality, we assumed that each party Pi ∈ P already knows the public encryp-
tion key pk and has an additive secret sharing of the decryption key sk. Simultaneously,
parameters (g, h) for the Pedersen commitments are known. The parties are assumed to
have run the algorithm MacKeyGen. Thus, each party has an additive secret sharing of the
MAC key α and an encryption eα. Now, we briefly describe the functionality GenTriples:

(1) Using the same method in the algorithm Reshare, each party Pi can hold two random
[x]-shared values [a] and [b]. Each party calculates ciphertexts eai = Enc(pk, 〈a〉i) and
ebi

= Enc(pk, 〈b〉i) together with the NIZKPs of both. Then, they broadcast eai , ebi
,

and the NIZKPs to all other parties and ε. When each receives the ciphertexts and the
corresponding NIZKPs from all parties, check all the NIZKPs. If cheaters exist, abort.

(2) Utilizing the additive and multiplicative homomorphic properties of the scheme S ,
all parties compute: (1) a ciphertext ea such that a = ∑n

i=1ai; (2) a ciphertext eb such
that b = ∑n

i=1bi; (3) an encryption ea·b of the product of a and b.
(3) The parties run the algorithm Reshare on ea·b, resulting in a secret sharing [c], where

c = a · b.

Finally, we can assemble these components to obtain the offline protocol ΠO f f line
(shown in Figure 3). Steps 1–4 utilize the algorithms described above to generate the
needed randomness for the online computation. Likewise, these generated random values
need to be validated. Benefiting from the fact that the corresponding commitments and
NIZKPs were generated at each phase and sent to ε, the HV can validate their correctness
in Validate.

Electronics 2023, 12, 4840 10 of 16

Algorithm 3: Reshare—algorithm for producing a plain [x]-shared value.
Input:
(pk, 〈sk〉i)→ The public encryption key and a sharing of the decryption key for
the SHE scheme S
(g, h)→ The generators of Pedersen commitments
(αi, eαi)→ A share of the MAC key and the corresponding encryption eα

N ∈ Z+ → The number of SMPC nodes
Output:
[x]i = {〈x〉i, 〈xr〉i, (com1, . . . , comN)} → Each party holds an [x]-shared value

1 for j = 0 to N − 1 do
2 fi, fi = random(Zp);
3 e fi

= Enc(pk, fi), com fi
=W(fi, fi) and c fi

= NIZKPs(fi);
4 send (e fi

, com fi
, ce fi

) to all other parties and the transcript ε;

5 end
6 when receiving the ciphertexts and the corresponding NIZKPs from all other parties
7 foreach (e fi

, ce fi
) do

8 if c−1
e fi

= e fi
then

9 e f = ∑N−1
i=0 e fi

, ex+ f = ∑N−1
i=0 e(x+ f)i

;
10 else
11 return a;
12 end
13 end
14 to decrypt ex+ f , all parties learn the value x + f
15 rx+ f = random(Zp), comx+ f =W(x + f , rx+ f);
16 P0 sets 〈x〉0 = x + f − x0, Dec〈x〉0 = Decx+ f − Dec0;
17 com0 = comx+ f · com−1

f0
;

18 for j = 1 to N − 1 do
19 〈x〉j = − f j, Dec〈x〉j = −Decj;

20 comj = com−1
f j

;

21 end
22 for j = 0 to N − 1 do
23 // use the multiplicative homomorphic properties of S
24 eδx = ∑N−1

i=0 eαi · x;
25 end

Π𝑂𝑓𝑓𝑙𝑖𝑛𝑒

Assume that generators 𝑔, ℎ for the Pedersen commitment scheme are known.

1. Prepare: The parties run distributed key generation of scheme 𝒮 to obtain a shared encryption key

pair (𝑝𝑘, 𝑠𝑘), where 𝑝𝑘 is public available and 𝑠𝑘 is an additively secret-shared key among all

parties.

2. GenMacKey: The parties run Π𝑀𝑎𝑐𝐾𝑒𝑦𝐺𝑒𝑛 to obtain a secret-shared MACs key 𝛼 along with its

ciphertext 𝑒𝛼.

3. Input: The parties run Π𝑅𝑒𝑠ℎ𝑎𝑟𝑒 to generate a random 𝑥 -shared value for each input.

4. Triples: The parties run Π𝐺𝑒𝑛𝑇𝑟𝑖𝑝𝑙𝑒𝑠 to generate 𝑥 -shares of Beaver triples for each multiplication.

5. Validate: For every encryption 𝑒, commitment 𝑐𝑜𝑚 and corresponding NIZKPs on the transcript 휀,

HV checks the correctness of NIZKPs and verifies the validity between 𝑐𝑜𝑚 and 𝒲(𝑥, ҧ𝑥). If an

error message exists, return ⊣.

Figure 3. Protocol ΠO f f line.

Electronics 2023, 12, 4840 11 of 16

5.4. Decision-Making Algorithm

Based on the protocol above, Algorithm 4 is proposed to describe the decision-making
algorithm, which is a case in the health insurance scenario. We used it as the basis of the
experimental phase.

Algorithm 4: Dec_Make—algorithm for making a health insurance decision
using SMPC.

Input:
M =

[
mij

]
∈ Rr×4 → The medical records’ matrix with size r× 4

N =
[
nij

]
∈ Rr×8 → The insurance information matrix with size r× 8

Output:
A =

[
aij

]
∈ Rn×9 → The insurance decision outcome matrix with size n× 9

1 initialize a matrix T =
[
tij
]
∈ Rr×9 with 0s;

2 for each row mi, ni(1 ≤ i ≤ n) ∈ M, N do
3 // first identify some specific diseases
4 while spe_dis == true do
5 ti×1 = 1;
6 end
7 // other decision criteria
8 while com_sit == ture do
9 ti×j=1;

10 end
11 . . .
12 end
13 // process all the obtained results, and then, derive a unique result based on priority
14 for i = 0 to n− 1 do
15 for j = 0 to 8 do
16 if ti×j == 1 then
17 ai×j = 1;
18 continue;
19 end
20 end
21 end

This algorithm’s inputs are two two-dimensional matrices from the medical records
and insurance information, and the output is a matrix with size n× 9 since there are nine
different decision outcomes. Firstly, the algorithm verifies if specific diseases exist in the
input matrices. Then, it applies other decision rules to modify the corresponding values
in the output matrix. It is important to note that not all rules are explicitly listed in the
algorithm. Lastly, multiple modifications can occur in the result matrix during numerous
judgments, so the algorithm identifies the first changed value in each row. Based on this
information, the algorithm generates a new result matrix, yielding the correct decision
outcome.

6. Analysis and Evaluation

In this section, we first provide a brief security analysis of our scheme. Then, we carry
out a set of experiments to evaluate our decision-making scheme.

6.1. Security Analysis

Theorem 1. Assuming that the Discrete Logarithm Problem (DLP) is hard in the Pedersen com-
mitment group G and non-interactive zero-knowledge proofs, our proposed protocol is secure against
up to n− 1 parties’ collusion attack and guarantees the correctness validation.

Electronics 2023, 12, 4840 12 of 16

Proof. During the execution of the online phase protocol, we assumed there exists A
controlling the participants. For the Prepare, Input, and Compute steps, since at most n− 1
shares of the set for each value are uniformly random and do not reveal any information
about the secret shares, it is impossible that A could tamper with the real transcript ε.
During the output of Result, due to the information-theoretic hiding of our scheme, any
of the values opened by the dishonest parties will be identified if the MAC checking fails.
But, this happens with the possibility at most 2/p as proven in [9]. In the Validate step,
assume that A changed the output y with another value that must open the commitment
comy correctly. But, in fact, we already obtained the correct commitmentW(y, ȳ) for y, and
A can only calculate logg h. It is impossible to break based on the DLP.

Concerning the offline phase, the security of the Prepare, GenMacKey, Input, and
Triples steps were proven exhaustively in [9]. Regarding the Validate step, it is also
impossible for adversary A to break the commitments and NIZKPs since they are based on
the difficulty of the DLP. Therefore, our protocol can be secure against collusion attacks by
up to n− 1 parties and guarantees correctness validation.

6.2. Setup and Experimental Datasets

We ran our experiments on a laptop with an Intel(R) Core(TM) i5-12500H 2.50 GHz
CPU, 16.0 GB RAM, and WSL 2 with the Ubuntu-22.04.2 LTS system in the LAN setting.
The programming tools were Clion and Pycharm with C++ 17 and Python 3.10. We used
a 128 bit prime as the computational modulus because this is a common choice, and the
(statistical) security parameter was set to 40.

We collected two real-world datasets to conduct our experiments: patient medical
records and insured person information. Tables 1 and 2 describe the variable names, types,
and corresponding examples for these two datasets, respectively.

Table 1. The description of the medical center dataset.

Variable Name Variable Type Example

personnel ID numerical 90209673
disease code categorical I10.X02
disease name categorical hypertension
total fees numerical 7950.88
reimbursement amount numerical 7189.04
settlement date numerical 16 March 2022 10:06

Table 2. The description of the insurance company dataset.

Variable Name Variable Type Example

personnel ID numerical 90209673
age numerical 55
job hazard category categorical high
overweight condition categorical moderate
annual income numerical 100,000
insurance premium numerical 5000
insurance coverage numerical 100,000
insurance type categorical hospitalization

6.3. Performance Evaluation

We compared the concrete performance of this paper’s decision-making scheme with a
normal one, i.e., choosing an arbitrary SMPC node as the validator without the HV (denoted
as without-HV). To obtain the runtime of our solution, we implemented a benchmark that
emulates both the online and offline phases. Notably, although the number of SMPC nodes
had been set to 2 in the previous framework diagram, for this benchmark, we shall compare

Electronics 2023, 12, 4840 13 of 16

the performance under different computational nodes, and their size in the range of 2–6
was set. For the experimental data to be statistically meaningful, we conducted the same
experiment several times and took the mean values.

For the online phase, as illustrated in Figure 4, the runtime increased at a linear rate
as the number of SMPC nodes grew, with the scheme without-HV or our scheme. When
calculating in two nodes, it took approximately 19 ms to run the decision-making algorithm
once using our proposed online protocol, and for without-HV, it took about 22 ms. It can
be seen that, with an external validator to perform the verification work, the efficiency was
roughly 1.14-times higher than the scheme without-HV. The follow-up multiparty scheme
also remained at 1.1–1.2.

2 3 4 5 6

2 0

2 5

3 0

3 5

run
tim

e (m
s)

S M P C n o d e s

 w i t h o u t - H V
 o u r s

Figure 4. Time consumption for one-time online computation compared to the normal one without
the HV (denoted as “without-HV”). The size of the computational nodes were set in the range of 2–6,
and the runtime was measured in milliseconds.

Our primary concern in the preprocessing phase was the speed of triples’ generation
and ignoring the simultaneous generation of other examples such as squares (a, a2), in-
verses (a, a−1), and random bits. As shown in Figure 5, once the generated number was set
to 4096, the execution time of the program tended to grow as the number of participants
increased. For two parties, our proposed offline protocol took about 1.98 s. At the same
time, the scheme without-HV was close to 2.49 s, almost 1.3-times more, attributed to the
cumbersome verification and communication consumption.

2 3 4 5 6

2

4

6

8

1 0

1 2

run
tim

e (s
)

S M P C n o d e s

 w i t h o u t - H V
 o u r s

Figure 5. Time consumption for generating 4096 triples in the offline phase. Similarly, comparisons
were made with the “without-HV” scheme, where the number of computational nodes ranged from
2 to 6, and the time was measured in seconds.

We also considered that, in real-world applications, if several users’ decision-making
requests need to be processed simultaneously, then there should be support for batch
processing as well. Therefore, we prepared programs in an open-source platform to enable
parallel computation. As depicted in Figure 6, we can see that the time consumption of the

Electronics 2023, 12, 4840 14 of 16

calculation did not grow in a rather regular linear manner as the number of inputs increased
due to the parallelization, which somewhat improved the efficiency. Our experiments found
that the hardware used in this experiment can support simultaneous computation of up to
approximately 20,000 inputs at a time.

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0
0

2

4

6

8
run

tim
e (s

)

i n p u t v a l u e s p e r c l i e n t

 b a t c h c a l c u l a t i o n

Figure 6. Execution time for parallel computation with different numbers of inputs in a two-SMPC-
node setting.

Finally, as shown in Table 3, we gathered a set of meaningful metrics to display the
overall performance of our scheme compared with without-HV in a two-node setting.
We evaluated the disk consumption by the size of the compiled bytecode, transmission
data, and preprocessing data volume. These metrics demonstrated that our scheme was
acceptable for the disk consumption. In addition, the computation time of the two diverse
schemes was 19.121 ms and 21.667 ms, respectively. This shows that our solution is efficient
in terms of time consumption.

Table 3. Overall performance metrics of one-time online computation.

Type Performance Metrics Performance Data

complied bytecode 369 KB
communication round 80

our scheme transmission data 0.050504 MB
preprocessing data view 1562 triples + 3444 bit
computational time 19.2127 ms

complied bytecode 375 KB
communication round 94

without-HV transmission data 0.058192 MB
preprocessing data view 2124 triples + 4688 bit
computational time 21.667 ms

7. Conclusions and Future Work

In this paper, we first implemented an efficient decision-making scheme in the health
insurance scenario using Secure Multiparty Computation. We introduced a novel frame-
work diagram of our scheme by adding an external party (honest validator) to verify
the correctness of the results. We extended the original SPDZ protocol and involved the
Pedersen commitments to ensure correctness. Eventually, we implemented our scheme
in the open-source framework MP-SPDZ, and in terms of the experimental results, our
scheme was slightly more efficient than the ordinary one. In other words, it is feasible and
practical. In addition, our scheme applies to general cross-institutional financial scenarios.

Although the offline phase can be accomplished before the evaluation, it is indisputable
that the preprocessing of our solution was far worse than the original protocol. Especially
in scenarios involving fewer participants, the triple generation speed was relatively slower
than traditional approaches. Moreover, the time consumption of the online computation

Electronics 2023, 12, 4840 15 of 16

also increased exponentially as the number of inputs grew in parallel. So, how to tackle
the efficiency issue is what we need to solve desperately, and this is the direction of our
future work.

Firstly, since the SPDZ protocol utilizes a linear secret-sharing scheme, we could con-
template employing a more-efficient one, such as the lattice-based commitment scheme
BDLOP mentioned in [33]. It outperforms the Pedersen commitment scheme due to its lin-
ear homomorphic property, efficient ZKPs, and support for larger message space. Secondly,
another more-straightforward approach involves leveraging high-performance GPUs [34]
to enhance efficiency at the hardware level. Segregating computationally parallelizable
portions into different grids for simultaneous computation—for instance, generating triples
in the offline phase concurrently—might significantly augment the overall operational
efficiency of the entire protocol.

Author Contributions: Conceptualization, T.W.; data curation, T.W.; formal analysis, T.W.; investiga-
tion, T.W.; methodology, T.W.; project administration, L.Z.; software, T.W.; supervision, Z.L. and Z.H.;
visualization, T.W.; writing—original draft, T.W.; writing—review and editing, Z.L., Z.H. and L.Z. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Key R&D Program of China (2021YFB3100700),
the National Natural Science Foundation of China (62076125, 62032025, U20B2049, U20B2050,
U21A20467, 62272228, U22B2029), the Shenzhen Science and Technology Program (JCYJ2021032413481
0028, JCYJ20210324134408023), the Key R&D Program of Guangdong Province (2020B0101090002), the
Natural Science Foundation of Jiangsu Province (BK20200418), and the Shenzhen Virtual University
Park Support Scheme (YFJGJS1.0).

Data Availability Statement: All data underlying the results are available as part of the article and
no additional source data are required.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Pang, Z.H.; Fan, L.Z.; Guo, H.; Shi, Y.; Chai, R.; Sun, J.; Liu, G.P. Security of networked control systems subject to deception

attacks: A survey. Int. J. Syst. Sci. 2022, 53, 3577–3598. [CrossRef]
2. Murthy, S.; Bakar, A.A.; Rahim, F.A.; Ramli, R. A comparative study of data anonymization techniques. In Proceedings of the

2019 IEEE 5th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and
Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS), Washington, DC, USA, 27–29 May
2019; IEEE: New York, NY, USA, 2019; pp. 306–309.

3. Aggarwal, G.; Feder, T.; Kenthapadi, K.; Motwani, R.; Panigrahy, R.; Thomas, D.; Zhu, A. Approximation algorithms for
k-anonymity. J. Priv. Technol. 2005, 2005112001, 400.

4. Dwork, C. Differential privacy. In Proceedings of the Automata, Languages and Programming: 33rd International Colloquium,
ICALP 2006, Venice, Italy, 10–14 July 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1–12.

5. Li, C.; Yang, L.; Yu, S.; Qin, W.; Ma, J. SEMMI: Multiparty security decision-making scheme for linear functions in the internet of
medical things. Inf. Sci. 2022, 612, 151–167. [CrossRef]

6. Damgård, I.; Damgård, K.; Nielsen, K.; Nordholt, P.S.; Toft, T. Confidential benchmarking based on multiparty computation. In
Proceedings of the Financial Cryptography and Data Security: 20th International Conference, FC 2016, Christ Church, Barbados,
22–26 February 2016; Springer: Berlin/Heidelberg, Germany, 2017; pp. 169–187.

7. Kamm, L.; Willemson, J. Secure floating point arithmetic and private satellite collision analysis. Int. J. Inf. Secur. 2015, 14, 531–548.
[CrossRef]

8. Catrina, O.; Saxena, A. Secure computation with fixed-point numbers. In Proceedings of the Financial Cryptography and Data
Security: 14th International Conference, FC 2010, Tenerife, Canary Islands, 25–28 January 2010; Springer: Berlin/Heidelberg,
Germany, 2010; pp. 35–50.

9. Damgård, I.; Keller, M.; Larraia, E.; Pastro, V.; Scholl, P.; Smart, N.P. Practical covertly secure MPC for dishonest majority–or:
Breaking the SPDZ limits. In Proceedings of the Computer Security–ESORICS 2013: 18th European Symposium on Research in
Computer Security, Egham, UK, 9–13 September 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1–18.

10. Damgård, I.; Pastro, V.; Smart, N.; Zakarias, S. Multiparty computation from somewhat homomorphic encryption. In Proceedings
of the Advances in Cryptology–CRYPTO 2012: 32nd Annual Cryptology Conference, Santa Barbara, CA, USA, 19–23 August
2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 643–662.

11. Keller, M. MP-SPDZ: A versatile framework for Multiparty computation. In Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security, Virtual Even, USA, 9–13 November 2020; pp. 1575–1590.

http://doi.org/10.1080/00207721.2022.2143735
http://dx.doi.org/10.1016/j.ins.2022.08.102
http://dx.doi.org/10.1007/s10207-014-0271-8

Electronics 2023, 12, 4840 16 of 16

12. Yao, A.C.C. How to generate and exchange secrets. In Proceedings of the 27th Annual Symposium on Foundations of Computer
Science (Sfcs 1986), Washington, DC, USA, 27–29 October 1986; IEEE: New York, NY, USA, 1986; pp. 162–167.

13. Goldreich, O. Secure multi-party computation. Manuscript. Prelim. Vers. 1998, 78.
14. Goldwasser, S. Multi party computations: Past and present. In Proceedings of the Sixteenth Annual ACM Symposium on

Principles of Distributed Computing, Santa Barbara, CA, USA, 21–24 August 1997; pp. 1–6.
15. Cramer, R.; Damgård, I.; Escudero, D.; Scholl, P.; Xing, C. SPDZ2k : Efficient MPC mod 2k for Dishonest Majority. IACR Cryptol.

ePrint Arch. 2018, 482.
16. Keller, M.; Orsini, E.; Scholl, P. MASCOT: Faster malicious arithmetic secure computation with oblivious transfer. In Proceedings

of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016;
pp. 830–842.

17. Keller, M.; Pastro, V.; Rotaru, D. Overdrive: Making SPDZ great again. In Proceedings of the Advances in Cryptology–
EUROCRYPT 2018: 37th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Tel Aviv,
Israel, 29 April–3 May 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 158–189.

18. Dong, X.; Randolph, D.A.; Weng, C.; Kho, A.N.; Rogers, J.M.; Wang, X. Developing high performance Secure Multiparty Computation
protocols in healthcare: A case study of patient risk stratification. AMIA Summits Transl. Sci. Proc. 2021, 2021, 200. [PubMed]

19. Garofalakis, M.N. Privacy Preserving Medical Data Analytics Using Secure Multi Party Computation. An End-to-End Use Case.
Ph.D. Thesis, University of Athens, Athens, Greece, 2018.

20. Bogdanov, D.; Talviste, R.; Willemson, J. Deploying Secure Multiparty Computation for Financial Data Analysis: (Short Paper).
In Proceedings of the Financial Cryptography and Data Security: 16th International Conference, FC 2012, Kralendijk, Bonaire, 27
Februray–2 March 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 57–64.

21. Cohen, J.D.; Fischer, M.J. A robust and verifiable cryptographically secure election scheme. In Proceedings of the 26th Annual
Symposium on Foundations of Computer Science (sfcs 1985), Portland, OR, USA, 21–23 October 1985; IEEE Computer Society:
Washington, DC, USA, 1985; pp. 372–382.

22. Adida, B. Helios: Web-based open-audit voting. In Proceedings of the 17th Conference on Security Symposium, San Jose, CA,
USA, 28 July–1 August 2008; pp. 335–348.

23. Chaum, D.; Ryan, P.Y.; Schneider, S. A practical voter-verifiable election scheme. In Proceedings of the Computer Security–
ESORICS 2005: 10th European Symposium on Research in Computer Security, Milan, Italy, 12–14 September 2005; Springer:
Berlin/Heidelberg, Germany, 2005; pp. 118–139.

24. Baum, C.; Damgård, I.; Orlandi, C. Publicly auditable Secure Multiparty Computation. In Proceedings of the Security and Cryp-
tography for Networks: 9th International Conference, SCN 2014, Amalfi, Italy, 3–5 September 2014; Springer: Berlin/Heidelberg,
Germany, 2014; pp. 175–196.

25. Pedersen, T.P. Non-interactive and information-theoretic secure verifiable secret sharing. In Proceedings of the Advances in
Cryptology—CRYPTO’91: Proceedings, Brighton, UK, 8–11 April 2001; Springer: Berlin/Heidelberg, Germany, 2001; pp. 129–140.

26. Cunningham, R.; Fuller, B.; Yakoubov, S. Catching MPC cheaters: Identification and openability. In Proceedings of the Information
Theoretic Security: 10th International Conference, ICITS 2017, Hong Kong, China, 29 November–2 December 2017; Springer:
Berlin/Heidelberg, Germany, 2017; pp. 110–134.

27. Kanjalkar, S.; Zhang, Y.; Gandlur, S.; Miller, A. Publicly Auditable MPC-as-a-Service with succinct verification and universal
setup. In Proceedings of the 2021 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), Vienna, Austria,
6–10 September 2021; IEEE: New York, NY, USA, 2021; pp. 386–411.

28. Graf, M.; Küsters, R.; Rausch, D. AUC: Accountable Universal Composability. In Proceedings of the 2023 IEEE Symposium on
Security and Privacy (SP), San Francisco, CA, USA, 22–24 May 2023; IEEE: New York, NY, USA, 2023; pp. 1148–1167.

29. Bautista, O.G.; Akkaya, K.; Homsi, S. ReplayMPC: A Fast Failure Recovery Protocol for Secure Multiparty Computation
Applications using Blockchain. In Proceedings of the 2023 IEEE International Conference on Smart Computing (SMARTCOMP),
Nashville, TN, USA, 26–29 June 2023; IEEE: New York, NY, USA, 2023; pp. 124–132.

30. Gentry, C. Fully homomorphic encryption using ideal lattices. In Proceedings of the Forty-First Annual ACM Symposium on
Theory of Computing, Bethesda, MD, USA, 31 May–2 June 2009; pp. 169–178.

31. Beaver, D. Efficient multiparty protocols using circuit randomization. In Proceedings of the Advances in Cryptology—CRYPTO’91:
Proceedings 11, Santa Barbara, CA, USA, 11–15 August 1992; Springer: Berlin/Heidelberg, Germany, 1992; pp. 420–432.

32. Camenisch, J.; Stadler, M. Efficient group signature schemes for large groups. In Proceedings of the Advances in Cryptology—CRYPTO’97:
17th Annual International Cryptology Conference Santa Barbara, CA, USA, 17–21 August 1997; Springer: Berlin/Heidelberg, Germany,
1997; pp. 410–424.

33. Rivinius, M.; Reisert, P.; Rausch, D.; Küsters, R. Publicly accountable robust Multiparty computation. In Proceedings of the 2022 IEEE
Symposium on Security and Privacy (SP), San Francisco, CA, USA, 23–25 May 2022; IEEE: New York, NY, USA, 2022; pp. 2430–2449.

34. Watson, J.L.; Wagh, S.; Popa, R.A. Piranha: A GPU platform for secure computation. In Proceedings of the 31st USENIX Security
Symposium (USENIX Security 22), Boston, MA, USA, 10–12 August 2022; pp. 827–844.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://www.ncbi.nlm.nih.gov/pubmed/34457134

	Introduction
	Related Work
	System Model
	System Model
	Threat Model

	Preliminaries
	The SPDZ Protocol
	The Pedersen Commitment
	Non-Interactive Zero-Knowledge Proofs

	Our Scheme
	Overview
	Online Phase
	Offline Phase
	Decision-Making Algorithm

	Analysis and Evaluation
	Security Analysis
	Setup and Experimental Datasets
	Performance Evaluation

	Conclusions and Future Work
	References

