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Received: 26 October 2023

Revised: 13 November 2023

Accepted: 17 November 2023

Published: 19 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Personalized Text-to-Image Model Enhancement Strategies:
SOD Preprocessing and CNN Local Feature Integration
Mujung Kim 1, Jisang Yoo 1,* and Soonchul Kwon 2

1 Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea;
kmj1026@kw.ac.kr

2 Graduate School of Smart Convergence, Kwangwoon University, Seoul 01897, Republic of Korea;
ksc0226@kw.ac.kr

* Correspondence: jsyoo@kw.ac.kr; Tel.: +82-2-940-8637

Abstract: Recent advancements in text-to-image models have been substantial, generating new images
based on personalized datasets. However, even within a single category, such as furniture, where
the structures vary and the patterns are not uniform, the ability of the generated images to preserve
the detailed information of the input images remains unsatisfactory. This study introduces a novel
method to enhance the quality of the results produced by text-image models. The method utilizes
mask preprocessing with an image pyramid-based salient object detection model, incorporates visual
information into input prompts using concept image embeddings and a CNN local feature extractor,
and includes a filtering process based on similarity measures. When using this approach, we observed
both visual and quantitative improvements in CLIP text alignment and DINO metrics, suggesting
that the generated images more closely follow the text prompts and more accurately reflect the input
image’s details. The significance of this research lies in addressing one of the prevailing challenges in
the field of personalized image generation: enhancing the capability to consistently and accurately
represent the detailed characteristics of input images in the output. This method enables more realistic
visualizations through textual prompts enhanced with visual information, additional local features,
and unnecessary area removal using a SOD mask; it can also be beneficial in fields that prioritize the
accuracy of visual data.

Keywords: diffusion network; image similarity comparison; personalized image generation; salient
object detection; text-to-i mage

1. Introduction

Recent advancements in text-to-image models [1–6] have considerably improved the
quality of generated images. Models like Stable Diffusion [1], which rely on large-scale
datasets, can create realistic and imaginative images by capturing the intricate relationship
between images and text grounded in extensive image-text pair data. Consequently, users
can now perform various application tasks, such as stylization [7–10] and editing [11–13].
However, users’ ability to create images aligned with individual conceptualizations is
limited. The results often fall short of expectations, even when users provide prompts
with specific descriptions tailored to individual concepts, because the vast image-text
pair data used for training lack information about personal concepts. Such a problem
becomes an obstacle in applications where the precise image generation of the desired
object is necessary. In order to address this, recent research in personalized text-to-image
models [14–18] has involved learning additional concepts from user image sets. Textual
inversion [16] inverts the input image into the text embedding space and subsequently
learns new pseudo-words. DreamBooth [14] fine-tuning diffusion models use several user-
provided images and unique identifiers. Custom Diffusion [15] enhances memory efficiency
by fine-tuning learning parameters in specific layers, enabling users to create personalized
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images based on newly learned words from their prompts. Figure 1 illustrates examples of
samples generated using these models and our method.

Figure 1. Images generated using the personalized text-to-image models. We generate a personalized
image using the input image representing the personal concept and the text prompt. We fine-tune
the text-to-image model to ensure that the identifier <V> embedded in the prompt can encapsulate
information about the concept. Our approach can preserve concept details by directly infusing visual
information into the identifier.

Nevertheless, Despite these advancements, certain issues, as exemplified in Figure 2,
persist, especially in categories like furniture, where structures and shapes vary significantly
within the same class and where attention to detail is essential for high fidelity. Additionally,
as illustrated in Figure 3, when input images learn not only the desirable concept of the
object but also unintended concepts (such as the background), the quality of the image
degrades. This leads to a mix of undesirable elements in the generated images, which
lowers the fidelity of the images or hinders the creation of images that align with the
text prompts, thus decreasing text-image alignment. This is especially detrimental in the
creation of images for catalogs or advertisements, where an accurate depiction of the
product’s condition is critical.

Figure 2. Samples that failed to preserve the concept of the input images. The generated samples in
the second row fail to maintain the details in the input images (first row). Notable changes in color,
shape, and pattern can be observed.
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Figure 3. Poorly created image due to unnecessary concepts. Due to the background information
included in the image other than the target object, the details of the object were stained, or the image
was created in a way that did not fit the situation required by the prompt.

This study introduces several novel methods that incorporate careful steps to ad-
dress the challenges of the above-mentioned detail preservation and quality degradation.
The study conducted experiments utilizing the Custom Diffusion [15] fine-tuning tech-
nique. Custom Diffusion fine-tunes Stable Diffusion [1] that was pretrained on large-scale
text-image paired data. During this fine-tuning process, Custom Diffusion updates the pa-
rameters of specific layers only, thereby enhancing memory efficiency and processing speed.
Based on this Custom Diffusion, the new strategies we have introduced are as follows.
First, to prevent nontarget features from influencing the generated results, superfluous
background information is removed during preprocessing. This ensures a representation
that is focused solely on the specific object of interest, eliminating potential distractions or
interferences from the background. In order to achieve this, a mask for the desired object
within the concept image is extracted using InSPyReNet [19], a salient object detection
(SOD) model. InSPyReNet was chosen for its superior capability in salient object detection,
especially for high-resolution images. Subsequently, the concept image data, with the extra-
neous background removed via the extracted mask, is augmented and employed as the
training dataset. Second, the concept image is mapped into the textual word embedding
space for further learning. The method maintains a detailed representation of the object
by feeding information about the concept image into the text prompt, which acts as a
condition in the diffusion network. Unlike previous methods that relied on text-image
attention mechanisms, our approach utilizes a pretrained CLIP image encoder to extract
image embeddings from concept images. Additionally, we introduced a CNN network,
ResNet-50 [20], to extract local features from these images, providing additional informa-
tion on shapes, forms, and patterns. By extracting local features from the intermediate
layers of a pretrained ResNet and combining them with image embeddings, we achieved a
comprehensive feature representation. This combined feature information was then injected
into the text embeddings corresponding to the identifier prompts. This method preserves
details and structural information better than previous methods that initialized identifiers
with arbitrary words. Third, using a Siamese network [21], the similarity between the
images generated in the postprocessing step and the training images was assessed, and the
results that fell below a predetermined threshold were discarded. Finally, quantitative and
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qualitative evaluations were conducted, comparing our approach with existing models. By
applying our strategy, we observed improved results in terms of detail retention perfor-
mance, as evidenced by the increased text alignment scores and DINO image alignment
scores. The comprehensive workflow is illustrated in Figure 4.

We recognize several concurrent studies with similar themes [17,18]. ELITE [17] de-
velops a training network that maps visual inputs to multiple textual embeddings using
multi-layer embeddings, fine-tuning the attention layers of a pretrained text-image model
by projecting the foreground object into the textual feature space. On the other hand, Instan-
booth [18] utilizes a learnable image encoder to convert input images into textual tokens,
employing these as conditions for the cross-attention layers. It also learns visual features
through separate adaptor layers and encoders for fine details. Our approach, which is
similar to ELITE and Instanbooth, employs image encoders to map acquired image tokens
into the textual space. However, unlike these methods, we introduce a separate network
for extracting local features, combining these extracted features with the tokens to create
new embeddings. These new embeddings are then used to fine-tune the attention layers.
Additionally, we employ cosine similarity between the embeddings of the generated sample
images and concept images during the training process, guiding the generated samples to
more closely resemble the input images.

Figure 4. Pipeline of our proposed method. (1) From the concept image, we remove the background
using the SOD model, InSPyReNet [19], and then obtain image embeddings using the CLIP [22] image
encoder. (2) We extract local features from the concept image using CNN. (3) We concatenate the
image embeddings with the extracted local features to form a new visual feature. Next, we replace the
embeddings corresponding to the identifier in the original prompt using the text encoder to obtain the
modified embeddings.(4) The Siamese network [21] is then used to measure the similarity between
the samples generated through the modified prompt embeddings and concept images. Finally, we
obtain images with high similarity as the final results.

In summary, the contributions of our study are as follows:

• We have introduced the use of a salient object detection (SOD) mask in the prepro-
cessing phase to remove information other than the prominent object. This ensures
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that the image generation process is focused on the target object, thereby avoiding the
degradation of image quality by irrelevant information.

• Instead of relying on text embeddings that represent identifiers, we have mapped
the image embeddings obtained from concept images and provided additional local
features. This has improved the detail preservation performance of our models.

• We have employed a Siamese network in the postprocessing phase to compare the
similarity between the generated images and the concept images, which allows for
quality control. This ensures that only the images with high fidelity are selected,
enhancing the overall quality of the output.

2. Related Work
2.1. Text-to-Image Models

The text-to-image model generates images based on user-provided text, allowing
users to influence the resulting image directly. Recently, deep learning-based text-to-image
models have garnered significant attention. Current research in deep text-to-image models
primarily centers around generative adversarial networks (GANs) [23–27], variational
autoencoders (VAEs) [28,29], and diffusion-based models [1,2,14]. However, GAN and VAE-
based models exhibit limitations, particularly when precise objects or feature placements are
required. Moreover, These models struggle when generating images with intricate patterns
and structures, such as faces, eyes, noses, mouths, or complex decorations. Furthermore,
even when these models produce reasonably plausible images, they fall short of closely
aligning with the provided text prompts. In contrast, diffusion-based models leverage
extensive training datasets containing text-image pairs to generate more realistic and
intricate images. Examples include DALL-E [30], which has demonstrated impressive
results by employing an autoregressive model. DALL-E2 [2], Imagen [3], Stable Diffusion
[1], and others incorporate large-scale text encoders based on data, enabling enhanced
control during image synthesis. Moreover, researchers are increasingly harnessing the
control capabilities offered by pretrained diffusion-based models with extensive image-
text data for image editing and style transfer. SINE [31] employs a pretrained large-scale
diffusion model for single-image editing and style transfer. Additionally, GLIGEN [32]
explores image inpainting by introducing additional layers and incorporating various
conditions beyond text, such as bounding boxes and keypoints. ControlNet [33] is a neural
network designed to add spatial condition control to large-scale pretrained text-to-image
diffusion models. It safely adjusts those parameters that leverage “zero convolution” and
demonstrates robust learning under various conditions and across large and small datasets.

2.2. Personalized Image Generation

While text-to-image models [31–33] have made significant strides in providing precise
control with textual guidance, their generated images are often limited to generating general
instances. In contrast, personalized image generation takes user-defined concepts as input, al-
lowing for the precise editing and transformation of these concepts. Numerous studies [14–18]
have delved into this domain, employing various techniques to achieve personalized image
manipulation. In GAN-based models, the GAN-inversion method [10,26,27,34–36] has been
commonly employed for image editing and personalized image creation. The method projects
an image directly into the latent space, obtains an edited latent code, and subsequently gener-
ates the edited image through the generator process. GAN-based approaches have primarily
been used for tasks like overall image style transfer [10,26,27], facial expression changes [35,36],
and age modifications [34]. More recently, methods for personalized image generation have
emerged, leveraging pretrained large-scale text-to-image models. This approach, known as
Textual Inversion [16], discovers new embeddings within the embedding space that repre-
sent the user-provided visual concept. Subsequently, a new image is generated using the
pseudo-word associated with this embedding. Similar to text inversion, DreamBooth [14]
takes an image representing the concept as input and uses the information corresponding
to the instance’s class as input; it then fine-tunes it and encodes it into a unique identifier.
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This method allows for learning new concepts with higher fidelity and addresses language
drift. Custom diffusion [15], an extension of this technique, has demonstrated satisfactory
performance improvements with faster fine-tuning, achieved by updating only the parameters
of the cross-attention layer. ELITE [17] employs local mapping and multi-layer global mapping
networks to preserve the details when encoding visual concepts into textual embeddings.
Similarly, InstantBooth [18] maps input images to the textual space and introduces adapter
layers to inject identity information from the input images into the backbone model.

2.3. Salient Object Detetion

SOD aims to identify and segment the most attention-grabbing object or region within
an image. Hou et al. [37] incorporated short connections into the skip-layer structure of the
holistically nested edge detection [38] framework. Each layer within this architecture yields
rich multi-scale feature maps. Xie et al. [39] addressed the challenges posed by the shallow
layers of the backbone network, which struggle to acquire global semantic information.
Incorporating fully convolutional networks [40] and multi-path recurrent feedback mech-
anisms was instrumental in enhancing performance. Moreover, Pang et al. [41] proposed
aggregate interaction modules to effectively integrate features from neighboring levels
while mitigating noise. Additionally, the InSPyReNet [19] framework introduced a novel
pyramid blending method, which systematically synthesizes two distinct pyramids derived
from low- and high-resolution scales for high-resolution SOD.

2.4. Image Similarity Comparison

Traditional methods for comparing image similarity encompass pixel-based [42] and
structural feature-based approaches [43–45]. Pixel-based methods that rely on direct pixel
comparisons are susceptible to variations in lighting, scale, or viewing angles. Therefore,
the structural similarity index [42] was introduced to capture perceptual changes in images
rather than mere pixel-level differences. In contrast, feature-based methods, such as scale-
invariant feature transform [43] and speeded-up robust features [44], employ key points
and descriptors for image comparison. These methods exhibit robustness when dealing
with transformations and occlusions. In recent years, the field has witnessed the emergence
of neural network-based methods [21,46] for image similarity comparison. The approach
involves extracting feature maps from the intermediate layers of pretrained deep learning
models, such as VGG [47] or ResNet [20]. Subsequently, metrics such as cosine similarity or
Euclidean distance are computed, and if they surpass a predefined threshold, the images
are deemed to represent the same object. Another neural network-based approach is
the Siamese network [21], comprising two subnetworks that share identical weights. It
calculates the similarity distance between feature vectors extracted from two input images.
Expanding on this, the triplet network [46] processes three input images, referred to as the
anchor, positive, and negative samples. The aim is to ensure that the anchor image is closer
in feature space to the positive image (same class) than to the negative image (different
class). This study employs the Siamese network to determine whether a generated sample
and a reference concept image depict the same object.

3. Method

We aim to generate images that faithfully represent the underlying concept by employ-
ing a pretrained text-to-image model [1]. First, we utilized a SOD network [19] to extract
masks corresponding to the target salient objects while eliminating extraneous background
information unrelated to the concept. In order to integrate visual features from concept
images, we concatenated the embeddings derived from the CLIP [22] image encoder with
the local features of the concept image extracted using the CNN and replaced segments
of the textual prompt embeddings with this integrated information. Next, we evaluated
the similarity between the generated samples derived from the adapted prompts and the
reference concept images using a Siamese network. Finally, we filtered out any results
below a predefined similarity threshold to obtain the final outcome. This chapter presents
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an overview of the proposed large-scale text-to-image model, beginning with a discussion
of the background information in Section 3.1. Section 3.2 outlines our proposed data prepro-
cessing methods, Section 3.3 details the procedure for inserting image embeddings into text
embedding, and finally, Section 3.4 elaborates on postprocessing techniques that leverage
image similarity measurements.

3.1. Text-to-Image Diffusion Models

We employ Stable Diffusion [1], a text-to-image diffusion model comprising various
components and modules and trained on large-scale image-text pairs. Initially, the au-
toencoder’s encoder (denoted as ε) is trained to map the input image (x) to the spatial
latent code (z = ε(x)). The decoder, D, learns to map the latent code back to the image
D(ε(x)) ≈ x. Moreover, the diffusion model, like other generative models, models the
conditional distribution as p(z|y). In the text-to-image task, image generation is controlled
based on the input y(textcondition). In order to preprocess y, the CLIP text encoder cθ sends
y to an intermediate representation, and a cross-attention layer calculates the correlation
between the text and image. The objective of this conditional latent diffusion model is
as follows:

LLDM := Ez∼ε(x),y,ε∼N (0,1),t[‖ε− εθ(zt, t, cθ(y))‖2
2], (1)

where ε represents an unscaled noise sample, t denotes the time step, zt corresponds to
the latent noise at time t, and εθ denotes the denoising network. During inference, random
noise is sampled and iteratively denoised to produce a new latent image, zt. Subsequently,
this latent code is transformed into a new image through a pretrained decoder, x′ = D(zt).
Inside the model, the cross-attention layer modifies the intermediate representation, φ(zt),
based on the condition cθ(y). First, according to the projection layer, we represent the query
as Q = WQ · φ(zt), the key as K = WK · cθ(y), and the value as V = WV · cθ(y). WQ, WK, and
WV are the weight parameters of the query, key, and value projection layers, respectively.
The attention mechanism is then executed as a weighted sum over the value features.

Attention(Q, K, V) = So f tmax
(

QKT
√

d′

)
V, (2)

where d′ represents the output dimensions of the key and query. The latent image features
are updated using the attention block output. During fine-tuning, we adjust the distribution
mapping from images to text, drawing inspiration from Custom Diffusion and specifically
updating the parameters WK and WV of the diffusion model.

3.2. Data Preprocessing with SOD

If the object for personalization is not clearly highlighted in the concept images used
as input data, there can be issues. For example, if multiple objects are captured or if the
background has too much influence (as seen in Figure 3), unwanted objects may contribute
to the generation process and impede accurate creation. Moreover, there can be issues where
backgrounds that do not match the context of the input text are generated as the background
of the created image. In order to address these issues, we propose a preprocessing method
for concept images. The aim of our proposed method is to detect the object to be preserved
in the concept image and filter out all other parts. Therefore, we propose using a salient
object detection model that identifies the most visually salient object within the image,
as the identification of objects other than the target object is unnecessary. In this study,
we used high-resolution images collected from Unsplash and the high-resolution image
dataset BIG as our experimental data. To this end, we employed InSPyReNet [19], which
has demonstrated superior salient object detection capabilities in high-resolution images.

By using an original concept image set, Xo, containing N images, i.e., Xo ={
x1

o , x2
o , x3

o , . . . , xN
o
}

, we used InspyRenet to detect only the most salient object in each
concept image and obtain the mask mn

o for this object. mn
o is the mask for the salient object

of the nth concept image, with the object having a pixel value of 1 and the remaining having
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a value of 0. By using the concept images and masks for the salient objects, we obtained the
final dataset for training, Xm, as follows:

xn
m = xn

o ·mn
o , n ∈ {1, 2, 3, ..., N} (3)

We used Xm with random augmentation during training, and we did not augment it during
inference.

Figure 5 illustrates the generation results of our method (using SOD preprocessing)
compared to those of previous studies [14–16] that did not remove areas interfering with
the preservation of the concept. The prior methods tend to reflect all features included
in the concept image, regardless of the content of the prompt. That is, they attempt to
replicate not only the bicycle, which is the object to be preserved, but also the blue wall, the
beige floor, and even the composition of the wall and floor. In contrast, by applying our
preprocessing method, we can see that the identity of the target object is preserved without
being affected by unnecessary regions.

Figure 5. Comparison with previous methods that did not employ SOD mask preprocessing. We
compared our method with previous approaches [14–16] that did not remove the backgrounds from
the input images wherein the bicycle is intended to be preserved as the concept. The earlier methods
are affected by extraneous information beyond the concept, such as the colors and composition of
walls and floors, regardless of the text prompts entered. In contrast, our preprocessing removes such
information, resulting in the generation of images that better align with the given conditions.

InstantBooth [18] is similar to our method in that it uses mask-based image prepro-
cessing. However, there is a difference in the process of detecting the concept object and
generating masks. While InstantBooth employs entity segmentation models, our approach
utilizes SOD models. SOD models may have lower detection capabilities for multiple
objects compared to entity segmentation models, but they are more suited for identifying
the most prominent object within an image and offer computational efficiency with faster
processing speeds. These features are particularly advantageous for on-site applications
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requiring immediate image editing. For example, when taking product photographs in
a store and needing to edit them on the spot to meet customer requirements, the quick
preprocessing provided by SOD models presents a significant benefit.

3.3. Concept Embedding to Text Prompt

We inject the features of the concept image into the textual embedding to obtain a
new text embedding. These new text embeddings are created by combining the image
embedding of the concept image with the additional local features obtained from the
concept image, replacing the embedding corresponding to the identifier. Our approach
has demonstrated an improved capability to preserve the details of the concept over
the previous methods [14–16] that employ random initialization of word embeddings
corresponding to the identifier.

Initially, for a given target concept image for personalization, the text prompt must be
modified accordingly. By drawing inspiration from DreamBooth [14], we inserted a unique
identifier before the class noun to avoid the overhead caused by detailed descriptions of
the concept image set. For instance, suppose the modified prompt takes the following form:
‘A photo of [V] chair’, where ‘[V]’ serves as the unique identifier and ‘chair’ represents the
class noun. We denote this modified text prompt as p̂ and utilize the CLIP text encoder
to generate a text embedding, denoted as CLIPText( p̂) = fp̂. Subsequently, as depicted in
Figure 6, by leveraging the pretrained CLIP image encoder, we obtain a feature vector,
fk = CLIPImage(Ic), for the concept image Ic. Additionally, to utilize the local features
of the concept image, which capture specific regions, patterns, and structures within the
image, we extracted the local features fl of the concept using a CNN. Specifically, local
features containing features on shapes and forms were extracted from the pretrained
ResNet-50 [20]. In the initial blocks of ResNet-50, low-level features, such as edges and
corners, are output, whereas the intermediate blocks extract mid-level features representing
patterns, structures, and forms. The latter stages handle more complex and abstract high-
level features. Therefore, we used the local features, fl, of the concept extracted from the
intermediate blocks of ResNet-50 to obtain additional information for preserving details,
such as the structure, form, and patterns of the concept image. The image embedding, fk,
and local feature, fl, are concatenated to form a new image embedding, fc = Concat(fk, fl).
In order to prevent the influence of fl from becoming dominant, normalization and rescaling
were performed based on fc. Then, we found the embedding corresponding to the identifier,
[V], within fp̂ and replaced it with fc. In this process, a trainable, fully connected (FC) layer
is introduced to match the dimensions (768 dimension) of the text embeddings with the new
image embeddings T . The resulting finalized text embedding is used as a conditional input
for the diffusion model, and fine-tuning is conducted through attention operations with
the concept image at the cross-attention layer of the pretrained Diffusion U-net. Figure 7
visually demonstrates that the pattern of the concept image is more accurately maintained
by applying the new image embedding technique that incorporates the local feature that
we have proposed.

Our approach shares similarities with ELITE [17] and InstantBooth [18] in that it
uses an image encoder to map visual features into the textual space. However, the key
distinction lies in obtaining the visual feature to replace the text embedding. In contrast
to the approaches used by ELITE and InstantBooth, our method utilizes the intermediate
blocks of a pretrained ResNet-50 as a local feature extractor, combining the extracted
local features with image embeddings to create new image embeddings that incorporate
these local features. These are then mapped to the word embeddings corresponding to the
identifiers that serve as conditions for the diffusion process.
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Figure 6. Our network structure to obtain new image embeddings, including local features. The
concept image is used as input to obtain image embeddings through a pretrained CLIP image encoder.
In addition, local features are extracted from the intermediate blocks of a pretrained ResNet-50 and
are combined with the image embeddings. A trainable Fully Connected (FC) layer is introduced to
align the dimensions with the text embeddings, from which new image embeddings are derived.
These new image embeddings replace the identifier text embeddings and are utilized as the condition
for fine-tuning in the diffusion process.

Figure 7. Visual comparison of the results for the new image embedding with the local feature. By
additionally providing the local feature, it can be confirmed that the details of the pattern in the input
image are better preserved.

3.4. Image Similarity Measurement Using Siamese Networks

In postprocessing, we selected the final image by assessing the similarity between two
generated images. We employed a Siamese neural network [21] designed to quantify image
similarity. This model is trained to distinguish between pairs of images and calculate a sim-
ilarity score. The Siamese network has two identical subnetworks, each taking individual
input images and producing corresponding feature vectors. The final similarity score is
computed based on the Euclidean distance between these feature vectors. Siamese network
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training uses a contrastive loss function tailored to determine whether two input samples
are similar or dissimilar. This loss is defined as

Lcon = (1−Y)× 1
2

D2 + Y× 1
2
{max(0, M− D)}2, (4)

where Y represents a binary class variable that signifies whether the image pair belongs to
the same class (1) or different classes (0). Variable D is the Euclidean distance between the
feature vectors of image pairs produced by the Siamese network, and M is the hyperpa-
rameter that serves as a margin to determine the desired separation between embeddings
for different pairs. We trained the Siamese network by pairing concept images with images
from different objects within the same class. Subsequently, we used images generated by
diffusion alongside concept images to rank them based on similarity scores represented by
Euclidean distance. We removed the bottom 40% of images to filter out those images with
insufficient similarity, resulting in the final sample. Figure 8 illustrates the results of the
similarity scores computed using the Siamese network.

Figure 8. Image samples based on similarity scores. When using the Siamese network, we measure the
similarity score between the concept and generated images, selecting only those with high similarity.
The similarity score is computed by calculating the Euclidean distance between the embeddings of
the two images, where a low score indicates high similarity. Samples with scores in the bottom 40%
were classified as negative images, and the remaining samples were designated as positive images.

3.5. Model Training
3.5.1. Training Loss

We utilized two types of loss functions during training.
First, LLDM learns the latent representation of the input image from a noise vector,

enabling the effective reconstruction of complex textures and details in the image. It also
incorporates text prompts conditionally to properly adjust the relationship between text
and image. Here, instead of using parameter y for the conditional input, we used the text
embedding T newly obtained from the image embedding and local feature. The newly
defined LLDM is as follows:

LLDM := Ez∼ε(x),y,ε∼N (0,1),t[‖ε− εθ(zt, t, cθ(T ))‖2
2], (5)
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Second, we introduced a cosine similarity loss to train the FC layer appended to
the image encoder and ResNet, which was used as a local feature extractor. While LLDM
focuses on the accuracy of image reconstruction, the cosine similarity loss Lcos is centered
on enhancing the similarity between the embeddings of the generated images and the
embeddings of the concept images. The cosine similarity loss, which is generally used as a
traditional loss function, is being applied in various studies. Barz et al. [48] demonstrated
the usefulness of cosine loss in maximizing performance, especially in cases of small
datasets with a limited amount of training data. Our method, which utilizes only 4 to
8 input images during the fine-tuning process, introduces cosine loss to maximize the
similarity between the concept images and the generated images. Moreover, SimCLR [49]
measured the cosine similarity between the image embeddings of two images to assess
the similarity of the images. SimCLR calculated the cosine similarity by including both
similar and dissimilar images in the learning process for training regarding the judgment
of similarity between the selected images and then defined the loss function by applying it
to a softmax. However, our study focuses solely on ensuring that the generated images are
similar to the concept images, thereby only measuring the cosine similarity between the
embeddings of the concept image and the generated image, and the cosine similarity loss is
as follows:

Lcos = 1−
fc · fg

‖ fc‖‖ fg‖
, (6)

where fc represents the concept image embedding concatenated with local feature, and fg
is the image embedding of the generated sample. When the embeddings are highly similar,
the loss approaches 0, indicating a closer match between the generated sample and concept
image. Conversely, the loss increases as the embeddings diverge. We defined the total loss
function by combining these two loss functions, and we applied it during the training
process. Through experimentation, we found that if the proportion of the cosine loss is
excessively large, it yields good results in stylization but fails to properly reflect the text
prompts in editing. Conversely, if the proportion is too small, the opposite occurs. In order
to solve this issue, we introduced a learnable parameter, α, to apply an appropriate ratio of
cosine loss, thereby determining the final cosine loss. The initial value of α is set to 0.5, and
the overall loss is as follows:

L = LLDM + αLcos (7)

We updated the FC layer that was additionally connected for image embeddings,
the ResNet for local feature extraction, and only the Key and Value weights of the cross-
attention layer of the diffusion network, as it has been shown in Custom Diffusion [15]
that updating only the Key and Value weights of the cross-attention layer is sufficient to
improve the model’s understanding of text-image pairs. The rest are frozen.

The training process is shown in Figure 9, and the effects of Lcos are described in
Section 4.3.2.
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Figure 9. The workflow for calculating our model’s loss function.

3.5.2. Results Per Training Epochs

In order to verify the performance of our method, we examined the visual outcomes
generated at each stage of the generation process and measured the image alignment, text
alignment, and DINO scores, epoch by epoch. As seen in Figure 10, the cup images, which
have relatively simple patterns and structures in the input image, are well-represented
by both the baseline model [15] and our model. However, the baseline tends to over-
imitate the input image, causing overfitting and an inability to properly follow the prompt.
Conversely, our method performed well, as it was prompted without being affected by
the background, demonstrating the effectiveness of the preprocessing method. Similarly,
for the clock input images at the bottom, our method was less affected by background
noise and better captured the color and structure of the clock compared to the baseline
model. This improvement appears to originate from the additional local features learned
that provided color and pattern details for the concept image. Moreover, implementing
cosine similarity loss during training seems to have effectively preserved the concept by
enhancing the similarity between the embeddings of the generated samples and the concept
image. Moreover, Figure 11 illustrates how image alignment, text alignment, and DINO
alignment change over the epochs. As the training progresses, the gradual increase in image
alignment and DINO scores indicates effective learning in preserving the concept image.
Furthermore, the improvement in text alignment demonstrates that the generated images
are being trained to faithfully follow the text prompts.
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Figure 10. Epoch-by-epoch visual results compared to the baseline.

Figure 11. Quantitative score evolution with training epochs.

4. Experiment

We present the datasets and evaluation metrics used in our experiments, and sub-
sequently compare and analyze the results obtained using our method with those of
existing approaches.

4.1. Dataset and Evaluation
4.1.1. Datasets

We conducted experiments on 10 target datasets, encompassing various categories,
including furniture items, such as chairs, tables, beds, and sofas, as well as animals, such as
dogs and cats.

The images used for the experiments were sourced from the BIG [50] dataset, which
includes high-resolution images, ranging from 2048 × 1600 to 5000 × 3600, from Un-
splash [51], which is known for providing copyright-free high-resolution images. In ad-
dition, we extracted class-specific images from the large-scale text-image dataset LAION-
400M [52], utilizing these as the regularization dataset and also for training the Siamese
network as either positive or negative datasets.

Furthermore, to enhance the reliability of our experiments, we utilized images that
we had captured ourselves. This approach played a significant role in assessing the net-
work’s performance compared to existing datasets and in verifying the applicability of our
research findings.

Figure 12 showcases one or more sample images for each subject. Figure 13 shows the
results of the experiments with our own dataset. In order to evaluate general performance,
we compared the generation results of our method to those of previous methods using self-
captured data at resolutions below 1000× 1000. For the cat toy (left), both Custom Diffusion
and DreamBooth were influenced by background information and failed to generate
accurate images corresponding to the prompt. Moreover, Textual Inversion produced
completely different images, but our method represented the cat’s face and the context
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of the prompt relatively well. Similarly, for the flowerpot (right), the previous methods
were affected by the background area, or the number and shape of black labels differed
from the input image. Our method, however, accurately depicted the location and number.
Nevertheless, we observed that there are still limitations in depicting very fine details, such
as the content of the text.

Figure 12. The dataset, with over 10 categories.
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Figure 13. Comparison between the generated results (using our own data) and those of the previ-
ous methods.

4.1.2. Evaluation Metrics

We employed several metrics to evaluate the fidelity of the generated images, the distri-
butional similarity between the concept and generated images, and the alignment between
the given prompt and the image. First, we evaluated the similarity between the generated
and actual images using CLIP [22] image alignment and DINO [53] evaluation metrics.
CLIP image alignment measures pairwise cosine similarity between the embeddings of
the generated and real images, reflecting their semantic content alignment. In contrast,
DINO assesses the cosine similarity between the embeddings of an image, focusing on the
fidelity and distinctiveness of the features and structures within the image. In other words,
CLIP image alignment quantifies the ’similarity’ of the content of two images, while DINO
helps distinguish the detailed differences between images or objects within the same class.
Additionally, we calculate the kernel inception distance (KID) [54] between the generated
and concept images to measure distributional similarity. Furthermore, CLIP text alignment
is computed to assess the alignment between the given prompt and image by measuring
the average cosine similarity between the prompt and image embeddings. The results of
these measurements are given in Table 1. Our method shows an increase in the CLIP-T and
DINO metrics compared to the previous methods. This suggests that the images generated
by our approach more closely follow the given prompts. We surmise that this results from
the preprocessing technique we introduced, which reduces background interference. The
increase in DINO also indicates an improved ability to preserve objects and patterns within
the image. However, we have observed a decrease in the CLIP-I and KID metrics compared
to Custom Diffusion [15]. This can be attributed to the fact that the resulting images gener-
ated by the previous methods retain more of the input image’s background, which is also
included in the concept images that are the subject of measurement.
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Table 1. Quantitative evaluation comparison. CLIP image alignment and CLIP text alignment are
denoted as CLIP-I and CLIP-T, respectively. Compared to existing models, we observed improvements
in the metrics according to CLIP-T and DINO [53]. Our proposed approach more accurately represents
images related to the prompt’s description and discerns finer details within the images.

Method CLIP-T ↑ CLIP-I↑ DINO↑ KID↓

Textual Inversion 0.259 0.586 0.428 32.2
DreamBooth 0.421 0.785 0.654 16.7

Custom Diffusion 0.440 0.882 0.666 8.21
Ours 0.460 0.852 0.743 8.83

Higher values for CLIP-T, CLIP-I, and DINO indicate better performance, while lower values for KID signify
superior performance. Values highlighted in bold indicate the best performance.

4.2. Implementation Details

We employed Stable Diffusion [1] v1-4 as a pretrained [55], large-scale text-to-image
model for the experiment. For image embeddings, we employed the CLIP image encoder
with an additional FC layer. To extract local features, we used a CNN up to the intermediate
layers of a pretrained ResNet, which was our local feature extractor. During training,
all parameters were frozen except for the diffusion cross-attention layer, the FC layer of
the image encoder, and the CNN local feature extractor. In order to optimize the image
encoder and CNN, we incorporated a cosine similarity loss, parameterized by α, which
was initialized at 0.5 and constrained not to exceed 1. During data preprocessing, we
superimposed the salient object extracted using the SOD mask onto various monochromatic
backgrounds. This strategy accentuated the prominence of object information amidst
monotonous backgrounds. We set the batch size to 4 for our training configurations and
adapted the number of training steps based on categories. Specifically, objects, such as
pieces of furniture (e.g., chairs and tables), exhibiting complex patterns or an inconsistent
number of legs were subjected to more than 500 training steps. Conversely, concepts with
more straightforward forms underwent 250 steps. We trained the networks using a learning
rate of 1 × 10−5 on an Intel Core i7-10700 processor clocked at 2.9 GHz, with two NVIDIA
RTX 3090 GPUs, each equipped with 24 GB GPU memory.

4.3. Ablation Study

In this section, we conduct an ablation experiment to evaluate the effect of SOD mask
preprocessing and cosine similarity loss.

4.3.1. Preprocessing Using SOD Mask

We conducted ablation experiments to compare the effects of preprocessing with and
without the use of SOD masks, and we analyzed both the qualitative and quantitative results.

Figure 14 compares the visual results obtained using the masked and unmasked
images. When SOD mask preprocessing is not applied, it can be observed that the generated
images do not preserve the concept well. This could be inferred as the result of the features
from objects other than the concept object blending into the target object.

Additionally, a qualitative evaluation was conducted for whether or not the SOD
mask was used. In Table 2, CLIP image alignment and DINO exhibited the most significant
improvements when employing the SOD mask. By filtering unnecessary information from
the concept image using the SOD mask, the generated samples exhibit a higher fidelity to
the concept image.
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Figure 14. Generated image after removing unnecessary regions using SOD model [19]. When using
the concept image without preprocessing, the desired object could not be properly preserved due
to unwanted features being present in the background, such as the yellow entity (first row). In
contrast, using the SOD model to detect only the salient objects, the concept remains unaffected by
the background (second row).

Table 2. Quantitative comparison for SOD mask ablation.

Method CLIP-T ↑ CLIP-I↑ DINO↑ KID↓

w/o SOD mask 0.415 0.657 0.572 18.2
with SOD mask 0.424 0.763 0.691 14.5

Higher values for CLIP-T, CLIP-I, and DINO indicate better performance, while lower values for KID signify
superior performance. Values highlighted in bold indicate the best performance.

4.3.2. Cosine Similarity Loss Ablation

Next, we compare the model performance based on the cosine similarity loss intro-
duced to train the FC layer appended to the image encoder for text embedding conversion
and the CNN local feature extractor. Figure 15 displays samples based on the cosine
similarity loss, and Table 3 presents a quantitative comparison.

Table 3. Quantitative comparison using cosine similarity loss with the learnable parameter α. We
conducted a qualitative comparison based on the influence ratio of Lcos. The optimal parameter value
of 0.6 obtained through learning provided the best results in CLIP text and image alignment and
KID [54]. When α is high, the DINO evaluation showed favorable results but had the lowest text
alignment. As α increases, DINO captures details better, but overfitting results in a less accurate
alignment with the textual description.

Method CLIP-T ↑ CLIP-I↑ DINO↑ KID↓

w/oLcos 0.672 0.671 0.418 6.85
α = 0.6 0.677 0.698 0.412 6.34
α = 6 0.655 0.693 0.455 7.65

Higher values for CLIP-T, CLIP-I, and DINO indicate better performance, while lower values for KID signify
superior performance. Values highlighted in bold indicate the best performance.
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Figure 15. Results based on cosine similarity loss Lcos and the trainable parameter α. We compared
the result samples of Reconstruction (first row), Editing (second row), and Stylization. For the recon-
struction samples, good results were obtained regardless of the Lcos value. In addition, appropriate
results for the text prompt were produced in Editing and Stylization for small and large values of
Lcos, respectively. Moreover, a balanced result is observed at α = 0.6.

4.4. Qualitative Results

In this section, we compare the visual results of our approach with those of exist-
ing models.

Visual Comparison

In Figure 16, we use the same prompts to compare the proposed method with existing
methods for image reconstruction, image editing, and style transfer across five categories
(such as sofa, toys, and vase). Notably, Textual Inversion [16] distorts information, such
as ratios and colors, and may not entirely adhere to the prompts. DreamBooth generates
high-quality images but has substantial training time and storage requirements. In contrast,
Custom Diffusion enhances speed but cannot incorporate fine patterns and structural
information. Our method shares a similar speed to Custom Diffusion, yet it mitigates the
loss of color and structural information while preserving detailed patterns.
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Figure 16. Visual comparison of existing methods. The generated outcomes that had given concept
images as input (first column). We visually compared the results of image reconstruction (first row),
image editing (rows 2, 3, and 4), and style transfer (fifth row) generated under the same prompts
between the existing methods [14–16] (columns 2, 3, and 4) and our approach (fifth column). The
proposed method better preserves the detailed patterns and structures of the cat’s face (third row),
the color and pattern of the penguin toy (fourth row), and the intricate pattern and structure of the
vase (fifth row).

4.5. Failure Cases

Our method occasionally over-emphasizes patterns or produces incorrect structures
when faced with excessively intricate patterns, complex structures, or situations where
parts of the concept object are occluded. Figure 17 illustrates the failed generation results,
which make it difficult to discern its complete form.
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Figure 17. Failure cases. Limitations in the image quality can be observed when dealing with irregular
structures (first row) or fine patterns (second row). Additionally, the results are inaccurate for objects
with occlusion (third row).

5. Discussion and Conclusions

We introduced a method to enhance the performance of personalized image generation
models trained on large-scale text-to-image models, aiming to improve detail preservation
in personalized text-to-image tasks. Our experiments used high-resolution image datasets
collected from sources like BIG and Unsplash, as well as images captured by ourselves.
By providing clear information about the region of the image to be preserved and using
the SOD mask, we reduce unnecessary background information that contaminates the
generated output. Unlike similar studies that preprocess using entity segmentation, pre-
processing with SOD aims to detect only the most prominent objects, allowing for efficient
preprocessing at a faster rate. This enabled us to observe visual improvements compared
to previous methods that were unable to follow the input text prompts properly due to
interference from unnecessary areas like the background, and we also noted enhancements
in text alignment. Additionally, mapping the concept image to the text embedding space
allowed for the utilization of a wealth of visual information. We mapped the concept image
to the text space using pretrained image and text encoders. In contrast to prior research,
our method employs a CNN local feature extractor to supply local features in conjunction
with text embeddings. The incorporated local features offer a wealth of information on the
patterns, colors, and structures of the concept image, generating new image embeddings
mapped to the text space. This helped ensure the generated images better preserve the con-
cept’s details, as confirmed by the visual results and improvements in qualitative metrics
like DINO. Furthermore, the introduction of cosine similarity loss guided the generation
of images that were more similar to the input concept image. Although there was a slight
decrease in CLIP Image alignment and KID compared to the baseline model, we attribute
this to the tendency of previous methods to overfit to the input image, particularly when the
input is ambiguous due to the background. Finally, during postprocessing, we employed a
Siamese network to selectively choose high-similarity images. Our strategies demonstrated
the generation of images with high fidelity that closely follow the prompts. However, we
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also recognized the generative limitations in creating very fine patterns, the text included
in an image, and unusual structures and proportions. Although our experiments utilized
fomulas that are established and traditional, future work may benefit from incorporating
more advanced, precise techniques to further enhance the outcomes. Moving forward,
we plan to explore multimodal methods in future research to improve these issues by
employing additional conditions beyond text prompts.
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