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Abstract: In recent years, there has been a significant increase in the demand for unmanned aerial
vehicle (UAV)-based monitoring systems to ensure proper emergency response during natural
disasters such as wildfires, hurricanes, floods, and earthquakes. This paper proposes a real-time
UAV monitoring system for responding to forest fires or floods. The proposed system consists of
a hardware part and a software part. The hardware configuration is an embedded camera board
mounted on the UAV, a Qualcomm QCS610 SoC with cores suitable for running deep learning-based
algorithms. The software configuration is a deep learning-based semantic segmentation model for
detecting fires or floods. To execute the model in real time on edge devices with limited resources,
we used a network slimming technique which generates a lightweight model with reduced model
size, number of parameters, and computational complexity. The performance of the proposed system
was evaluated on the FLAME dataset consisting of forest fire images and the FloodNet dataset
consisting of flood images. The experimental results showed that the mIoU of slimmed DeepLabV3+
for FLAME is 88.29%, and the inference speed is 10.92 fps. For FloodNet, the mIoU of the slimmed
DeepLabV3+ is 94.15%, and the inference speed is 13.26 fps. These experimental results confirm that
the proposed system is appropriate for accurate, low-power, real-time monitoring of forest fires and
floods using UAVs.

Keywords: unmanned aerial vehicle; real-time monitoring; forest fire detection; flood detection;
network slimming; embedded devices; semantic segmentation; Qualcomm SoC

1. Introduction

Recently, due to climate change, natural disasters such as fires, earthquakes, and
floods have occurred frequently, and their intensity is gradually increasing. These natural
disasters have caused substantial economic losses and threatened human life, animals,
and plants [1]. Early detection of forest fires or floods for proper emergency response is
essential to reduce the damage from natural disasters. Traditional approaches for detecting
forest fires or floods include setting up surveillance cameras or sending human patrols
to the areas where fires or floods have occurred. These approaches are time-consuming,
require considerable labor, and could be less effective in identifying forest fire or flood
situations [2]. On the other hand, unmanned aerial vehicles (UAVs) equipped with cameras
can be beneficial in discovering forest fires or floods in real time via on-board processing of
aerial images. For this reason, the demand for forest fire or flood monitoring systems using
UAVs is rapidly increasing.

A UAV system for wildfire or flood monitoring consists of hardware and software
parts: a suitable processor to enable the real-time operation of artificial intelligence (AI)
algorithms and a deep learning-based semantic segmentation algorithm to enable scene

Electronics 2023, 12, 4795. https://doi.org/10.3390/electronics12234795 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12234795
https://doi.org/10.3390/electronics12234795
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-7606-4356
https://orcid.org/0000-0002-4169-4358
https://orcid.org/0000-0003-4844-851X
https://doi.org/10.3390/electronics12234795
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12234795?type=check_update&version=2


Electronics 2023, 12, 4795 2 of 18

understanding of aerial images. First, processors that can be used for AI algorithms include
CPU (Central Processing Unit), GPU (Graphic Processing Unit), NPU (Neural Processing
Unit), FPGA (Field-Programmable Gate Arrays), and DSP (Digital Signal Processor).

A CPU is a general-purpose processor specialized in serial processing which sequen-
tially interprets and processes commands. This serial processing method makes it difficult
to quickly process large-scale operations used for deep neural networks (DNNs). On
the other hand, a GPU, which consists of thousands of cores, is a processor specialized
to quickly process large-scale data in parallel and is significantly more suitable for tasks
that iteratively perform the large amount of multiply–accumulate operations necessary to
execute DNNs. However, GPU systems such as servers are too expensive and not portable,
consume high power, and generate substantial heat. These shortcomings are significant
obstacles to implementing AI technology in edge devices.

An NPU, as a microprocessor specialized in the acceleration of DNNs, consumes
low power and improves resource utilization for executing DNNs compared to GPUs and
CPUs. FPGAs provide the ability to reconfigure the hardware to meet specific use case
requirements, and their power consumption is low. These factors make FPGAs especially
useful for implementing deep learning algorithms in embedded systems. However, they
are expensive and require considerable expertise to program the circuit. Lastly, a DSP
is an auxiliary processor specialized in processing numerical operations at high speed
and repeatedly performing multiply–accumulate operations [3], so it is appropriate for
accelerating the inference of DNNs in edge devices. Usually, a DSP is mounted on a
system-on-chip (SoC) along with a CPU and a GPU [4].

In this paper, we use an embedded camera device with Qualcomm’s QCS610 SoC as
the hardware of the UAV monitoring system. The QCS610 SoC is beneficial in terms of low
power, miniaturization, and commercialization and the Hexagon 685 DSP equipped in this
SoC is a specialized core to accelerate DNNs [5].

As software in a UAV monitoring system, DNN-based semantic segmentation net-
works are considerably helpful in understanding images of wildfires or floods. However,
despite their high performance, these networks require significant computational com-
plexity and inference time, so lightweight DNN models with fewer parameters and lower
computational complexity are needed for edge computing [6].

There are two ways to optimize DNN models: designing a lightweight network, and
removing redundancy of the deep network, such as network slimming [7]. The former is a
relatively simple method but has the inconvenience of having to redesign the architecture of
a lightweight network. The latter creates a lightweight network by removing unnecessary
filters (channels) or layers from deep networks with a proven high performance. This
approach makes it easy to use the architecture of the existing network without designing
a new one and can retain a high performance that is very close to that of the existing
network. This paper uses a network slimming technique to optimize a DNN-based semantic
segmentation network and then execute a lightweight model on a DSP.

This paper focuses on generating a lightweight semantic segmentation model and
porting it to Qualcomm’s QCS610 chip to propose a UAV system for real-time monitoring
of forest fires or floods. The main contribution of this paper is to reveal that network
slimming, semantic segmentation, and edge deployment are practically combined and
implemented on off-the-shelf hardware. To the best of our knowledge, in the field of disaster
monitoring, this paper provides the first study that shows that the combination of all three
elements can effectively operate on an off-the-shelf edge device. The experimental results
clearly demonstrate the feasibility of the proposed system on drones. In the experiments,
DeepLabV3 and DeepLabV3+ were used as semantic segmentation networks, and their
performance was evaluated on the FLAME and FloodNet datasets. In experimental results,
in the case of forest fires, the mIoU of the slimmed DeepLabV3 and V3+ was 83.32%
and 88.29%, respectively, and compared to the baseline models, there was almost no
performance degradation even if 90% of all channels of each model were removed. The
inference speed was 22.03 fps and 10.92 fps, respectively; the model size was 5.7 MB
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and 15.8 MB, and the GFLOPs was 4.73 and 38.21, respectively. In the case of floods, the
mIoU of the slimmed DeepLabV3 and V3+ was 93.69% and 94.15%, respectively. The
inference speed was 23.58 fps and 13.26 fps, respectively; the model size was 5.8 MB and
11.8 MB, and the GFLOPs was 4.26 and 26.01, respectively. The power consumption of
slimmed DeepLabV3+ was 0.034 mWh/inference for FLAME and 0.025 mWh/inference
for FloodNet. These experimental results demonstrate that the slimmed network can
accurately detect forest fires or floods in real time and at low power, even in embedded
devices, without performance degradation.

2. Related Works

This section describes studies related to real-time semantic segmentation for UAV-
based forest fire or flood monitoring systems and semantic segmentation network opti-
mization for edge computing. The proposed system is about implementing a real-time
monitoring system that detects floods or forest fires by applying semantic segmentation to
images using edge devices. Therefore, this section summarizes related research on detect-
ing floods or forest fires based on real-time semantic segmentation, detecting fires using
object detection or classification algorithms, and finally optimizing DNNs to implement on
edge devices.

2.1. Semantic Segmentation for Flood Detection

Safavi et al. [8] analyzed the suitability of state-of-the-art (SOTA) semantic segmen-
tation models for identifying disasters such as floods from images for the purpose of
UAV-based flood detection. To this end, they compared the performance of real-time and
non-real-time segmentation models on aerial imagery. The experiments were performed
on NVIDIA GeForce RTX 3090 GPU for training and evaluation, and the performance
was evaluated in terms of computational capacity (MAC), parameter size, inference time,
and accuracy. The experimental results showed that the real-time model using the U-Net
architecture with MobileNetV3 as a backbone of the encoder outperformed other models.
In [9], they compared the performance of existing real-time semantic segmentation models
for UAV-based flood detection. In the experiments, they measured the performance of
the models in terms of MAC, number of parameters, inference speed, and segmentation
accuracy on the RTX 3090 GPU. Hernández et al. [10] proposed a GPU-based edge com-
puting pipeline for a real-time flood detection system based on UAVs. They used three
devices from the NVIDIA Jetson family as portable GPUs and a combination model of
three segmentation network architectures and three backbone models for the semantic
segmentation network. The experimental results showed that the PSPNet using ResNet152
as a backbone was the most suitable for a real-time flood detection system in terms of
model size, inference speed, and accuracy. Some studies applied a Fully Convolutional
Network (FCN) among semantic segmentation networks to assess the extent of flooding
based on UAV systems [11,12].

2.2. Semantic Segmentation for Fire Detection

Guan et al. [2] proposed a novel instance segmentation method based on mask scor-
ing R-CNN for early wildfire detection and segmentation for a UAV monitoring system.
The proposed method consists of image classification, fire region detection, and flame
segmentation. They used U-Net architecture for semantic segmentation and ResNet as
the backbone of the encoder. The experiments were conducted on NVIDIA RTX 3070 and
showed excellent performance compared to existing SOTA methods. However, they needed
to analyze the suitability of the proposed network for embedding in portable devices. Ghali
et al. [13] presented a comprehensive review of deep learning models related to the three
steps required to detect wildfires based on UAV systems, classification, detection, and
segmentation, and introduced public fire datasets for these tasks. In the experiments, the
comparison with traditional machine learning methods confirms the superiority of deep
learning models, but they do not handle network optimization for real-time detection.
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Mengna et al. [14] proposed a real-time semantic segmentation for forest fire detection.
The proposed method is an improved version of DeepLabV3+, which does not use atrous
convolution to improve the inference speed of the encoder and uses MobileNetV3, a
lightweight network. Also, to compensate for the performance degradation, they proposed
a structure to add more feature information to the decoder. The network was conducted
on RTX 2080 Ti GPUs, and its performance resulted in better accuracy and speed than the
existing Deeplabv3+.

2.3. Object Detection or Image Classification for Fire Detection

Wang et al. [15] showed the potential of realizing forest fire detection based on YOLOv4
on edge devices. Their experiments conducted YOLOv4 with MobileNetV3 as a backbone
on the NVIDIA Jetson Xavier NX platform and showed that forest fires were detected
in real time. Xiong et al. [16] proposed a UAV-based forest fire detection system. They
used YOLOv3 to detect the flame and smoke of wildfires and conducted the fire detection
algorithm on the FPGA-SoC. Tahir et al. [17] proposed a YOLOv5-based deep learning
model for a UAV-based wildfire detection system. These approaches, which use only
object detection algorithms, have difficulty obtaining detailed information such as the
shape, size, and location of the fire. To solve this problem, approaches that combine object
detection with segmentation techniques have been proposed [18,19]. Mseddi et al. [18]
proposed a novel structure that combines YOLOv5 and U-Net architecture to improve the
accuracy of forest fire detection. Based on YOLOv5, they found the fire as a bounding
box in the image and applied a U-Net architecture to the cropped image generated by
the bounding box to obtain a semantic segmentation result. Cao et al. [19] proposed a
YOLO-SF algorithm, which combines the YOLOv7-Tiny object detection algorithm with
an instance segmentation technique, to improve the accuracy of fire detection. Finally,
here is an example of applying the classification algorithm for fire detection. Almeida
et al. [20] proposed a novel lightweight CNN model for real-time wildfire detection through
surveillance camera and UAV-based wildfire monitoring, and the proposed model performs
the task of classifying whether the input image contains smoke or flames.

2.4. Semantic Segmentation Network Optimization

Most research on real-time forest fire or flood segmentation for UAV monitoring
systems has mainly used real-time semantic segmentation networks that combine a U-
Net architecture with a lightweight backbone. This section describes studies focused on
optimizing semantic segmentation networks for edge computing. Liu et al. [21] proposed a
lightweight architecture for performing a real-time semantic segmentation task on UAV
images and an attention module for efficient feature extraction. Rosas-Arias et al. [22]
proposed a new lightweight network with two modules to implement real-time semantic
segmentation for embedded systems: one to extract contextual information in the encoder
and one to refine context and spatial information. There are also studies [23,24] that apply
a channel pruning technique, a well-known model optimization method in classification,
to semantic segmentation networks. However, these works were not proposed for flood
or wildfire detection but for real-time semantic segmentation tasks on general images.
He et al. [23] offered a modified channel pruning method suitable for semantic segmentation
networks. It removed unnecessary channels by adding contextual information to the
existing network slimming method [25]. The proposed method was applied to PSPNet,
ICNet, and SegNet to demonstrate the optimization effectiveness. Chen et al. [24] proposed
a new approach to select unnecessary channels by considering classification loss and
segmentation loss when applying channel pruning to semantic segmentation methods. The
effectiveness of the proposed method was evaluated on DeepLabV3, PSPNet, and BiSeNet.

3. System Configuration

As shown in Figure 1, the proposed system consists of acquiring aerial images with
a camera mounted on a UAV, running a semantic segmentation network stored in the
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memory of the embedded camera device on a DSP to detect forest fires or floods, and finally
notifying the ground station of the detected results.
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Figure 1. System configuration.

Semantic segmentation is a popular technique for detecting forest fires or floods because
it results in a pixel-wise classification of the image. In the case of forest fires, each pixel
is classified as fire or not, and in the case of flood, each pixel is classified as water or not.
This makes it easy to analyze the location, shape, and size of fire or flood in the image.
Some studies have used object detection networks to detect fires and forest fires [15–17,26].
However, although object detection can identify the location of the fire, as shown in Figure 2,
it is difficult to analyze the size and shape of the fire accurately, so the detected area must be
segmented to analyze the results. Flood detection is difficult to determine with a bounding
box because the shape of the flood is amorphous, as shown in Figure 2. Therefore, it is
more effective to detect forest fires or floods using semantic segmentation.
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3.1. Hardware Configuration

A Qualcomm QCS610 chip contains three cores: the Kyro 460 CPU, Adreno 612 GPU,
and Hexagon 685 DSP. Figure 3 shows the block diagram of the chip and the embedded
board developed by WITHROBOT Inc. Its size is 5 cm wide and 3.8 cm long.
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This paper uses a Hexagon 685 DSP to run a semantic segmentation network on the
embedded board. DSPs have an architecture that allows multiple mathematical calcula-
tions to be performed at once, and they have the unique ability to perform high-speed
multiplication. Dedicated DSPs are also usually more power-efficient, which makes them
more suitable for portable devices such as mobile phones with limited power consump-
tion [3]. Qualcomm’s Hexagon 685 DSP is a co-processor designed for artificial intelligence
and machine learning, with a specialized architecture for AI algorithms [5]. Qualcomm
provides the Snapdragon Neural Processing Engine Software Development Kit (SNPE
SDK) to reduce the time and effort it takes to optimize the performance of deep neural
networks trained on devices with Qualcomm AI products [27]. It is a software framework
designed to help quickly deploy and run AI models on-device to execute tasks on each core
(CPU, GPU, DSP) that runs Qualcomm’s SoC. SNPE SDK includes a conversion tool that
moves existing neural networks based on Cafe/Cafe2 and TensorFlow to Qualcomm’s SoC
runtime environment and debug tools and performance optimization tools for each core.

3.2. Software Configuration

Executing deep learning-based AI models on edge devices typically requires three
steps, as shown in Figure 4. Train a DNN model on the neural network framework of
the GPU system on the desktop and convert the trained model to a format suitable for
the embedded environment by utilizing the device conversion tool. Finally, import the
converted model into the embedded device and run it through the inference API.
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Figure 5 shows the process followed in this paper. First, we create a lightweight
semantic segmentation network through network slimming in the TensorFlow framework.
Network slimming is a type of network lightweight, which is a way to optimize a network
to have a suitable size and computation for resource-constrained edge devices. Network
slimming consists of sparsity training, channel pruning, and fine-tuning, as shown in
Figure 5, and is described in detail in Section 4. Next, we utilize the inference API (SNPE
SDK) provided by Qualcomm to convert the slimmed network into a Deep Learning
Container (DLC) file, a format suitable for the QCS 610 embedded board environment. This
DLC file stores model parameters in floating point format and runs only on processors
capable of 32-bit floating-point operations. However, DSPs only support 8-bit integer
operations, so parameter quantization is required. Quantization methods include Post
Training Quantization (PTQ) and Quantization Aware Training (QAT) [28]. PTQ is a method
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that quantizes parameters after network training. QAT is a method that simultaneously
finds the optimal parameters and quantizes them by simulating the effect of quantization
in the inference during training. This paper applies the PTQ provided by the SNPE tool to
convert the DLC model with 32-bit floating-point parameters to the one with 8-bit integer
parameters. Finally, the quantized DLC file is imported into the embedded board, and its
inference is executed on the board.
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Figure 5. Workflow for slimming a semantic segmentation network and deploying the slimmed
network to an embedded camera board with a Qualcomm QCS610 SoC.

4. Network Slimming

Network slimming [25] is an effective way to reduce the size, parameters, and compu-
tation of deep learning models, eliminating unnecessary channels (or filters) while leaving
only the important ones. In this method, it is crucial to decide which channels to keep
and which to remove. To do this, Liu et al. [25] used the scale parameter γ of the Batch
Normalization (BN) layer following the Convolutional layer as the scaling factor of the
channels, trained them to be sparse, and then determined the importance of the channels.
Recently developed CNN models typically include a BN layer, which is well known to
improve convergence speed and generalization performance. The BN layer normalizes the
input feature map based on mini-batch statistics and then performs a linear transformation
to obtain the output feature map, as shown in Equation (1).

z0 = γ
zi − µB√

σ2
B + c

+ β (1)

In Equation (1), zi is the input value, z0 is the output value, and µB and σB are the mean
and standard deviation of the input values obtained from the small batch, respectively.
γ and β are the learning parameters related to scale and shift, respectively. Here, γ
corresponds to one channel and affects the magnitude of the output of that channel, which
helps identify the importance of the channel.

The sparsity training stage is performed after normal training to determine the chan-
nels that are essential to achieve the target task of the network. In this stage, the network is
trained by adding an L1 regularization for the scaling factor to the initial loss function of
the network, as shown in Equation (2), in order to make as many scaling factor values as
possible zero.

L = ∑(x,y)l( f (x, W), y) + λ∑γ∈Γ|γ| (2)

In Equation (2), (x,y) is the input and target of the training data, and W is the weights.
The first part of the equation is the loss function of the segmentation network, the second
part is the penalty for eliciting sparsity of the scaling factors, and λ is the sparsity parameter
that balances the two parts.
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Next, we apply channel pruning to the sparsity trained network. Once the target
pruning ratio (R) is determined, the number of channels to be removed (N) is calculated as
the product of the pruning ratio (R) and the total number of channels (K) of the network.
The global threshold is then selected as the (KxR)th value after sorting the scaling factor
values for all channels in descending order, and unnecessary channels are pruned based on
this threshold. When pruning channels using a global threshold, the number of channels
removed and location (index) of the channels are different for each layer. In the case of a
network with a sequential structure, there is no problem in pruning the network even if the
number of channels removed or their positions vary from layer to layer. However, it causes
a problem in the networks with residual blocks due to add operations of skip connections.
In order to apply channel pruning to add operations in this network, the number of pruned
channels between the two convolutional layers connected to the add layer must match, and
the positions of the channels being pruned must be the same. There is a simple method
that is commonly used to solve this problem [29]. First, find the index set of channels to
be retained in each convolutional layer that needs to be matched. Next, apply OR, AND,
or Head-First (HF) mode between the different index sets to be matched. The OR and
AND modes prune channels of the related Convolutional layers equally using the results
of applying logical sum and logical product operations to multiple index sets, respectively.
HF mode prunes channels of all remaining Convolutional layers equally by utilizing the
index set of the Convolutional layer immediately before the residual block. The residual
blocks of ResNet used in this paper include the identity and convolution blocks. Figure 6
illustrates how to apply channel pruning in the identity and convolution blocks, where Si
denotes the set of indices of the necessary channels to keep in the i-th Convolutional layer.
As shown in Figure 6, in the case of the identity block, we need to match the channel index
(S0) of the Convolutional layer (conv2D_0) that enters the residual block with the channel
index (S3) of the Convolutional layer (conv2D_3) placed immediately before the Add layer.
Similarly, in the convolution block, channel pruning is performed by matching the channel
index of the two Convolutional layers (conv2D_3 and conv2D_4) placed just before the
Add layer.
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Finally, the network is retrained to fine-tune its parameters after channel pruning. The
performance of a pruned network will degrade very little when the number of channels
removed is tiny but will degrade significantly as the number of channels removed increases.
Therefore, after pruning, the model’s parameters must be trained again to restore the
performance degraded by channel pruning.

5. Experimental Results
5.1. Datasets

In the experiments, we used two benchmark datasets collected by UAVs such as
drones: FloodNet [30] for floods and FLAME [31] for wildfires. FloodNet [30] consists
of aerial imagery collected by DJI Mavic Pro quadcopters, a small UAV platform, after
Hurricane Harvey in 2017 near Texas and Louisiana. This dataset reflects actual flood
situations and includes 2343 high-resolution (4000 × 3000) images taken at a low altitude
of 200 feet above the ground. Ground-truth images are labeled pixel-wise for nine different
classes: building-flooded, building-non-flooded, road-flooded, road-non-flooded, water,
tree, vehicle, pool, and grass. In this paper, the goal is to detect floods, not to evaluate the
damage caused by floods, so we reset to two classes: water and background. ‘building-
flooded’, ‘road-flooded’, and ‘water’ belong to the water class, and the rest of the classes
belong to the background class. Also, we excluded 476 incorrectly annotated images and
conducted the experiments with the remaining 1867 images. The dataset split was 1146
for training, 351 for validation, and 370 for test. FLAME [31] is a dataset collected for
early detection of forest fires. This dataset consists of aerial imagery captured by a camera
mounted on a drone after stacking burning piles at a predetermined location to simulate an
earlier forest fire. Among the various datasets in FLAME, we experimented with a dataset
consisting of 2003 still images acquired with a general camera and annotated images labeled
pixel-wise as fire and background. The image resolution is 3480 × 2160, and the dataset
split was 1503 for training, 200 for validation, and 300 for test. Figure 7 shows examples of
aerial images and labeled images from FloodNet and FLAME.
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5.2. Experiment Details

We conducted the experiments using two systems with the following specifications:
NVIDIA TITAN RTX with 24 GB on-board memory using a Tensorflow 2.10 and Ubuntu
OS installed on an Intel Core i9-10900X CPU with 64 GB RAM, and Hexagon 685 DSP using
SNPE 2.12 installed on Qualcomm QCS610 SoC. Our experiments used DeepLabV3 and
DeepLabV3+ as semantic segmentation network models. In the sparsity training stage, the
accuracy and sparsity of the model were measured by changing the sparsity parameter (λ)
in 10-fold increments from 0.001 to 100.0. The sparsity model was determined as in [25],
where the sparsity parameter is maximized among the cases with negligible performance
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degradation. In the channel pruning stage, the accuracy of the models was obtained by
varying the pruning ratio from 10% to 90%. In addition, OR, AND, and HF modes were
applied to the residual blocks. After fine-tuning, the best-performing model was inferred
on the DSP of the QCS 610 chip, and then its performance was evaluated. The performance
was mainly measured in mean-over-union accuracy (mIoU) and frame per second (fps).
We also reported the number of parameters, size of the model, computational complexity
in GFLOPs, and power consumption on the embedded board. The same training setting
was used for all models, where the learning rate is 0.001, the batch size is 8, and the epoch
is 50. Data augmentation consists of horizontal flip, vertical flip, rotation, and zoom, and its
rate is 0.8. We trained with 512 × 512 crop size for the FloodNet and FLAME datasets. For
all experiments, the inference speed was calculated as the number of inferences obtained
when running the semantic segmentation network in high-performance mode on the DSP
for one minute. The power consumption was evaluated on TensorFlow 2.3 and SNPE 1.66.

5.3. Semantic Segmentation Results for FLAME Dataset

This section summarizes the performance evaluation results of DeepLabV3 and
DeepLabV3+ on the FLAME dataset. Table 1 shows the performance of the baseline
model and the sparsity trained model for both networks. For the sparsity trained model,
the sparsity parameter was chosen as described in Section 5.2 and set to 1.0 for both net-
works. Figure 8 shows histograms of the channel’s scaling factors for DeepLabV3 and
DeepLabV3+. This figure indicates the sparsity of the channel before and after sparsity
training. These histograms display that after sparsity training, the channel scaling factors
are clustered around 0.0, which indicates adequate sparsity training results.

Table 1. Performance of DeepLabV3 and DeepLabV3+ before and after sparsity training on FLAME.

Networks DeepLabV3 DeepLabV3+

Models Baseline Sparsity * Baseline Sparsity

mIoU (%) 84.59 84.32 88.12 88.13
* Sparsity means sparsity trained model.
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Table 2 shows the results of applying channel pruning to the sparsity trained model.
The first column of the table shows the pruning ratio, where baseline means the model
obtained from normal training with a pruning ratio of 0%. The pruning ratio means the
actual pruning ratio, calculated as the number of channels removed compared to the total
number of channels in the network. Comparing the accuracy performance of the two
models, the mIoU of DeepLabV3+, the most updated version of the DeepLab family, is
about 3~4 percentage points larger than the mIoU of DeepLabV3. Comparing the before
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and after channel pruning, we can see that there is almost no performance degradation for
both models. These results reveal that the redundancy of the two models in performing the
semantic segmentation task on FLAME is relatively high and that unnecessary channels
were appropriately removed by the sparsity training and channel pruning processes.

Table 2. Performances of DeepLabV3 and DeepLabV3+ according to the pruning ratio on FLAME (mIoU: %).

Networks DeepLabV3 DeepLabV3+

Ratio (%) OR AND HF OR AND HF

Baseline 84.59 84.59 84.59 88.12 88.12 88.12
10 84.66 84.43 84.56 87.99 88.11 88.13
20 84.51 84.70 84.65 88.16 87.94 87.91
30 84.40 84.53 84.48 88.00 88.13 87.91
40 84.64 84.49 84.51 88.16 88.11 88.13
50 84.43 84.58 84.47 88.24 88.13 88.06
60 84.65 84.33 84.41 88.09 88.16 88.18
70 84.55 84.23 84.38 88.17 88.02 87.84
80 84.65 84.41 84.51 87.91 88.15 88.05
90 84.55 84.44 84.54 88.25 88.12 87.95

Table 3 shows the inference results of running DLC files for the baseline and 90%
pruned models on the QCS610 DSP. DeepLabV3 has the highest performance in AND mode,
and DeepLabV3+ has the highest performance in HF mode. In the case of DeepLabV3,
the performance on DSP is degraded by about 1~3 percentage points compared to the
performance on Desktop GPU, and in the case of DeepLabV3+, there is almost no per-
formance degradation. In both cases of DeepLabV3 and V3+, the inference speed was
increased by more than 15 times, and model size and GFLOPs were significantly reduced
compared to the baseline. DeepLabV3+ has an encoder–decoder architecture to heighten
performances concerning object boundary recovery and segmentation accuracy. Because of
this architecture, DeepLabV3+ has a slightly larger model size and GFLOPs and a lower
inference speed but better accuracy than DeepLabV3.

Figure 9 shows the semantic segmentation results obtained by the DSP. The columns in
the figure show the input image, the ground-truth image labeled as fire, the image inferred
by DeepLabV3, and the image inferred by DeepLabV3+. For both models, we can see that
both large and small fires are segmented well compared to the ground truth.
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Table 3. Semantic segmentation results of DeepLabV3 and DeepLabV3+ for FLAME on QCS610 DSP.

DeepLabV3 DeepLabV3+

mIoU Speed 1 Size 2 GFLOPs mIoU Speed 1 Size 2 GFLOPs

Baseline 81.65 0.64 470.2 101.76 87.74 0.61 485.9 144.46
OR 82.66 23.98 2.8 2.39 88.06 9.54 16.6 42.05

AND 83.32 22.03 7.4 5.60 88.10 11.54 16.1 34.89
HF 82.28 22.96 5.7 4.73 88.29 10.92 15.8 38.21

1 Speed means inference speed (fps). 2 Size means model size (MB).

5.4. Semantic Segmentation Results for FloodNet Dataset

This section summarizes the performance evaluation results of DeepLabV3 and
DeepLabV3+ on the FloodNet dataset. Table 4 shows the performance of the baseline
model and the sparsity trained model for both networks. For the sparsity trained model,
the sparsity parameter was chosen as described in Section 5.2 and set to 100.0 and 10.0 for
both networks, respectively. Figure 10 shows histograms of the channel’s scaling factors
for DeepLabV3 and DeepLabV3+. These histograms display that after sparsity training,
the channel scaling factors are clustered around 0.0, which indicates adequate sparsity
training results.

Table 4. Performance of DeepLabV3 and DeepLabV3+ before and after sparsity training on FloodNet.

Networks DeepLabV3 DeepLabV3+

Models Baseline Sparsity * Baseline Sparsity

mIoU(%) 93.23 93.23 94.08 94.45
* Sparsity means sparsity trained model.
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Table 5 shows the results of applying channel pruning to the sparsity trained model.
Comparing the accuracy performance of the two models, the mIoU of DeepLabV3+ is
about one percentage point larger than the mIoU of DeepLabV3. Comparing the before and
after channel pruning, we can see that there is almost no performance degradation for both
models. Similar to FLAME, the results of FloodNet also reveal that the redundancy of the
two models in performing the semantic segmentation task is relatively high and that the
sparsity training and channel pruning processes properly removed unnecessary channels.

Table 6 shows the results of running the baseline and 90% pruned models on the
QCS610 DSP. DeepLabV3 has the highest performance in OR mode, and DeepLabV3+
has the highest performance in HF mode. For both networks, there is little performance
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degradation on the DSP compared to the performance on the Desktop GPU. As with
FLAME, for both cases of DeepLabV3 and V3+, the inference speed was improved by
more than 35 times, while model size and GFLOPs were also greatly reduced compared to
the baseline. These experimental results show that the proposed system, which ports the
slimmed network to embedded devices, can accurately detect forest fires or floods in real
time with negligible performance degradation.

Table 5. Performances of DeepLabV3 and DeepLabV3+ according to the pruning ratio on FloodNet (mIoU: %).

Networks DeepLabV3 DeepLabV3+

Ratio (%) OR AND HF OR AND HF

Baseline 93.23 93.23 93.23 94.08 94.08 94.08
10 93.86 93.87 93.98 94.56 94.61 94.67
20 94.01 93.98 93.89 94.60 94.59 94.66
30 93.98 93.92 93.93 94.71 94.61 94.56
40 93.97 93.76 93.85 94.63 94.54 94.51
50 93.92 93.66 93.75 94.56 94.57 94.40
60 93.97 93.61 93.74 94.55 94.53 94.50
70 93.91 93.10 93.83 94.69 94.54 94.63
80 93.85 92.93 93.57 94.48 94.47 94.64
90 93.93 92.53 93.50 92.09 93.74 94.25

Table 6. Semantic segmentation results of DeepLabV3 and DeepLabV3+ for FloodNet on QCS610 DSP.

DeepLabV3 DeepLabV3+

mIoU Speed 1 Size 2 GFLOPs mIoU Speed 1 Size 2 GFLOPs

Baseline 93.92 0.64 470.2 101.76 94.05 0.61 485.9 144.46
OR 93.69 23.58 3.3 2.62 91.97 18.78 2.5 2.21

AND 91.83 22.10 9.1 4.82 93.74 13.36 15.2 27.60
HF 93.23 23.41 5.8 4.26 94.15 13.26 11.8 26.01

1 Speed means inference speed (fps). 2 Size means model size (MB).

Figure 11 shows the semantic segmentation results obtained by the DSP. The columns
in the figure show the input image, the ground-truth image labeled as water, the image
inferred by DeepLabV3, and the image inferred by DeepLabV3+. Both networks can
segment the flooded area in the image relatively accurately. In particular, we can see that
the results are closer to the ground truth when the water areas have simple shapes, such as
in the second, fourth, and fifth input images. On the other hand, if the flooded area is more
complex, such as in the first and third images, where flooding occurs in a cluster of houses,
DeepLabV3+ segments the flood boundaries more accurately than DeepLabV3.
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on QCS610 DSP.

5.5. Results for Power Consumption

To measure the power consumption when the DNN model is running on the QCS610,
we can use the Qualcomm Snapdragon Profiler. The QCS610 SoC has nine operating modes,
and the inference speed and power consumption change depending on the mode. So, users
can select the appropriate operating mode according to the situation. Figure 12 shows the
power consumption graph versus time stamps when slimmed DeepLabV3+ trained on
FloodNet is executed for nine different modes of operation. In this figure, the black line
represents sleep mode, with a duration of 5 s. The red line shows the power consumption
when running slimmed DeepLabV3+ for each of the nine operating modes to process one
image. From left to right, the operating modes are ‘low balanced’, ‘balanced’, ‘default’,
‘high performance’, ‘sustain high performance’, ‘burst’, ‘low power saver’, ‘power saver’,
and ‘high power saver.’ As shown in Figure 12, comparing the operation time before and
after network slimming, we can find that the time taken for the slimmed DeepLabV3+
network to operate is significantly reduced regardless of the operation mode. We can
also see that the power consumption is reduced dramatically in the slimmed DeepLabV3+
model compared to the baseline model. Default mode sacrifices inference speed and
reduces power consumption among the operating modes. This mode is the same as the
balanced mode. ‘Low power saver’, ‘power saver’, and ‘high power saver’ modes can save
more power than ‘balanced’ mode, but at the cost of reduced performance in inference
speed. ‘High performance’, ‘sustain high performance’, and ‘burst’ are modes that increase
inference speed but increase power consumption.
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Figure 12. Results of measuring the power consumption of Slimmed DeepLabV3+ on FloodNet using
Snapdragon profiler.

Tables 7 and 8 show the inference speed and power consumption per inference for four
representative operating modes: ‘burst’, ‘balanced’, ‘power saver’, and ‘high performance’.
Power consumption can be thought of as the area of the graph in Figure 12 for each mode.
Since this is an integration of power over the time axis, we used ‘Wh’ as the unit and ‘mWh’
due to the small scale. In Tables 7 and 8, we can find that the inference speed of the slimmed
DeepLabV3+ was about 10 times faster than that of the baseline regardless of operating
modes. We also found that the slimmed network consumes about 1/25 less power than the
baseline when processing the same number of images.

Table 7. Inference speed and power consumption of slimmed DeepLabV3+ with 90% pruning ratio
according to operating modes in QCS610 DSP for FLAME.

Operating
Mode

Baseline Slimmed

Speed 1 Power 2 Speed Power

burst 0.76 1.238 7.43 0.048
power saver 0.34 2.453 5.91 0.040

balanced 0.62 1.559 9.90 0.045
high

performance 0.76 1.163 6.88 0.034

1 Speed means inference speed (fps). 2 Power means measured power consumption (mWh) during the execution
of one frame on DSP.

Table 8. Inference speed and power consumption of slimmed DeepLabV3+ with 90% pruning ratio
according to operating modes in QCS610 DSP for FloodNet.

Operating
Mode

Baseline Slimmed

Speed 1 Power 2 Speed Power

burst 0.77 1.179 6.65 0.022
power saver 0.34 2.467 8.12 0.044

balanced 0.62 1.731 13.48 0.026
high

performance 0.76 1.189 11.73 0.025

1 Speed means inference speed (fps). 2 Power means measured power consumption (mWh) during the execution
of one frame on DSP.
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5.6. Discussion

As shown in Table 3, in terms of accuracy performance, DeepLabV3+ outperforms
DeepLabV3 by approximately 5–6 percentage points in mIoU for forest fire detection.
This means that DeepLabV3+, which is robust to object boundary recovery, is more ef-
fective for segmenting forest fires with small flame sizes as shown in Figure 9. On the
other hand, in terms of edge-computing performance, DeepLabV3 seems to be more effec-
tive than DeepLabV3+. The inference speed of DeepLabV3 is about two times faster than
DeepLabV3+, and the GFLOPs of DeepLabV3 are about six times smaller than DeepLabV3+.
For flood detection, DeepLabV3+ has a higher mIoU than DeeplabV3 by about one per-
centage point, as shown in Table 6. On the other hand, the inference speed of DeeplabV3
is about 1.8 times faster than DeeplabV3+, and the GFLOPs of DeepLabV3 are about nine
times smaller than DeepLabV3+. Since there is a trade-off between accuracy and speed,
DeepLabV3+ may be more effective for accuracy-oriented applications, and DeeplabV3
may be more effective for speed-oriented applications. In summary, since the purpose of
this paper is to implement a forest fire or flood monitoring system on the edge device of a
drone, it is more effective to apply DeepLabV3, which is superior in terms of computation
and inference speed.

The power consumption results obtained from the experiments show the availability of
the proposed system when deployed on a real drone. For example, when the flood detection
system based on the slimmed network is operated in ‘high performance’ mode, it consumes
0.025 mWh of energy to infer one image, as shown in Table 8. If the system processes
ten images per second for an hour, it consumes 10 × 60 × 60 × 0.025 mWh = 900 mWh
= 0.9 Wh. Assuming that a lithium polymer battery, commonly used in drones, has a power
(energy) of 19.2 Wh, the proposed system uses only about 4.7% of the drone’s battery.
On the other hand, if a baseline semantic segmentation network is used, it consumes
1.189 mWh of energy to infer a single image and processes 0.76 frames per second, so it
takes 0.76 × 60 × 60 × 1.189 mWh = 3253.104 mWh = 3.253104 Wh of energy to run the
system for one hour. In this case, it is not only difficult to perform in real time but also uses
about 17% of the battery’s power. In conclusion, the proposed system with the slimmed
network enables real-time semantic segmentation and can significantly benefit the flight
time of drones.

6. Conclusions and Future Work

This paper proposes a monitoring system for real-time detection of floods and forest
fires using UAVs such as drones. The proposed system consists of an embedded board
equipped with a Qualcomm QCS610 SoC and deep learning-based semantic segmenta-
tion models (DeepLabV3 and DeeLabV3+) for detecting wildfires or floods. However,
since these models are large in scale and have many parameters, it is difficult to oper-
ate them in real time on embedded devices. To solve this problem, this paper applied
channel pruning-based network slimming to generate slimmed DeepLabV3 and V3+. The
experimental results showed that for FLAME, slimmed DeepLabV3+ has the mIoU accu-
racy of 88.29% and an inference speed of 10.92 fps. For FloodNet, the mIoU accuracy of
slimmed DeepLabV3+ was 94.15%, and the inference speed was 13.26 fps. The slimmed
networks ported to DSPs showed little performance degradation compared to the baseline,
but the inference speed was about 20 times faster, and the model size and computation
(GFLOPs) were reduced by about 90%. The experimental results showed that slimmed
networks could accurately detect forest fires and floods in real time at low power with
little performance degradation on embedded devices. As a result, the proposed system is
suitable for implementing a UAV-based real-time monitoring system for detecting forest
fires and floods.

In future work, we plan to apply the proposed system to video data captured during
day and night and in adverse weather conditions, utilizing the embedded camera device
used in this paper. In addition, we will compare various semantic segmentation networks
to find a more suitable one for flood or forest fire detection.
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