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Abstract: The continuous evolution of video technologies is now primarily focused on enhancing
3D video paradigms and consistently improving their quality, realism, and level of immersion. Both
the research community and the industry work towards improving 3D content representation, com-
pression, and transmission. Their collective efforts culminate in the striving for real-time transfer
of volumetric data between distant locations, laying the foundation for holographic-type commu-
nication (HTC). However, to truly enable a realistic holographic experience, the 3D representation
of the HTC participants must accurately convey the real individuals’ appearance, emotions, and
interactions by creating authentic and animatable 3D human models. In this regard, our paper aims to
examine the most recent and widely acknowledged works in the realm of 3D human body modelling
and reconstruction. In addition, we provide insights into the datasets and the 3D parametric body
models utilized by the examined approaches, along with the employed evaluation metrics. Our
contribution involves organizing the examined techniques, making comparisons based on various
criteria, and creating a taxonomy rooted in the nature of the input data. Furthermore, we discuss the
assessed approaches concerning different indicators and HTC.

Keywords: human body modelling; human body reconstruction; holographic-type communication;
3D avatars; deep-based human body reconstruction

1. Introduction

Technological advancements have initiated the era of HTC. As explained in [1], HTC
involves the transition from one person’s actual location to another without the need for
a physical traversal of the intervening space. However, the actual enablement of a truly
immersive holographic experience necessitates the creation of convincing Mixed Reality
(MR) environments, incorporating virtual elements and lifelike human avatars. The sup-
port of natural interactions between the virtual participants (the avatars), manipulated by
real individuals, is one of the greatest aspects distinguishing future HTC from conventional
voice and video-based modes of communication. Moreover, besides HTC, many other ap-
plications in the field of healthcare, such as remote consultations, surgical training, remote
collaboration, remote rehabilitation, etc. [2–8]; education, including remote collaborative
learning, remote guest speakers, anatomy education, etc. [9–13]; entertainment, such as
interactive storytelling, Augmented Reality (AR)/Virtual Reality (VR) gaming, live con-
certs, etc. [14–18]; and e-commerce, in particular virtual try-on [19–21] will benefit from a
visually authentic and interactive human appearance. Both academia and industry attempt
to automate the detailed acquisition of 3D human pose and shape. The availability of
sophisticated 3D acquisition equipment and powerful reconstruction algorithms has made
realistic avatar generation possible. In fact, significant advancements are made in this field
as digital avatars progressively acquire greater lifelike qualities, leading to increased trust
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among individuals. However, replicating real social interactions, including eye contact,
body language, and conveying emotions through nonverbal cues (such as touch) and social
signals (such as coexistence, closure, and intimacy), remains a formidable challenge, even
with the current state of technological advancements. Therefore, the creation of lifelike hu-
man avatars that accurately represent both human appearance and behavior is a prominent
subject within the realm of holographic experiences.

So far, a multitude of distinct methods for 3D human modelling and reconstruction
have been developed, and tremendous efforts are still ongoing in this direction. However,
the existing methods exhibit significant diversity in terms of whether they employ a
parametric model, the chosen reconstruction approach, the dataset utilized, and, most
notably, the input data type. Previous surveys have placed emphasis on variations in
the parametric modelling of the 3D human body shape [22], as well as on the types of
reconstruction approaches, such as traditional, regression-based, or optimization-based
methods, among others [23–26]. In contrast, beyond reviewing parametric models, datasets,
and evaluation metrics, our work endeavors to provide a clear distinction among diverse
3D modelling approaches based on the type of input data. To this end, we survey existing
methods of 3D human body modelling and reconstruction techniques and establish a
taxonomy categorizing the methods into image-based, video-based, and depth-based
approaches.

The survey was conducted following the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses statement (PRISMA) [27] and is shown in Figure 1.
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Figure 1. Summary of PRISMA flowchart of the article selection process.

During the screening process, we searched the Google Scholar database using the word
combinations: human body modelling, human body reconstruction, 3D avatars, image-
based reconstruction, video-based reconstruction, depth-based reconstruction, parametric
human body models, statistical body models, etc. The search resulted in 117 records,
of which 2 were excluded due to record duplication. Then, 29 more were excluded on the
basis of the papers’ subject matter according to their abstracts. We assessed the remaining
81 papers as eligible for this study and examined their content in detail. Finally, 70 works
were considered the most relevant on the topic and were included in the review.
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The structure of our paper is illustrated in Figure 2. Section 1 contains a brief intro-
duction to the topic and gives the motivation behind this work. Section 2 introduces some
popular parametric human body models that are often used for the task of 3D human body
reconstruction. Section 3 presents the available datasets used for 3D human body recon-
struction. In Section 4, a few evaluation metrics that are usually employed for performance
assessment are described. Section 5 proposes a taxonomy for 3D human body modelling
and reconstruction techniques based on the input data and examines existing methods in
the field. The parametric models, datasets, and evaluation metrics used are highlighted.
Section 6 discusses the reviewed papers. Finally, this work is concluded in Section 7.

Introduction
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Figure 2. Paper structure.

2. Parametric Human Body Models

Building lifelike human avatars and the subsequent animation is one of the main
challenges facing HTC. There is a need for creating accurate representations of HTC
participants, which necessitates the detailed reconstruction of 3D digital human models.
The generation of such models requires individual- or population-based anthropometric
data. Anthropometric measurements are used to describe a person’s physical appearance.
They are estimates of the distances (both linear and curved) between anatomical landmarks
or circumferences at specific human body regions of interest. Height (stature), weight (body
mass), upright sitting height, triceps skinfold (upper arm girth), arm circumference (upper
arm girth), abdominal circumference (waist circumference), calf circumference, knee height,
and elbow breadth are all common anthropometric measurements [28]. The anthropometric
database must be extremely thorough in order to be credible for a specific group and to
account for multivariate coherences.

Constructing an accurate human body model from various types of input data, such
as single images, multi-view images, videos, or depth maps, is a great challenge. Existing
methods for fitting a pose to the input data typically rely on parametric, yet statistical,
human body models. Such an approach usually requires the indication of body joints,
which is mostly carried out manually, but automatic and semi-automatic methods [29] also
exist. Further, deep neural networks have been recently used to compute statistical models’
parameters [30]. These types of modelling techniques have become an integral component
in the recent methods for 3D human body reconstruction and animation. Here, we present
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two of the most popular statistical body models and one that is a promising improvement
of the second presented model.

2.1. SCAPE

The authors of [31] introduced SCAPE (Shape Completion and Animation of People). It
presents a data-driven approach for creating a human body model that considers variations
in both shape and posture. Their methodology involves the development of two distinct
models for body deformation: one that accounts for deformations resulting from changes
in an individual’s pose and another that captures deformations across various body shapes
among different individuals. To accomplish this, a specific dataset of human body scans is
collected. It comprises a pose dataset containing multiple pose scans of a specific individual
and a body shape dataset containing scans of multiple individuals in similar poses.

SCAPE considers the pose and shape deformations over each of the mesh triangles, pk,
with triangle points, respectively, xk,1, xk,2, and xk,3. Particularly, deformations are applied
over the triangle edges v̂k,j = xk,j − xk,1, where j = 2, 3. A specific triangle’s deformation is
given in Equation (1).

vk,j = Rl[k]SkQk v̂k,j, (1)

where vk,j corresponds to the edges of the transformed triangle, Rl[k] is related to the rigid
rotation matrix that is the same for all triangles in the mesh that belong to the specific body
part l[k], and Qk is a linear transformation matrix that is associated with the non-rigid pose-
induced deformations and is specific to each triangle. Sk is another linear transformation
matrix that corresponds to body-shape-induced deformations. Both deformation matrices,
Qk and Sk, are not known but can be obtained by using the preliminary model-learned
parameters {ak} and {U, µ}, such that Qk = Qak (∆rl[k]) and Sk = SU,µ(β), where ∆rl[k]
corresponds to a joint angle that is representative of the relative joint rotations of two rigid
parts adjacent to the same joint and β corresponds to the body shape parameters. Both
the joint rotations and the body shape parameters are provided by the user. On the other
hand, {ak} corresponds to the learned SCAPE model parameters that are related to the
pose-induced body deformations, and {U, µ} are the learned PCA parameters that capture
the space of model shape deformations. Finally, given all the transformation matrices, R, Q,
and S, associated with a specific pose and body shape, a completely new body mesh, Y,
can be synthesized according to Equation (2), where yj,k corresponds to the specific triangle
points of the generated model.

EH [Y] = ∑
k

∑
j=2,3

∥∥∥Rl[k]SkQk v̂j,k − (yj,k − y1,k)
∥∥∥2

(2)

Figure 3 illustrates a block diagram detailing the SCAPE body model generation
process. It delineates three separate blocks representing the input parameters, namely the
SCAPE mean template shape; the user-defined parameters, R and β; and the learned SCAPE
parameters, {ak} and {U, µ}. The last two sets of parameters are essential for constructing
the pose-induced (Qk) and the shape-induced (Sk) deformation matrices. Within the block
SCAPE model generation, these matrices, along with Rl[k], modify the SCAPE template
mesh and thus generate the new body model.

Although SCAPE has high fidelity, it lacks the ability to capture a strong correlation
between body shape and muscle deformation, for which a more expressive model is
needed. This may be due to the fact that the model is learned separately for pose and shape
variations. However, developing a method that simultaneously uses scans from different
people with different poses would require a different approach.
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Learned SCAPE parametersUser parameters

Composing pose-induced and shape-
induced deformation matrices

SCAPE model generation

SCAPE Mean
Template Shape

Figure 3. Block diagram of the SCAPE body model generation process.

2.2. SMPL

More recent methods for 3D human body reconstruction use an SMPL (Skinned
Multi-Person Linear) Model [32]. Similar to SCAPE, the body model is also examined
in two different aspects: identity-dependent shape and non-rigid pose-dependent shape.
In contrast to SCAPE, where mesh triangles are primarily utilized, an SMPL considers a
vertex-based skinning approach. A mean template mesh, T ∈ R3N , in the zero pose θ∗

facilitates the model, where N is the total number of vertices. The model is also defined by
the following functions. A blend shape function, BS(β,S) : R|β| → R3N , takes as an input
the shape parameters, β, and a set of learned body shape parameters, S , and as an output a
blend shape sculpting the subject identity according to Equation (3):

BS(β;S) =
|β|

∑
n=1

βnSn (3)

The function J(β) : R|β| → R3K predicts the location of the K skeletal joints with
respect to the subject-specific body shape according to Equation (4):

J(β,J , T,S) = J (Vshaped) (4)

where Vshaped = T + BS(β;S). A pose-dependent blend shape function, BP(θ,P) : R|θ| →
R3N , takes as input the pose parameters, θ, and a set of learned body pose parameters,
P , and as an output blend shapes effected by pose-dependent deformations, considering
Equation (5).

BP(θ,P) =
9K

∑
n=1

(Rn(θ)− Rn(θ
∗))Pn (5)

Then, a blend skinning function, W(·), rotates the mesh vertices around the estimated
joint centers with respect to the set of learned blend weightsW ∈ R3N×K. The resulting
model is described by M(β, θ, T,S ,J ,P ,W) : R|β|×|θ| → R3N and is finally defined in
Equation (6)

M(β, θ, T,S ,J ,P ,W) = W(TP(β, θ), J(β;J , T,S), θ,W) (6)

where {T,W ,S ,J ,P} is the full set of SMPL model parameters. Except for the mean
template model, T, the rest are the learnable model pose (W ,J ,P) and model shape (S)
parameters obtained during the training. In contrast, β and θ are passed from the user and
control the learned parameters, generating a completely new body model. TP(β, θ, T,S ,P)
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accounts for the offset from the template model caused due to identity-dependent and
pose-dependent shape deformations Equation (7).

TP(β, θ, T,S ,P) = T + BS(β,S) + BP(θ,P) (7)

Figure 4 visualizes a block diagram of the SMPL human body model generation
process. The figure defines three separate blocks for input parameters, namely the SMPL
mean template shape, T, the user parameters, β and θ, and the learned SMPL parameters,
W ,S ,J ,P . The user parameters and the SMPL learned parameters are used to generate
the shape blend shapes, the joint location of the new body shape, and the pose blend shapes.
In the block shape and pose correction, the obtained shape and pose blend shapes are
added to the SMPL template mesh in order to create a template offset, TP. The generation
of a new body model is indicated in the SMPL model generation block, where the offset
of the template mesh, the predicted joint locations, the pose parameters, and the blend
weights are passed to a standard blend skinning function W(·).

Since its creation in 2015, the SMPL model has been extensively utilized in various
reconstruction algorithms due to its open-source nature, compatibility with diverse datasets,
and widespread popularity, making it a cornerstone in 3D human body research.

Learned SMPL parameters

Shape Blend Shape
Fucnction

Joint Location Prediction
Fucnction Pose Blend Shape Fucnction

Shape correction

User parameters

SMPL model generation

SMPL Mean Template
Shape

Shape and pose correction

Figure 4. Block diagram of the SMPL body model generation process.

2.3. STAR

Although the SMPL model is widely adopted due to its intuitive parametrization, it
suffers from several drawbacks, indicated by [33]. The first limitation that is considered is
the huge number of parameters due to the use of global blend shapes. Since each vertex
in the mesh is related to every joint in the kinematic tree, the pose-corrective offsets may
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capture a spurious long-range correlation, resulting in less realistically generated models.
The authors of [33] define the STAR (Sparse Trained Articulated Human Body Regressor),
where subsets of mesh vertices that are influenced by specific joint movements are learned.
This is reflected by applying per-joint pose correctives and obtaining better results according
to deformation realism and a reduced number of model parameters. A second limitation
of the SMPL model is the separate examination of the pose-dependent deformation and
the body shape. The authors of the STAR argue for the simultaneous consideration of
both body pose and BMI (Body Mass Index) by learning shape-dependent pose-corrective
blend shapes. Third, the SMPL training dataset is presented by not so many body scans,
limiting the shape space. In contrast, the STAR model is trained with additional body scans,
resulting in better model generalization.

Similar to the SMPL model, the STAR is a vertex-based model that also factors the
body shape into the subject’s identity shape and pose-dependent deformations. However,
contrary to the SMPL model, the authors assume that pose-corrective deformation is a
function of both body pose, θ ∈ R|θ|, and shape, β ∈ R|β|. Additionally, during training,
a subset of vertices that is relevant to a specific joint, j, is learned, so the pose-corrective
blend shape function is applied to it. A template model, T ∈ R3N , where N is the total
number of vertices, is subject to deformation by a shape-corrective blend shape function,
BS, as a meaning of the subject’s identity and a pose-corrective blend shape function, BP, as
a meaning of the subject’s pose with assumed realism in shape.

The shape-corrective blend shape function BS(β;S) : R|β| → R3N is defined in
Equation (8):

BS(β;S) =
|β|

∑
n=1

βnSn (8)

where β are the shape coefficients and S is a set of learned parameters that express the
principal components capturing the shape variability space.

Further, the pose-corrective blend shape function with respect of the subject’s identity
pose, BP(q, β2;K, A) : R|q|×1 → R3N , and BMI is defined in Equation (9):

BP(q, β2;K, A) =
K−1

∑
j=1

Bj
P(qne(j), β2;Kj, Aj) (9)

In this case, a pose-corrective function is applied for each joint, j, in the kinematic
tree independently by Bj

P(qne(j), β2;Kj, Aj), where K is the total number of joints (the root
joint is not considered), qne(j) ⊂ q is a subset that contains a single joint, j, and its direct
neighbors in the kinematic three, β2 corresponds to the PCA coefficient of the second
principal component, which is highly related to the BMI, Kj ∈ R3N×|qne(j)|+1 is a linear
regressor weight matrix, and Aj corresponds to the activation weights for each vertex.
The last two terms are learned during training.

The template mesh with an added pose- and shape-corrective offset, TP, is defined in
Equation (10):

TP(β, θ, T,S ,K, A) = T + BS(β,S) + BP(q, β2;K, A) (10)

Finally, a standard skinning function, W, is applied considering the transformed mesh,
TP, the full set of predicted body joints, J(β,J , T,S) = J (T + BS(β;S)), J ∈ R3K, and a
learned set of blend weight parameters,W . The STAR model is defined in Equation (11):

M(β, θ, T,S ,J ,K, A,W) = W(Tp(β, θ, T,S ,K, A), θ,W). (11)

A block diagram of the STAR human body model generation process is given in
Figure 5. Since the STAR model builds on the SMPL model, both block diagrams look
quite similar. However, STAR modifications are highlighted in the light red blocks. First,
the input learned parameters include K and A instead of P . Then, the pose blend shape
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function takes different input parameters and is applied for each joint, j, in the kinematic
tree. The generation of the template offset and the new STAR model in the respective
blocks are similar to those of the SMPL model, with a difference in the function parameters.
The remaining few blocks are the same as those of the SMPL model.

Learned STAR parameters

Shape Blend Shape
Fucnction

Joint Location Prediction
Fucnction

Shape correction

User parameters

STAR model generation

STAR Mean Template
Shape

Shape and pose correction

Pose Blend Shape Fucnction

Figure 5. Block diagram of the STAR body model generation process.

3. Human Body Datasets

Human bodies are flexible, moving in various ways and deforming their clothing and
muscles. Another complicating issue, like the occlusion of different body parts during
movement, may necessitate comprehensive scene modelling in addition to the peoples in
the scenario. Such image understanding scenarios push, for example, the avatar body ani-
mation system’s ability to use prior knowledge and structural correlations by constraining
estimates of unseen body components using limited visible information. Insufficient data
coverage is one of the most significant issues for trainable systems. So, many researchers
have concentrated their efforts on creating publicly available datasets that can be used to
build operational systems for realistic scenarios.

One of the largest motion capture datasets is the Human 3.6 M dataset [34]. It consists
of 3.6 million fully visible human poses and corresponding images. All of them are cap-
tured by a high-speed motion capture system. The recording setup consists of 15 sensors
(4 calibrated high-resolution progressive scan cameras that acquire video data at 50 Hz,
1 time-of-flight sensor, and 10 motion cameras), using hardware and software synchroniza-
tion. This allows for accurate capture and synchronization. The dataset contains activities
performed by 11 professional actors (6 male, 5 female) in 17 scenarios—taking photos,
discussing, smoking, talking on the phone, etc. Also, accurate 3D joint positions and joint
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angles from high-speed motion capture systems are provided. Other useful additions are
3D laser scans of the actors, high-resolution videos, and accurate background subtraction.

The MPI-INF-3DHP [35] is a 3D human body pose estimation dataset. It consists of
both constrained indoor and complex outdoor scenes. The dataset comprises eight actors
(4 male, 4 female) enacting eight distinct activity sets, each lasting about a minute. With a
diverse camera setup, 14 cameras in total, over 1.3 M frames have been obtained, with 500 k
originating from cameras at chest height. The dataset provides genuine 3D annotations
and a skeleton compatible with the “universal” skeleton of Human 3.6 M. To bridge the
gap between studio and real-world conditions, chroma-key masks are available, facilitating
extensive scene augmentation. The test set, enriched with various motions, camera view-
points, clothing varieties, and outdoor settings, aims to challenge and benchmark pose
estimation algorithms.

The Synthetic Humans for Real Tasks (SURREAL) dataset [36] contains 6.5 M frames of
synthetic humans, organized into 67,582 continuous sequences. The SMPL [32] body model
is employed to generate these synthetic bodies, with body deformations distinguished
by pose and intrinsic shape. Created in 2017, it is the first large-scale person dataset to
generate depth, body parts, optical flow, 2D/3D pose, surface, normal, and ground truth
for Reed Green Blue (RGB) video input. The provided images are photorealistic renderings
of people in different shapes, textures, viewpoints, and poses.

Dynamic Fine Alignment Using Scan Texture (DFAUST) [37] is considered a 4D
dataset. It consists of high-resolution 3D scans of moving non-rigid objects, captured at
60 fps. A new mesh registration method is proposed. It uses both 3D geometry and texture
information to register all scans in a sequence according to a common reference topology.
The method makes use of texture constancy across short and long time intervals, as well as
dealing with temporal offsets in shape and texture.

Microsoft Common Objects in Context (MS COCO) [38] is a large-scale object detection,
segmentation, and captioning dataset. It consists of many other objects, but also humans
and human photos. The dataset offers recognition in context, superpixel stuff segmentation,
and 250,000 people with key points.

Leeds Sports Pose (LSP) [39] and its extended version—LSPe [40]— are human body
joint detection datasets. The LSPe dataset contains 10,000 images gathered from Flickr
searches for the tags ‘parkour’, ‘gymnastics’, and ‘athletics’ and uses poses that are chal-
lenging to estimate. Each image has a corresponding annotation that might not be highly
accurate because it is gathered from Amazon Mechanical Turk. Each image is annotated
with up to 14 visible joint locations.

The Bodies Under Flowing Fashion (BUFF) dataset, as delineated by the authors
of [41], offers over 11,000 3D human body models engaged in complex movements. It is
distinctive in its inclusion of videos featuring individuals in clothing paired with 3D models
devoid of clothing textures. This dataset emerges from a multi-camera active stereo system,
utilizing 22 pairs of stereo cameras, color cameras, speckle projectors, and white-light
LED panels operating at varied frame rates. This system outputs 3D meshes averaging
around 150 K vertices, capturing subjects in two distinct clothing styles. Of the initial six
subjects, the data from one were withheld, resulting in a public release of 11,054 scans.
To derive a semblance of “ground truth”, the subjects were captured in minimal attire,
with the dataset’s accuracy showcased by the proximity of more than half of the scan points
to the mean of the estimates. The BUFF dataset efficiently captures detailed aspects of
human movement while also considering the impact of different clothing on a body’s shape
and motion.

The HumanEva datasets [42], comprising HumanEva-I and HumanEva-II, offer a
blend of video recordings and motion capture data from subjects performing predefined
actions. HumanEva-I encompasses data from four subjects executing six distinct actions,
each with synchronized video and motion capture, and one with only motion capture. This
dataset leverages seven synchronized cameras, utilizing multi-view video data coupled
with pose annotations. On the other hand, HumanEva-II focuses on two subjects, both
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of whom are also present in HumanEva-I, performing an extended “Combo” sequence,
resulting in roughly 2500 synchronized frames. The data, collected under controlled indoor
conditions, capture the intricacies of natural movement, albeit with challenges posed by
illumination and grayscale imagery.

The UCLA Human–Human–Object Interaction (HHOI) dataset [43] is a novel RGB-D
(Reed Green Blue—Depth) video collection detailing both human–human and human–
object–human interactions, captured using a Microsoft Kinect v2 sensor. Comprising
three human–human interactions—-hand shakes, high-fives, and pull ups-—and two
human–object–human interactions—-throw and catch and hand over a cup—the dataset
features an average of 23.6 instances for each interaction. These instances are performed
by eight actors, recorded from multiple angles, and spanning 2–7 s at a frame rate of
10–15 fps. While objects within the dataset are discerned using background subtraction
on both RGB and depth images, the Microsoft Kinect v2’s skeleton estimation is also
utilized. The dataset, divided into four distinct folds for training and testing, ensures
no overlap of actor combinations between the sets. The training algorithm demonstrates
robust convergence within 100 iterations, operating on a standard 8-core 3.6 GHz and
yielding an average synthesis speed of 5 fps using an unoptimized Matlab code.

To address prevalent challenges in viewpoint invariant pose estimation, a novel
technical solution has been presented in [44]. It integrates local pose details into a learned,
viewpoint-invariant feature space. This approach enhances the iterative error feedback
model to incorporate higher-order temporal dependencies and adeptly manage occlusions
via a multi-task learning methodology. Complementing this endeavor is the introduction of
the Invariant Top View (ITOP) dataset, a comprehensive collection of 100 K depth images
capturing 20 individuals across 15 diverse actions, encompassing a wide range of views,
from front, top, to side, inclusive of occluded body segments. Each image in the ITOP
dataset is meticulously labeled with precise 3D joint coordinates relative to the camera’s
perspective. With its unique blend of front/side and top views—-the latter captured
from ceiling-mounted cameras—-the ITOP dataset stands as a significant resource for
benchmarking and furthering advancements in viewpoint-independent pose estimation.

The 3D Human Body Model dataset established by the authors of [45] is a synthetic
dataset that consists of 20,000 three-dimensional models of human bodies in static poses
and an equal gender distribution. It is generated with the STAR parametric model [33].
While generating the models, two primary considerations were maintained: the natural
Range of Motion (ROM) for each joint and the prevention of self-intersections in the 3D
mesh. Existing research on the human ROM was referenced to define the limitations of
joint rotations. Despite adhering to ROM constraints, certain non-idealities sometimes
result in self-intersections in areas like the pelvic region, knees, and elbows. To address
this, each vertex of the mesh is associated with a specific bone group. Self-intersections
between non-adjacent bone groups are considered forbidden, and an algorithm flags such
meshes as invalid.

The 3D Poses in the Wild Dataset (3DPW) [46] offers a unique perspective by capturing
scenarios in challenging outdoor environments. This extensive dataset encompasses more
than 51,000 frames featuring seven different actors donning 18 distinct clothing styles.
The data collection process involves the use of a handheld smartphone camera to record
the actions of one or two actors. Notably, 3DPW enhances its utility by providing highly
accurate mesh ground truth annotations. These annotations are generated by fitting the
SMPL model to the raw ground truth markers.

The Max Planck Institute for Informatics (MPII) dataset serves to evaluate the accuracy
of articulated human pose estimation. This dataset comprises approximately 25,000 images,
featuring annotations for over 40,000 individuals, including their body joints. These images
were systematically compiled, capturing a wide array of everyday human activities. In total,
the dataset encompasses 410 different human activities, with each image labeled according
to the specific activity depicted. The images are extracted from YouTube videos.
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In addition to the well-known datasets mentioned earlier, there exist several others
employed in the 3D reconstruction methods reviewed. A comprehensive list of these
datasets, including the ones previously mentioned, is presented in Table 1. These datasets
are compared based on the availability of various types of data, such as RGB images,
frame sequences, depth maps, multi-view perspectives, 2D poses, 3D poses, and 3D body
meshes. The respective papers that utilize each dataset are also referenced. The dash
indicates missing or unspecified types of data. In instances where RGB frame sequences
are provided, it is automatically assumed that RGB images are also accessible.

Table 1. Datasets and reviewed papers that have referred to them

Dataset
RGB
Im-
age

Frame
Se-

quence
Depth Multi-

View
2D

Pose
3D

Pose
3D

Mesh
Used in

References

Human 3.6 M [34] X X X X X X X [47–58]

MPI-INF-3DHP [35] X X - X - X - [47–50,55,59]

Synthetic Humans for Real Tasks (SURREAL) [36] X X X - X X X [49,58,60,61]

Dynamic Fine Alignment Using Scan Texture (DFAUST) [37] X X X X - X X [58,62,63]

Microsoft Common Objects in Context (MS COCO) [38] X - - - - - - [47–50,52,57]

Leeds Sports Pose (LSP) [39] X - - - X - - [47–50,55]

Leeds Sports Pose Extended (LSPe) [40] X - - - X - - [47–50,52,55]

Bodies Under Flowing Fashion (BUFF) [41] X X - X - - X [62,64]

HumanEva [42] X X - X - X - [51,54,56]

Human–Human–Object Interaction (HHOI) [43] X X X X - X - [51]

Invariant Top View (ITOP) [44] - X X X - X - [65]

3D Poses in the Wild Dataset (3DPW) [46] X X - - - X X [50,52,55,59]

People Snapshot [62] X X - - - X X [66,67]

Unite the People [68] X - - - X X X [48,60]

Max Planck Institute for Informatics (MPII) [69] X X - - X X X [47,48,50,52,55]

Polarization Human Shape and Pose Dataset (PHSPD) [70] X X X X X X X [61]

Thuman2.0 [71] - - - - - - X [72]

3D Occlusion Human (3DOH) [73] X - - X X X X [52]

Expressive Hands and Faces (EHF) [74] X - - - X - X [75]

Sports Shape and Pose 3D (SSP3D) [76] X X - - X X X [75]

Articulated dataset [77] X X - X - X X [63,78]

Clothed Auto Person Encoding (CAPE) [79] X X - X - X X [78]

WCPA [80] X - X - - X X [81]

Human Multiview Behavioral Imaging (HUMBI) [82] X X - X X X X [53]

Carnegie Mellon University (CMU) [83] X X - X X - - [56]

Dynacap [84] X X - X X X X [85]

DeepCap [86] X X - X - X X [85]

Multiperson Pose Test Set in 3D (MuPoTS-3D) [87] X X - X X X - [59]

Advanced Industrial Science and Technology (AIST) [88] X X - X - - - [59]

University of British Columbia (UBC 3V) [89] - X X X - X - [65]

MonoPerfCap [90] X X - X - - X [64]

SAIL-VOS 3D (S3D) [91] X X X X - - X [92]

ZJU-MoCap [93] X X - X - - - [67,85]
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4. Evaluation Metrics

Applying evaluation metrics is crucial to quantitatively assessing the reconstruction
quality of generated models in the field of 3D human body reconstruction. Here, we
briefly introduce some of the most commonly utilized metrics for this purpose. These
metrics provide a standardized and objective means of evaluating the accuracy and fi-
delity of reconstructed 3D human body models, ensuring a reliable assessment of the
reconstruction process.

• Mean Per-Joint Position Error (MPJPE)

The MPJPE [58] is a common metric that evaluates the performance of human pose
estimation algorithms. It measures the mean distance in mm between the skeleton joints
of the ground truth 3D pose and the joints from the estimated pose. The formulation is
provided in Equation (12):

EMPJPE =
1

NS

NS

∑
i=1

∥∥∥m( f )
f ,S(i)−m( f )

gt ,S
(i)
∥∥∥

2
(12)

where NS corresponds to the total number of skeleton joints, m( f )
f ,S(i) is a function that

returns the coordinates of the i-th joint of skeleton S in frame f , and m( f )
gt ,S

(i) is a function
that refers to the i-th joint of the skeleton in the ground truth frame. A commonly used
modification of the MPJPE is the Procrustes-aligned MPJPE (PA-MPJPE), which is calculated
in a similar way with the difference that the reconstructed model and the ground truth one
are previously aligned using the Procrustes algorithm.

• Mean Average Vertex Error (MAVE)

The MAVE [56] is used to find the averaged distance between the vertices of the
reconstructed 3D human model and the vertices of the ground truth data. It is defined by

EMAVE =
1
N

N

∑
i=1

√∥∥ϑi − ϑ̄l
∥∥2

2 (13)

where N is the total number of vertices of the 3D model, ϑi is a vertex from the predicted
3D human body model, and ϑ̄i is a vertex from the corresponding ground truth data.

• Chamfer Distance

The symmetric point-to-point Chamfer distance measures the similarity between two
point clouds P and Q. A common formulation is given in Equation (14):

dCD(P, Q) =
1
|P| ∑

x∈P
min
y∈Q
||x− y||22 +

1
|Q| ∑

y∈Q
min
x∈P
||x− y||22 (14)

where x and y are points from P and Q, respectively, and |P| and |Q| are the total number
of points in P and Q. The utilization of the min function refers to measuring the distance of
a point from one point cloud to its nearest neighbors in the other point cloud. A modified
version of the Chamfer distance, where the sum is replaced by a max function, is provided
in Equation (15):

dMCD(P, Q) = max

{
1
|P| ∑

x∈P
min
y∈Q
||x− y||22,

1
|Q| ∑

y∈Q
min
x∈P
||x− y||22

}
(15)

• Vertex-to-Surface Distance (VSD)

The VSD metric quantifies the average distance between the vertices of a point cloud
and their corresponding points on the surface of a triangular mesh. These surface points
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can either be the vertices of the mesh or points that reside on its faces or edges. The au-
thors of [94] incorporate this metric into their 3D model-fitting algorithm, employing a
lifted optimization technique. Points on the surface are defined via surface coordinates,
represented as u = {p, v, w}. Here, p ∈ N denotes the triangle’s index where the point is
situated, and v ∈ [0, 1], w ∈ [0, 1− v] are the coordinates within the unit triangle. Therefore,
the 3D coordinates of a point on the surface can be defined as shown in Equation (16),
where v1, v2 and v2 are the vertices of the p-th triangle.

S(u) = (1− v− w)v1 + vv2 + wv3 (16)

The distance between a point from a point cloud and its correspondence on the surface
of the mesh can be further calculated as described in Equation (17), where D is the number
of points xi in the point cloud and U = {ui}D

i=1 are the surface coordinates of those points.

EVDS(U) =
1
D

D

∑
i=1
||S(ui)− xi||2 (17)

Within the confines of the algorithm described in [94], the mesh under consideration is
parametric. This implies that its vertex coordinates are contingent on the parameter vector,
θ. Given that the algorithm adopts lifted optimizations, both θ and the surface coordinates,
U, are optimized concurrently.

5. Taxonomy of Existing 3D Human Body Modelling and Reconstruction Techniques

In this section, we identify three distinct types of visual data utilized as input for 3D
human body modeling and reconstruction: single or multiple images, video data, and depth
map data. Correspondingly, Figure 6 presents a taxonomy of existing 3D human body
modeling and reconstruction techniques based on the input data. In essence, 3D human
body modeling is a task in computer vision and computer graphics aimed at generating a
3D photorealistic representation of the human body. This task often involves, but is not
limited to, processes such as data acquisition, 2D pose estimation through the detection
of 2D body joints, camera calibration and triangulation in the case of multiple views, 3D
pose estimation to derive the pose of the future 3D model, model shape optimization
when using parametric body models, surface reconstruction and texturing for obtaining a
detailed 3D representation of the model’s surface, and post-processing and refinement to
increase the quality of the reconstructed 3D model. However, it is challenging to compose
a concrete framework of operations that applies universally across different input data
types and reconstruction approaches. Nevertheless, several key steps, which are visualized
in Figure 7, are commonly accomplished in most of the examined methods, including 3D
pose estimation, coarse 3D shape estimation, 3D shape refinement, and texture recovery.
The blocks surrounded with dash lines indicate that the utilization of the parametric body
model and the appliance of 3D pose estimation is sometimes omitted by some of the
examined algorithms, most of which are deep learning based. The figure also illustrates the
different types of input data.
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Single image Multiple images

Figure 6. Taxonomy of 3D human body modelling and reconstruction techniques based on input data.

Parametric body
model 3D pose

estimation
Coarse 3D shape

estimation

3D human body reconstruction
Texture
recovery3D shape
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Frame sequence

Types of input data
Single image Multiview images Depth data

Figure 7. A 3D human body model reconstruction. (Parametric body model [32])

5.1. Image Data

In this subsection, we will explore significant works focused on 3D model reconstruc-
tion from 2D images. Initially, we will delve into 3D reconstruction techniques that leverage
a single image as input, followed by methods based on multiple images.

5.1.1. Single Image

The authors of [95] focus on estimating both the shape and the pose of a person
from a single image, with only a rough estimate of the height. They use a database of
over 2400 subjects and utilize SCAPE to build their own parametric human body model.
Further, the authors apply “Silhouettes, Edges, and Shading” to create an output 3D
model that reflects both the pose and the shape of the human from the input 2D image.
The authors derive that shadowing may significantly improve the estimation of human
exact measurements.

In [47], an end-to-end framework for reconstructing a full 3D mesh of a human body
from a single RGB image is developed. The authors utilize the SMPL model to encode the
mesh of a 3D human body. An accent is placed on the 3D body representation, the exploita-
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tion of iterative 3D regression with feedback, and on a factorized adversarial prior. Many
2D (LSP, LSPe, MPII, and MS COCO) and 3D (MPI-INF-3DHP and Human 3.6 M) datasets
are utilized. The authors report great results for some of the lowest MPJPE values.

BodyNet [60] is an end-to-end trainable neural network that generates a 3D body shape
from a single RGB image. The input 2D images are taken from the SURREAL and Unite the
People datasets. All of the selected images depict people with different clothing and are
snapped from different camera viewpoints. There are four main aspects in the proposed
workflow: volumetric inference for 3D human shape, multi-view re-projection loss on
the silhouette, multi-task learning with intermediate supervision, and fitting a parametric
body model. The SMPL model is fit to the output of BodyNet for evaluation purposes.
The approach yields cutting-edge results, and there is a strong belief that it can serve as a
trainable building block for upcoming techniques utilizing 3D body data. Surface error,
Voxel, and Silhouette Intersection over Union (IoU) are exploited for evaluation metrics.

The authors of [48] retrieve beyond skinned detailed human body shape models from
a single image in a coarse-to-fine manner. They combine the robustness of parametric body
models with the flexibility of free-form deformations by proposing a novel learning-based
framework. Specifically, the SMPL model is utilized for obtaining an initial parametric
mesh model whose surface is further defined by performing non-rigid 3D deformation
on the mesh. A deep learning approach is applied to each stage of the proposed network.
Initially, an SMPL mesh is estimated from the input image. Then, all other stages serve
as refinement phases that predict the mesh deformation to finally produce a detailed
human shape. The authors use three datasets together to conduct their experiments: the
WILD dataset—used for training and testing and constructed by 5 free pre-existing human
datasets—Human 3.6 M, MS COCO, LSP, LSPe, MPII, MPI-INF-3DHP, and the Unite the
People dataset; the RECON dataset—used for evaluation and constructed by the authors
through traditional multi-view 3D reconstruction techniques; and the SYN dataset—also
used for evaluation and constructed by the authors by rendering synthetic human mesh
models from the PVHM dataset [96]. The authors report results that outperform other
SMPL-based approaches when running their three custom-created datasets. However,
further improvements are needed to reduce errors in the depth direction.

In [61], a method for 3D human shape reconstruction from a polarization image is
proposed. The method is based on a dedicated deep learning approach called Structure
from Polarization. It consists of two main stages. The first stage estimates the surface normal
from a single polarization image. The second stage estimates the human body shape and
pose using the already available surface normal and the raw polarization image. Body
shape refinement is also considered. For the body shape and pose estimation, the SMPL
model is utilized. The authors use the synthetical SURREAL dataset, as well as one real-
world dataset—the Polarization Human Shape and Pose Dataset (PHSPD). Empirical results
are derived by using the Mean Angle Error (MAE) for the normal estimation evaluation
and the MPJPE metric.

The authors of [49] introduce a method for recovering a complete 3D mesh of a human
body from a single image. They develop a deep learning approach based on a generative
adversarial network, which consists of a specially designed shape–pose-based generator
and a multi-source discriminator. The SMPL model is an important part of the shape–pose-
based generator that outputs the generated human body mesh. The training is performed
on multiple different datasets, namely LSP, LSPe, MS COCO, MPI-INF-3dHP, Motion and
Shape capture (MoSh), SURREAL, and Human 3.6 M. The proposed method is evaluated
through pose and segmentation evaluation metrics. Specifically, for the pose evaluation,
the MPJPE is utilized.

In [50], the issues related to the absence of high-resolution images for the task of
3D human model reconstruction are addressed by developing an RSC-Net (RSC stands
for resolution-aware network, a self-supervision loss, and a contrastive learning scheme),
a deep-based resolution-aware network that is able to handle images with arbitrary res-
olution. An accent is placed on the 3D human pose and shape representation, as SMPL
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is utilized. The authors also present a temporal recurrent module that is able to extend
the single-image model to low-resolution videos. The model is trained using multiple
datasets, such as the Human 3.6 M, MPI-INF-3DHP, LSP, LSPe, MPII, and MS COCO
datasets. The evaluation results obtained using the MPJPE and PA-MPJPE demonstrate
better performance among other algorithms.

The work of [51] proposes a pose grammar for a 3D human body model recovering in
a natural way. The method takes an estimated 2D pose as an input and learns a generalized
2D–3D mapping function for 3D pose estimation. The proposed deep grammar network
consists of two important components: a base 3D pose network that encodes appearance
and geometry features from the input image and the detected 2D pose and a 3D pose
grammar network, based on bi-directional recurrent neural network that encodes human
body dependencies and relations. The authors use the Human 3.6 M, HumanEva [42],
and HHOI databases. In order to generate additional training samples, they also utilize a
novel Pose Sample Simulator. The results are given as a comparison between the estimated
pose and the ground truth in mm through the Average Euclidean Distance.

In [72], a novel 3D object representation, specifically aimed at enhancing the efficiency
and accuracy of monocular real-time 3D human reconstruction, named the Fourier Occu-
pancy Field (FOF) is introduced. Specifically, the FOF presents a 3D object as a 2D field,
converting the occupancy field along the z-axis into a Fourier series and retaining only
the initial few terms. It demonstrates the capability to represent high-quality 3D human
geometries using a 2D map aligned with images, bridging the gap between 2D image data
and 3D geometries. Experimental validation was conducted using both publicly available
datasets (Thuman2.0 and Twindom) and real-world captured data. The VSD and Chamfer
distance are used for evaluating the results.

The authors of [52] introduce POCO (pose and shape estimation with confidence).
It is a novel framework aimed at addressing the challenge of 3D human pose and shape
estimation from 2D images, while also providing a measure of uncertainty in its estimations.
The model infers both body parameters, specifically leveraging SMPL parameters, and the
accompanying regression uncertainty in a single feed-forward network pass. POCO is
based on a dual conditioning strategy that includes an image-conditioned base density func-
tion and a pose-conditioned scale. The model is trained on the MS COCO, Human 3.6 M,
MPI-INF-3D, MPII, and LSPe datasets. An evaluation is conducted on the 3DPW, 3D Occlu-
sion Human (3DOH), and 3DPW-OCC datasets. The MPJPE, PA-MPJPE, and Per-vertex
error (PVE) are used as evaluation metrics.

In [75], a methodology for estimating whole-body human parameters from a single
image, addressing the challenges of monocular human body estimation in wild conditions,
is presented. The method, called “KBody”, employs a predict-and-optimize approach
that seeks to balance three traits, pose, shape, and pixel alignment, while also effectively
managing partial images. KBody’s methodology aims to improve fitting quality via the
introduction of virtual joints, which are tailored to fit estimated data and facilitate a
harmonious interaction with silhouette constraints. Further, to manage images with missing
information, the method utilizes an appearance-prior approach, completing them in a
structurally plausible way. A variant of SMPL, SMPL-X [74], is utilized. Performance is
assessed via the Procrustes-aligned vertex-to-vertex error (PA-V2V), scale-corrected per-
vertex Euclidean error in a neutral pose (PVE-T-SC) [76], and IoU. The expressive Hands
and Faces (EHF) and Sports Shape and Pose 3D (SSP3D) datasets are used for conducting
the experiments.

Table 2 summarizes the examined papers for 3D human body modeling and recon-
struction based on single-image input data and compares them by assets, constraints, the
utilization of parametric models, datasets, and evaluation metrics.
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Table 2. Comparison of 3D modelling approaches based on single-image input.

Research Year Main Focus Assets Constraints Parametric
Model Dataset Evaluation

Metric

[95] 2009

Computing para-
metric body
shape from shad-
ing

Minimal human
intervention; ex-
tracting body
shape from paint-
ings

Limited light-
ing conditions;
impossibility of
recovering hair
and clothes

SCAPE Not specified Not specified

[47] 2018

Human mesh
recovery of 3D
joint angles and
body shape

Precise joints
locations; no
requirement for
2D to 3D paired
data

Additional pro-
cessing require-
ment for obtain-
ing better results;
impossibility of
recovering hair
and clothes

SMPL

LSP, LSPe, MPII,
MS COCO, Hu-
man 3.6 M, MPI-
INF-3DHP

MPJPE, PA-
MPJPE

[60] 2018

Inference of vol-
umetric human
body shape di-
rectly from a
single image

Fully automated
end-to-end pre-
diction system;
functioning as a
trainable build-
ing block

Impossibility
of recovering
hair; low results
accuracy after
the segmentation
step

SMPL (only for
evaluation pur-
poses)

SURREAL, Unite
the People

Voxel IoU, Silhou-
ette IoU, Surface
error

[48] 2019

Coarse-to-fine
refinement of
parametric 3D
model composed
from a single
image

Exploitation of
custom build
datasets

Pose ambiguities;
Large errors
in body mesh
prediction

SMPL

Human 3.6 M,
MS COCO, LSP,
LSPe, MPII, MPI-
INF-3DHP, Unite
the People, RE-
CON, SYN

Silhouette IoU,
2D joint error,
3D error (MAVE
but with nearest
neighbors)

[61] 2020

3D human body
model recon-
struction from a
polarized image
using synchro-
nized cameras

Providing geo-
metric details
of the surface;
Obtaining more
reliable depth
maps

Need of a polar-
ization cameras;
Limited datasets
with polarized
images

SMPL SURREAL, PH-
SPD MAE, MPJPE

[49] 2021

Introduction
of Generative
Adversarial Net-
works for human
mesh reconstruc-
tion

Detailed body
shape; Real-time
solution; Possibil-
ity for use with
video data; Dis-
criminator used
for reality check

Impossibility
of recovering
hair and clothes;
Getting faster
and better re-
sults with a pre-
trained generator

SMPL

LSP, LSPe, MS
COCO, MPI-INF-
3dHP, MoSh,
SURREAL, Hu-
man 3.6 M

MPJPE

[50] 2021

3D model recon-
struction from
low-resolution
images

Possibility for
training with all
kinds of image
resolutions; tex-
tured 3D model
in color

Impossibility of
recovering long
or voluminous
hair; easily af-
fected by noise

SMPL

Human 3.6 M,
MPI-INF-3DHP,
LSP, LSPe, MPII,
MS COCO

MPJPE, PA-
MPJPE

[51] 2021

Introduction of
a pose grammar
for achieving
better 3D human
body model
representation

Enforcing high-
level constraints
over human
poses

Not specifying
body shape re-
covering; require-
ment for different
types of data for
achieving better
results

Not used
Human 3.6 M,
HumanEva,
HHOI

Average Eu-
clidean Distance

[72] 2022

3D geometry
representation
for monocular
real-time and
accurate human
reconstruction

FOF for repre-
senting high-
quality 3D hu-
man geometries
using a 2D map
aligned with
images

FOF inability
for representing
too-thin objects

SMPL (partially) Thuman2.0, Twin-
dom

VSD, Chamfer
distance
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Table 2. Cont.

Research Year Main Focus Assets Constraints Parametric
Model Dataset Evaluation

Metric

[52] 2023
3D pose and
shape estimation
with confidence

3D human pose
and shape esti-
mation from 2D
images, while
providing a mea-
sure of pose un-
certainty

Not providing
shape uncertainty SMPL

MS COCO, Hu-
man 3.6 M, MPI-
INF-3D, MPII,
LSPe, 3DPW,
3DOH, 3DPW-
OCC

MPJPE, PA-
MPJPE, PVE

[75] 2023

Framework for
estimating whole-
body human
parameters from
a single image

3D estimation
on human body
shape and pose;
handling images
with missing
information

Image-based
appearance-prior
technique for
completion com-
ing with limi-
tations for non-
frontal facing
images

SMPL-X EHF, SSP3D PA-V2V, PVE-T-
SC, IoU

5.1.2. Multiple Images

In [97], a CNN-based approach for accurate 3D human body reconstruction from
silhouettes is proposed. The authors contribute with the creation of extensive, realistic
synthetic data at a larger scale; the adoption of a multi-task learning strategy for the
prediction of multiple outputs, including shape, 3D joint positions, pose angles, and body
volume; and the introduction of a novel network architecture that incorporates known
body measurements (e.g., height) and per-pixel segmentation confidence as additional
inputs. The SMPL parametric model is utilized. The authors conduct their experiments on
the CAESAR dataset [98] and assess the achieved results by leveraging the mean distance
as an evaluation metric.

An approach using multiple images and angles for 3D human body modelling is
developed by [99], and a method for automatic 3D character reconstruction from frontal
and lateral monocular 2D RGB views is proposed. The template mesh of the SMPL model is
used in the first stage for obtaining a body model from the frontal view. Then, this modified
SMPL model is inputted into a second stage, where it is further modified by the lateral
view. The method focuses on two main aspects: the shape and the texture of the model.
Their custom dataset consists of front-view and side-view photos of people.

In the work presented in [78], the authors suggest a method for reconstructing 3D hu-
man body models from multiple images. This approach involves learning an implicit func-
tion for representing 3D shapes, relying on multi-scale features derived from multi-stage
end-to-end neural networks. Since the approach excludes the utilization of a geometrical
prior derived from parametric human body models, the current approach is considered
model-free. The experiments are conducted over two datasets, which are the Articulated
dataset and Clothed Auto Person Encoding (CAPE) dataset [79]. A quantitative evaluation
is performed on both datasets using the VSD, Chamfer distance, and IoU.

The authors of [53] introduce a multi-view human body mesh translator (MMT) model
for 3D human body mesh estimation. Specifically, it is a non-parametric deep-learning-
based model that leverages a vision transformer. It performs feature-level fusion, which
combines multi-view features to generate contextualized embeddings for the purpose of
decoding the output mesh representation. Consequently, the MMT takes multiple images
as input and fuses their features in both the encoding and the decoding stages. As a
result, a representation embedded with global information for the human body model
is composed. Experiments are conducted on the Human 3.6 M and Human Multiview
Behavioral Imaging (HUMBI) datasets, and the model performance is assessed by utilizing
the MPJPE, PA-MPJPE, and MPVE evaluation metrics.

In [66], a novel meta-optimization technique is introduced that is specifically designed
to navigate scenarios wherein accurate initial guesses (e.g., certain poses and shapes at
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specific camera angles) are not available for rendering and reconstructing 3D human figures.
The covariance matrix adaptation annealing method is utilized, allowing for the easy incor-
poration of domain knowledge of hierarchical human anatomy. The SMPL model is used.
The authors conducted their experiments on the People Snapshot Dataset [62] and Hu-
man 3.6. Further, reprojection errors and the MPJPE are employed for the result evaluation.

In [81], the authors focus on 3D clothed human body reconstruction based on multiple
views and poses. They benefit from the geometry prior provided by the SMPLX model
in order to learn the latent codes of a posed mesh by taking multiple images as an input.
WCPA dataset is used for training and testing and quantitative evaluation is performed via
calculating the Chamfer distance of different strategies on the test dataset.

Table 3 summarizes the examined papers for 3D human body modeling and recon-
struction based on multiple-image input data and compares them by assets, constraints,
the utilization of parametric models, datasets, and evaluation metrics.

Table 3. Comparison of 3D modelling approaches based on multiple images input.

Research Year Main Focus Assets Constraints Parametric
Model Dataset Evaluation

Metric

[97] 2019
3D human body
reconstruction
from silhouettes

A supervised-
learning-based
approach utiliz-
ing CNNs for
3D human body
recovering

Need to increase
the range of ac-
ceptable poses
and camera view-
points while
maintaining the
same perfor-
mance

SMPL CAESAR Mean distance

[99] 2020

Reconstruction
from two points
of view: frontal
and lateral

Processing one
body side at a
time; tackling
the problem of
self-occlusions

Negative effect
of lighting over
the accuracy of
the reconstructed
model; custom
dataset

SMPL Custom dataset Not specified

[78] 2021

3D human body
reconstruction
from multiple
images

Learning model-
free implicit
function for 3D
human body
representation
relying on multi-
scale features

Not optimised
generalization
results due to
training set limi-
tations

Not used Articulated
dataset, CAPE

VSD, Chamfer
distance, IoU

[53] 2022
3D human body
mesh recovery
via MMT model

Utilization of a
non parametric
deep-learning-
based model
(MMT) lever-
aging a Vision
Transformer and
applying feature-
level fusion

Exploited evalua-
tion metrics—still
rough to appro-
priately assess
the reconstruc-
tion ability of the
model; slower
performance than
the parametric
models

Not used Human 3.6 M,
HUMBI

MPJPE, PA-
MPJPE, MPVE

[66] 2022

Meta-
optimization
technique for 3D
human rendering
and reconstruc-
tion

The approach—
designed for
scenarios where
accurate initial
guesses are not
available

Long execution
time and slow
convergence

SMPL
People-Snapshot
Dataset, Hu-
man3.6.

Reprojection
errors, MPJPE

[81] 2022

3D clothed hu-
man body re-
construction
based on mul-
tiple views and
pose

Deep-learning
approach incor-
porating the SM-
PLX model and
non-parametric
implicit function
learning

Not specified SMPLX WCPA Chamfer distance
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5.2. Video Data

The process of 3D human body reconstruction from video data involves the process of
generating a 3D model of a person’s body by analyzing a video sequence. This technique
leverages multiple frames of a person’s movements to create an accurate and detailed
representation of their body shape and posture.

The authors of [54] implement a fully convolutional model for 3D pose estimation
from sequences of 2D key points. Exploiting temporal convolutions is very important for
modelling time dependencies among series. The authors employ dilated convolutions
that facilitate the modelling of long-term time dependencies while maintaining efficiency.
Further, a semi-supervised training approach is introduced for settings where labeled
data of 3D ground truth pose is not available. Two video datasets for training the model
are utilized: Human 3.6 M and HumanEva-I. The evaluation of the proposed method is
performed mainly by computing the MPJPE and its variants.

In [62], a method for reconstructing a textured 3D human body model from a single
monocular video of a moving person is introduced. The goal of the authors is to generate a
personalized human avatar of the captured subject that correctly reflects its body shape, hair,
and clothes. Building a textured map and an underlying skeleton rigged to the surface is
also considered. The method combines three important steps: pose reconstruction using the
SMPL model, consensus shape estimation via transforming the collection of dynamic body
poses into a common reference frame, and frame refinement and texture map generation.
The experiments are performed on the DFAUST and BUFF datasets. Since these datasets
consist of 3D scans of moving people, a virtual camera rendering 2D video sequences is
implemented. The VSD is used as a quantitative evaluation metric.

The approach for 3D human modelling that the authors of [55] propose is to combine
the accuracy of the optimization-based methods with the promptness of the deep-based
regression methods. They introduce SPIN: SMPL optimization in the loop. This approach
utilizes a deep neural network to initialize an iterative optimization routine for fitting the
SMPL parametric model to 2D joints within the training loop. Already-fitted estimates of
the model are subsequently used to supervise the network. The experiments are conducted
on multiple datasets, such as Human 3.6 M, MPI-INF-3DHP, LSP, LSPe, 3DPW, MPII, COCO.
The mean reconstruction error, MPJPE, Area Under the Curve (AUC), and Percentage of
Correct Key points (PCK) evaluation metrics are exploited.

MotioNet [56] is a deep neural network that performs a 3D human motion reconstruc-
tion from a monocular video. The authors claim that this method is the first data-driven
approach that directly outputs a kinematic skeleton, which can be used for motion represen-
tation. The motion datasets that are used in this work are the Carnegie Mellon University
(CMU) (containing 2605 captured elementary actions and dance moves performed by
144 subjects), Human 3.6 M, and HumanEva datasets. The results are organized by the
specific motion, and the current approach declares one of the lowest MPJPEs.

In [57], a 3D uplifting model for the purposes of trying on clothes virtually in real-time
is introduced. This functionality is applicable to e-commerce and other fashion-related
purposes. To keep the system’s universality, the authors developed it to be compatible
with conventional devices like smartphones and tablets. This implies that their approach
is limited to monocular cameras or RGB video streams only. The framework consists of
the following steps: skeleton reconstruction and pose estimation, human body recovery
and adjustment to the estimated pose, garment mapping and reshaping, the projection of
the result to a real-time image, and pose refinement and model alignment for proper body
overlay. The datasets used during the implementation are MS COCO and Human 3.6 M.
The achieved quality and quickness of the results depend on the visual characteristics of
the input data, such as the image contrast and the color palette.

Implementing methods for 3D human body model reconstruction from low-resolution
video is valuable. The authors of [50] upgrade their method for reconstructing models
from a single image with arbitrary resolution quality to reconstruction from video, again
with arbitrary resolution quality. The RSC-Net, used for single-image inputs, is extended
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by incorporating a temporal post-processing step in order to handle video inputs. The
3DPW, Human 36 M, InstaVariety [100], and MPI-INF-3DHP datasets of video sequences
are utilized for conducting the experiments. The quantitative evaluation is performed using
the MPJPE, PA-MPJPE, and acceleration error.

The authors of [85] propose a methodology for modelling animatable human avatars
with dynamic garments. Their method is implemented by applying a Neural Radiance Field
(NeRF)-based representation and managing cloth deformations on multiple hierarchical
levels, all while utilizing a conditional variational auto-encoder to discern node-related
variables for facilitating realistic and dynamic animation. The model is trained end-to-
end using only RGB videos. The SMPL model is utilized. The datasets that are used
are Dynacap, DeepCap, and ZJU-MoCap. The Peak Signal-to-Noise Ratio (PSNR) and
Structural Similarity Index (SSIM) are used for the quantitative evaluation.

In [67], a method for human reconstruction and synthesis from monocular RGB videos
is explored, which is found challenging due to issues like clothing texture, occlusions,
and pose changes. The authors counter the common use of NeRFs and implicit methods,
which are often chosen for their ability to represent clothed humans. Their approach is
based on the optimization of an SMPL+D mesh and the utilization of a multi-resolution
texture representation using only RGB images, binary silhouettes, and sparse 2D key
points as inputs. The method demonstrates enhanced capability in capturing geometric
details compared to traditional visual hull mesh-based methods. It also shows notable
improvements and speedups in novel pose synthesis compared to NeRF-based meth-
ods, without the latter’s typical, unwanted artifacts. Experiments are conducted on the
ZJU-MoCap, People-Snapshot, and Self-Recon datasets. For the geometry reconstruction
evaluation, the Chamfer distance and VSD metric are utilized.

The authors of [59] employ PoseBERT, a transformer-based module for temporal 3D
human modelling using monocular RGB videos. The SMPL parametric model is utilized.
The AMASS dataset [101] is used for training the model. For evaluation purposes, the
3DPW, MPI-INF-3DHP, Multiperson Pose Test Set in 3D (MuPoTS-3D), and Advanced
Industrial Science and Technology (AIST) datasets are employed. The MPJPE, PA-MPJPE,
and MPVE are the main metrics used for assessing the achieved results.

Table 4 summarizes the examined papers for 3D human body modeling and reconstruc-
tion based on video input data and compares them by assets, constraints, the utilization of
parametric models, datasets, and evaluation metrics.

Table 4. Comparison of 3D modelling approaches based on video input

Research Year Main Focus Assets Constraints Parametric
Model Dataset Evaluation

Metric

[54] 2018

Temporal con-
volutions and
semi-supervised
training on video
for 3D pose esti-
mation

Training with a
small amount
of labeled data;
using the model
when motion
capture is chal-
lenging

Complicated
because of the
number of the
model’s layers;
not estimating
body shape

Not used Human 3.6 M,
HumanEva-I MPJPE

[62] 2018

Obtaining a tex-
tured 3D model
from a monoc-
ular video of a
moving person

Reconstructing
3D model with
detailed hair,
body, clothes,
and kinematic
skeleton

Limited recon-
struction of self-
occluded zones;
less accurate re-
sults due to fast
movements

SMPL DFAUST, BUFF VSD

[55] 2019
SMPL model
optimization in
the loop

Self-improving
training process;
possibility for
training in the
absence of 3D
annotations

High complexity
and impossibil-
ity of real-time
implementations

SMPL

Human 3.6 M,
MPI-INF-3DHP,
LSP, LSPe, 3DPW,
MPII, COCO

Mean reconstruc-
tion error, MPJPE,
AUC, PCK
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Table 4. Cont.

Research Year Main Focus Assets Constraints Parametric
Model Dataset Evaluation

Metric

[56] 2020

Generating an
accurate skeleton
from monocular
videos

Creation of a
more natural
human mo-
tion movement;
tackling the self-
occlusion prob-
lem

No body shape
estimation; large
effects of cam-
era movements
over the global
positioning of the
joints

Not used
CMU, Hu-
man 3.6 M, Hu-
manEva

MPJPE

[57] 2020
System function-
ality for real-time
garment overlay

Possibility of
real-time recon-
struction; frame-
work for garment
overlay

Impossibility
of recovering
hair and clothes;
limited body
mesh projection
optimization

SMPL MS COCO, Hu-
man 3.6 M Not specified

[50] 2021

3D human
model recon-
struction from
low-resolution
videos

Applicable to
low-resolution
videos; better ac-
curacy compared
to the case with
an image as input

Impossibility of
recovering long
or voluminous
hair; limited tex-
tured 3D model
in color; slower
implementation

SMPL

3DPW, Hu-
man36M, In-
staVariety, MPI-
INF-3DHP

MPJPE, PA-
MPJPE, ACC.

[59] 2022

3D pose esti-
mation from
monocular RGB
videos

Exploiting a
generic trans-
former module

Performance
degradation
in case of fast
human motion
or long-term
occlusions

SMPL

AMASS, 3DPW,
MPI-INF-3DHP,
MuPoTS-3D,
AIST

MPJPE, PA-
MPJPE, MPVE

[85] 2022

A methodology
for modelling an-
imatable human
avatars with dy-
namic garments

Recreating ap-
pearance and mo-
tion by leverag-
ing neural scene
representation
while explicitly
accounting for
the motion hierar-
chy of clothes

Method per-
formance de-
pending on pose
variance of the
training data;
assumption of ac-
curate body pose
estimation for the
training images

SMPL Dynacap, Deep-
Cap, ZJU-MoCap PSNR, SSIM

[67] 2023

A methodol-
ogy for human
geometry and
realistic textures
recovering from a
monocular RGB
video

SMPL+D mesh
optimization and
utilization of a
multi-resolution
texture repre-
sentation using
RGB images, bi-
nary silhouettes,
and sparse 2D
keypoints

Not specified SMPL
ZJU-MoCap,
People-Snapshot,
Self-Recon

Chamfer distance,
VSD

5.3. Depth Map Data

For the purposes of 3D human body reconstruction, some approaches [58,63–65,92]
exploit depth maps that are generated by specific systems. These kinds of systems use
structured light or the Time of Flight principle to measure the depth of an object, which
shows how far from the system the object is. Released in 2010 for gaming purposes,
Microsoft Kinect v1 has led a large number of academics to explore its possibilities outside
of just the video gaming experience. It uses a structured light method in which the radiation
is a known sparkle pattern on the scene. Dissimilar to it, Microsoft Kinect V2 utilizes the
Time of Flight method, in which the entire scene is flooded with light, and the depth is
determined by the time it takes each photon particle to return to the sensor [102].

In [63], a deep-learning-based approach for human body reconstruction from a single
RGB image in a calibration-free context is proposed. The novelty of the method is the way
the system is trained, in which a multi-view analysis of depth images is benefited from.
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By switching between two modes, RGB and D, or, in other words, by alternating between
RGB and depth data, the functionality of the deep model is improved by letting it learn the
space of pose and shape deformations. The authors use MPI-INF-3DHP, DFAUST, and the
Articulated datasets. They also collected their own samples by using a calibrated multi-
Kinect setup (five mesh sequences containing around 250 frames each). The evaluation
metric that they employ is the IoU. Finally, the authors derive that the use of multiple
views and depth information in the training process is critical for obtaining an accurate
reconstruction of the human body.

The authors of [65] developed a method for 3D human pose estimation from depth
maps. They name their model Deep Depth Pose, and it can adopt a 3D pose as a linear
combination of adapted prototype poses. Particularly, the model is defined as a CNN that
takes as an input the depth map containing a person and a set of predefined prototype
human body poses and returns the computed 3D positions of the person’s body joints.
The architecture is also enabled to work with multiple views, providing more accurate
estimations. The datasets used for training the model are ITOP and University of British
Columbia (UBC 3V) Hard-pose. The evaluation metrics applied are the average error,
computed by comparing the estimated and the ground truth 3D joint locations (MPJPE),
and the mean average precision (mAP), and AUC). The experimental results indicate
great method performance and achievement of state-of-the-art outcomes on both datasets
according to precision and decrease in the average error.

In [58], a technique for 3D human body pose and shape estimation based on a single
depth image is introduced. Considering the joint features and original depth features,
the method incorporates a spatial attention feature extractor that is able to capture local
spatial features of the depth images and the 3D joints. The authors implement a weakly
supervised mechanism based on the SMPL model for achieving better efficiency on real-
depth data. They also add a differentiable rendering layer utilized for the transformation
of the 3D models into silhouettes and depths. The experiments are conducted on the
SURREAL, Human 3.6 M, and DFAUST databases, as well as on some real depth images.
The results demonstrate the high efficiency of the proposed technique by comparing the
reconstruction errors (mm) and MAVEs with those of many other state-of-the-art methods
on the above datasets.

The authors of [64] propose PeelHuman—a novel shape representation of the human
body that is robust to severe self-occlusions. To achieve this, they compose an end-to-end
pipeline method called PeelGAN that reconstructs a textured human model from a single
RGB image using an adversarial approach. Two types of depth data are also exploited:
Peeled Depth and RGB maps. The authors also introduce their own 3D dataset consisting of
2000 multiple human body model sequences that vary in shape and pose and are recorded
by a calibrated setup of four Microsoft Kinect sensors. Except for their custom dataset, two
additional datasets are also exploited: BUFF and MonoPerfCap. A comparison to other
methods is carried out by calculating the Chamfer distance.

In [92], a novel method, termed the “occupancy planes (OPlanes) representation”, is
introduced. It is an approach for the 3D reconstruction from a single-view RGB-D image
that involves the creation of multiple image-like planes (OPlanes). These planes slice
through the camera’s view frustum, indicating occupancy at every pixel location for the
respective 3D point. Notably, OPlanes allows for the adaptive adjustment of the number
and location of the occupancy planes during both inference and training, thus providing
a resolution flexibility that is superior to that of conventional voxel grid representations.
Evaluations of the introduced approach were conducted on the SAIL-VOS 3D (S3D) dataset
using the IoU, Chamfer distance, and Normal Consistency, revealing improvements over
the preceding reconstruction efforts, particularly in scenarios featuring occluded or partially
visible humans.

Table 5 summarizes the examined papers for 3D human body modeling and recon-
struction based on single image depth map data and compares them by assets, constraints,
utilization of parametric models, datasets, and evaluation metrics.
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Table 5. Comparison of 3D modelling approaches based on depth map data

Research Year Main Focus Assets Constraints Parametric
Model Dataset Evaluation

Metric

[63] 2018

Textured 3D
human body
reconstruction
from a single
RGB image and
co-learning with
Microsoft Kinect
depth images

Considering
depth informa-
tion during the
training process

Partially han-
dling non-rigid
deformations

Not used (not
used for re-
construction,
but SMPL dataset
is used)

MPI-INF-3DHP,
DFAUST, the Ar-
ticulated dataset

IoU

[65] 2018

3D human pose
estimation from
depth maps us-
ing a Deep Learn-
ing approach

Possibility for us-
ing data from
both single
and multiple
viewpoints; no
demands on
pixel-wise seg-
mentation and
temporal infor-
mation

No body shape
estimation; addi-
tional noise when
using images in
the wild

Not used ITOP and UBC
3V Hard-pose

MPJPE, mAP,
AUC

[58] 2020

3D human body
pose and shape
estimation from
a single depth
image

Possibility of us-
ing the model
with real depth
data achieved by
the incorporated
weakly super-
vised mechanism

Complicated
with several
functionality
stages

SMPL (in the
training process)

SURREAL,
Human 3.6 M,
DFAUST

MAVE

[64] 2020

Creating 3D
human body
representation
from a set of
Peeled Depth and
RGB maps

Tackling severe
self-occlusions;
handling images
wide assortment
of shapes, poses,
and textures

Not providing
full body shape Not used

BUFF, MonoP-
erfCap, Custom
dataset

Chamfer distance

[92] 2023

3D reconstruction
from a single-
view RGB-D
image through
creating multiple
image-like planes
(OPlanes)

Exploitation of
spatial correla-
tions between
adjacent loca-
tions within a
plane, appropri-
ate particularly
for occluded or
partially visible
humans

Not specified Not used S3D
IoU, Chamfer
distance, Normal
Consistency

6. Discussion

Several significant conclusions can be drawn from a comprehensive analysis of the
reviewed papers. Based on the nature of the input data, i.e., single or multiple images,
video data, or depth maps, we can categorize three primary approaches to 3D human body
reconstruction, which form the foundation of our taxonomy. While there may be variations
within these approaches, and even among different methods within a specific approach,
they share some essential elements in the processing context. These common features
include data acquisition and the necessity of employing datasets, 3D pose estimation,
3D shape estimation, and possibly texture recovery, regardless of whether a parametric
body model serves as a geometric prior. The evaluation of the proposed methods and the
resulting outcomes are another common aspect among the examined works.

Following another criterion, the reviewed papers can be categorized into another taxon-
omy that distinguishes between two types of reconstruction methods employed: optimization-
based approaches, where a parametric body model is iteratively fitted to certain observations
(single image [95], multiple images [66,99], and video [57,62]) and regression-based approaches,
which involve training deep neural models to directly produce 3D representations of human
bodies, although they can also incorporate geometric priors (single image [47–52,60,61,72,75],
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multiple images [53,78,81,97], video data [50,54,56,59,85], and depth map [58,63–65,92]). No-
tably, some approaches, like the one designed by the authors of [55] (video input), employ a
combination of both types of methods by leveraging regression-based prediction to achieve a
strong initialization prior to the subsequent optimization step.

We can also categorize the presented methods based on the resulting 3D-type repre-
sentation of the human body model. While the majority of works focus on reconstructing
a 3D body mesh, there are alternative representations that rely on implicit neural rep-
resentations [81,85]. Additionally, the authors of [72] introduce a unique 3D geometry
representation termed the Fourier Occupancy Field.

Further, our investigation revealed the existence of around 35 different datasets cur-
rently utilized for the task of 3D human body reconstruction. Notably, some well-known
datasets, such as Human 3.6 M, MPI-INF-3DHP, MS COCO, LSP, LSPe, 3DPW, MPII,
and SURREAL, are frequently employed in the reviewed papers. Additionally, many
of the methods make use of multiple datasets to ensure more generalized results. How-
ever, some works advocate for the expansion of data usage to enhance method perfor-
mance [51,61,78,97,99].

In terms of the utilization of parametric body models, nearly all the papers
rely on the SMPL model (single image [47–50,52,61,72], multiple images [66,97,99],
video [50,57,59,62,67,85], and depth map data [58]), with two of them using its modi-
fied version, SMPL-X (single image [75], and multiple images [81]). Except for [95] (a
single image), which uses SCAPE, the remaining methods do not depend on statistical
body models for a geometric prior, which unsurprisingly are all regression-based (single
image [51,60], multiple images [53,78], video [54,56], and depth map data [63–65,92]).

Regarding the use of quantitative evaluation metrics, it was observed that the most
commonly used metrics for pose estimation evaluations are the MPJPE and PA-MPJPE.
Additionally, the VSD and Chamfer distance are frequently exploited for comparing a
reconstructed 3D human model with the ground truth.

According to the quality of the avatar’s appearance, recovering color, texture, hair,
and garments is essential. However, only a few works attempt to recover these aspects. Specif-
ically, there are limited works addressing the recovery of hair [62], color and texture [50,63,67],
and clothes [62,81]. Conversely, some works acknowledge these challenges and declare the
impossibility of recovering hair [47,49,50,57,60,95] and clothing [57]. Nevertheless, the chal-
lenge of accurately capturing real individuals’ interactions remains largely unresolved, as the
majority of works primarily focus on achieving realistic avatar appearances.

Reconstructing a complete body model also involves addressing issues related to
missing information and self-occlusions. A subset of papers [56,64,75,92,99] confront these
challenges, achieving promising results. Another challenge arises from the limitations
imposed by lighting conditions [95,99], which can hinder the reconstruction process. Con-
sequently, certain works either do not succeed in reconstructing the full body shape [64] or
do not prioritize body shape recovery at all [51,52,54,56,65]. However, their contributions
to body pose estimation are included in this review, as they represent a crucial step in the
3D reconstruction process.

Finally, the real-time implementation of algorithms for human body reconstruction
presents a notable challenge among the reviewed papers. Only two of the examined
methods declare real-time implementation [49,57]. Conversely, other works report extended
execution times [53,55,66] and cite a substantial processing overhead [47,50,58]. This high
computational demand poses a significant obstacle, especially in applications like HTC.
An approach such as the one in [103] may be applicable, but it is not included in this review
because it is based on a conceptual idea that is still not implemented in practice.

7. Conclusions

In this paper, we conducted a comprehensive review of existing methodologies for
3D human body recovery. Our approach to establishing a taxonomy for 3D reconstruction
techniques was primarily based on the nature of the input data. Specifically, we categorized
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3D human body reconstruction into three distinct categories: those reliant on single or
multiple image data, video data, and depth map data. Each of the methods that we
examined was thoroughly assessed in the context of the datasets employed, the utilization
of geometric priors through parametric body models, and the evaluation metrics applied.
Additionally, we provided insights into the strengths and limitations associated with each
approach. Subsequently, we performed an in-depth analysis of the reviewed methods.

In conclusion, while considerable progress has been made in the field of 3D human
body recovery and reconstruction, it is yet to be fully optimized for applications like HTC.
Achieving realism in avatars must extend beyond merely replicating the appearance of
real individuals. There is a need for further research and development to enable avatars to
effectively convey authentic emotions and interactions, all of which must occur in real time.

Author Contributions: Conceptualization, methodology, R.P., I.B., D.N. and I.V.; writing—original
draft preparation, R.P. and I.B.; writing—review and editing, A.M.; supervision, A.M.; project
administration, A.M. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the contract KP-06-H37/8 from 6 December 2019 for the
research project: “Inference algorithms for semantic knowledge extraction based on deep architectures
for context-aware holographic communication” of the Bulgarian Research Fund of the Ministry of
Education and Science, Bulgaria.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Written informed consent has been obtained from the patient(s) to
publish this paper.

Acknowledgments: The authors acknowledge the support of the R&D Teleinfrastructure Laboratory
at the Technical University of Sofia, Bulgaria.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

3DOH 3D Occlusion Human
3DPW 3D Poses in the Wild
AIST Advanced Industrial Science and Technology
AR Augmented Reality
AUC Area Under the Curve
BMI Body Mass Index
BUFF Bodies Under Flowing Fashion
CAPE Clothed Auto Person Encoding
CMU Carnegie Mellon University
DFAUST Dynamic Fine Alignment Using Scan Texture
EHF Expressive Hands and Faces
FOF Fourier Occupancy Field
HHOI Human-Human-Object Interaction
HTC Holographic-Type Communication
HUMBI HUman Multiview Behavioral Imaging
IoU Intersection over Union
ITOP Invariant-Top View
LSP Leeds Sports Pose
LSPe Leeds Sports Pose extended
MAE Mean Angle Error
mAP mean Average Precision
MAVE Mean Average Vertex Error
MMT Multi-view human body Mesh Translator
MoSh Motion and Shape capture
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MPII Max Planck Institute for Informatics
MPJPE Mean Per Joint Position Error
MR Mixed Reality
MS COCO MicroSoft Common Objects in COntext
MuPoTS-3D Multiperson Pose Test Set in 3D
NeRF Neural Radiance Field
OPlanes Occupancy Planes
PA-MPJPE Procrustes Aligned MPJPE
PA-V2V Procrustes-Aligned Vertex-to-Vertex
PCA Principal Component Analysis
PCK Percentage of Correct Key points
PHSPD Polarization Human Shape and Pose Dataset
POCO Pose and shape estimation with confidence
PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses
PSNR Peak Signal-to-Noise Ratio
PVE Per-Vertex Error
PVE-T-SC Per-Vertex Euclidean error in a neutral (T) pose
RGB Reed Green Blue
RGB-D Reed Green Blue—Depth
ROM Range of Motion

RSC
Resolution-aware network, a Self-supervision loss, and a Contrastive
learning scheme

S3D SAIL-VOS 3D
SCAPE Shape Completion and Animation of People
SSIM Structural Similarity Index
SMPPL Skinned Multi-Person Linear Model
SSP3D Sports Shape and Pose 3D
STAR Sparse Trained Articulated Human Body Regressor
SURREAL Synthetic hUmans foR REAL tasks
UBC University of British Columbia
VR Virtual Reality
VSD Vertex to Surface Distance
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