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Abstract: Recently, motor imagery brain–computer interfaces (BCIs) have been developed for use in
motor function assistance and rehabilitation engineering. In particular, lower-limb motor imagery
BCI systems are receiving increasing attention in the field of motor rehabilitation, because these
systems could accurately and rapidly identify a patient’s lower-limb movement intention, which
could improve the practicability of the motor rehabilitation. In this study, a novel lower-limb BCI
system combining visual stimulation, auditory stimulation, functional electrical stimulation, and
proprioceptive stimulation was designed to assist patients in lower-limb rehabilitation training. In
addition, the Riemannian local linear feature construction (RLLFC) algorithm is proposed to improve
the performance of decoding by using unsupervised basis learning and representation weight calcu-
lation in the motor imagery BCI system. Three in-house experiment were performed to demonstrate
the effectiveness of the proposed system in comparison with other state-of-the-art methods. The
experimental results indicate that the proposed system can learn low-dimensional features and
correctly characterize the relationship between the testing trial and its k-nearest neighbors.

Keywords: brain–computer interface; motor imagery; decoding; Riemannian manifold; feature
construction

1. Introduction

A brain–computer interface (BCI) system can achieve direct communication or device
control between the brain and external devices via a virtual channel to aid the recovery of
patients with movement dysfunction [1–4]. Recently, motor imagery (MI) BCI systems have
received increasing attention in the field of motor rehabilitation for patients with movement
dysfunction. In practice, lower-limb BCI systems are required to accurately and rapidly
identify a patient’s lower-limb movement intention in the task of motor rehabilitation [5–8].
The major challenge in BCI systems are the design of experimental paradigm and the
efficient utilization of both training set and testing trial to boost the BCI performance.

The stimulation protocol has long been an important tool for exploring the organiza-
tion and function of the nervous system, as well as an important communication channel
for BCI. In recent years, a variety of sensory stimulation have been used in BCI experimental
paradigms. In [9], a way was examined to enhance the classification accuracy by electrically
stimulating the ulnar nerve of the contralateral wrist at the alpha frequency during motor
imagination. In [10], a training strategy was designed to improve event-related desynchro-
nization (ERD) of alpha rhythm by combining MI and sensory threshold somatosensory
electrical stimulation. In [11], an EEG phase-dependent stimulation method was designed
to helping the subjects to produce stronger event-related desynchronization (ERD) and
sustain longer by applying vibration stimulation in MI phase. In [12], a BCI experimental
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paradigm was proposed to obtain a better BCI accuracy by utilizing sensory threshold neu-
romuscular electrical stimulation during performance of motor imagery. In [13], a MI-based
BCI was proposed to activate the motor-related cortex and enhance the R2 coefficient in the
alpha–beta band by utilizing tactile sensation assisted motor imagery training approach.
In [14], a hybrid MI-BCI system was designed to improve MI-BCI performance by training
participants in MI with the help of sensory stimulus from tangible objects.

The algorithms of EEG decoding constitute necessary components of BCI; we achieved
this purpose by using unsupervised dimensionality reduction and feature representation
in the processing of electroencephalogram (EEG) signals. The unsupervised dimension-
ality reduction method can project high-dimensional EEG signals into low-dimensional
features with discriminative information; this process can provide the basis for accurately
representing the testing trial EEG to improve decoding performance. Recently, various
unsupervised dimensionality reduction methods have been proposed for feature extraction
in BCI systems. For example, in [15], an unsupervised multiset feature learning method
was proposed to learn effective features and reduce the redundant features by conducting
distance-based clustering for the feature sets. In [16], a compact and unsupervised EEG
response representation was proposed to obtain discriminative features by employing
segment-level feature extraction and leveraging a robust two-part unsupervised generative
model. In [17], unsupervised discriminative feature selection (UDFS) was designed to
learn the dominant features by considering the relationship between feature dimensions.
In [18], a deep convolution network and autoencoder-based model was presented to ef-
fectively learn low-dimensional features from high-dimensional EEG data by combining
convolution with deconvolution. In [19], feature extraction based on an echo state network
(FE-ESN) was proposed to obtain optimal features by applying recurrent autoencoders to
multivariate EEG signals. The basis learned from the above unsupervised dimensionality
reduction methods can help represent the features of testing trial EEGs to quickly identify
movement intentions.

To achieve fast decoding, the dimensionality reduction model cannot be retrained
during the testing process, because model retraining results in time-consuming testing trial
classification. Therefore, the best approach is to represent the features of an testing trial
EEG based on the basis learned from the training set. The feature representation problem
can be regarded as a weight calculation problem for each basis. For example, in [20], the
sparse weights for the basis were learned by iteratively minimizing the upper bound of the
objective function in a motor imagery (MI) EEG classification. In [21], the notable sparse
weights for the basis were computed by measuring the distance information between the
training samples and the test data using a Euclidean distance-based Gaussian kernel for MI
classification. In [22], the discriminative sparse weights for the basis were calculated by
finding the membership of training EEG signals to cluster in mild cognitive impairment
diagnosis. In [23], significant sparse weights were learned by reducing the within-class
diversity and increasing the between-class separation for EEG emotion recognition.

Although many efficient unsupervised basis learning and weight calculation methods
have been proposed to quickly represent the testing trial EEG with a linear weighted
combination of the basis learned from the training set, most of these approaches learn
the basis without considering the fact that the high-dimensional EEG signal lies in a
non-Euclidean space. It should be noted that the low-dimensional feature basis can be
extended as a Euclidean space while the original EEG signal space is a non-Euclidean
space. Therefore, the fundamental challenge in feature representation is to ensure that
the learned basis maximally preserves the real relationship between EEG samples in a
non-Euclidean space. In view of the shortcomings of the feature representation problem,
in this study, a novel decoding method based on the Riemannian local linear feature
construct (RLLFC) was designed to improve the performance of lower-limb rehabilitation
BCI systems. In the proposed RLLFC method, the Riemannian geodesic distance is used
to characterize the relationship between EEG samples, based on the assumption that the
covariance matrices of the EEG signal lie on a differential Riemannian manifold [24]. The
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basis learned from RLLFC can best maintain the geodesic distance between the covariance
matrices of EEG samples using a local isometric mapping. Many similar methods have
been proposed to decode EEG signals in BCI systems. In [25], a simplified Bayesian
convolutional neural network (SBCNN) was proposed to decode the P300 signal in a
BCI game by minimizing the Kullback–Leibler divergence between the approximate and
real weight distributions. In [26], an unsupervised adaptive sparse representation-based
classification (SRC_UFC) was designed to identify EEG signals by updating the basis set
with new testing samples. In [27], the filter bank maximum a posteriori common spatial
pattern (FB-MAP-CSP) was proposed to classify multiple MI tasks by finding the axes
along which the two conditions are jointly de-correlated. In [28], recursive least squares
updates of the CSP filter coefficients (RLS-CSP) was designed to recognize MI EEG signals
by updating the spatial filter coefficients with new testing samples. Most of these studies
have obtained excellent results in BCI applications. However, these methods ignore the
fact that the covariance matrix lies on a Riemannian manifold, as well as the structural
relationship between samples. The RLLFC algorithm can learn the local geometry and
global structure of a Riemannian manifold by preserving the real Riemannian distance.
Furthermore, it preserves the structural information of the covariance matrix. The major
contributions of this study are threefold:

• A novel basis learning and representation method called RLLFC is proposed to im-
prove the performance of decoding in MI-BCI systems. Compared with the previous
methods, the RLLFC method can preserve the distance between EEG samples and
the basis by using the Riemannian geometric distance to measure the EEG samples.
Previous methods cannot use the geodesic distance information to learn the basis from
EEG samples, owing to the unknown manifold of EEG samples.

• A novel lower-limb MI-BCI system that combines visual stimulation, auditory stim-
ulation, functional electrical stimulation (FES), and proprioceptive stimulation was
designed to assist patients in lower-limb rehabilitation training.

• The proposed RLLFC algorithm and BCI system can reveal the cortical activation of
lower-limb motor imagery under different visual, auditory, FES, and proprioceptive
stimuli, as supported by experimental results. This can provide data support for
improving the performance of lower-limb rehabilitation training.

The remainder of this paper is organized as follows. In Section 2, the experimental
setup and EEG decoding process are described. Section 3 provides the extensive experimen-
tal results and analysis to demonstrate the effectiveness of the proposed system. Finally,
some conclusions are presented in Section 4.

2. Materials and Methods
2.1. Proposed BCI System and Experiment

Hardware structure of proposed system: As shown in Figure 1a, the hardware struc-
ture of the lower-limb MI-BCI system mainly consisted of an EEG acquisition subsystem,
multimodal stimulation subsystem, and a data processing subsystem. The EEG acquisi-
tion subsystem included an EEG cap and a 30-channel active Bio-Signal EEG amplifier
(Poseidon, Jiangsu, China). Electrodes were placed on the scalp at locations overlying the
motor cortices. The Pz electrode was used for positioning according to the specifications of
the International 10-20 Electrode System. The ground electrode was placed on AFz and
the reference electrode was placed on the left earlobe. All impedances were maintained
at below 20 kΩ at the onset of each session. The sampling rate was set to 250 Hz. The
multimodal stimulation subsystem included visual, auditory, FES, and proprioceptive
stimulation. The visual stimulation consisted of a video of the lower limbs laid down or
being raised while the participant performed lower-limb movement imagery. The auditory
stimulation was a notification sound of “Please raise your legs”. The proprioceptive stimu-
lation consisted of a single-degree-of-freedom mechatronic device installed on a wheelchair.
The FES included two pairs of self-adhesive surface electrodes fitted onto the right leg of
the participant.
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Figure 1. The hardware structure for the proposed BCI system. (a) Hardware structure. (b) Lower-
limb motor imagery. (c) Rest period.

Experiment: Twenty able-bodied volunteers (aged 21± 3 years, 8 female) participated
in the proposed lower-limb motor imagery BCI system. Ethical approval was obtained from
the Hainan University Ethics Committee. All of the participants provided written informed
consent. We designed experiments using two control group and an experimental group
for fair comparison. The group involved in the lower-limb motor imagery experiment
and stimulation experiment were regarded as the control group, where that in the lower-
limb motor imagery experiment with multimodal stimulation (visual, auditory, FES, and
proprioceptive) was the experimental group.

(1) Experiment I: Lower-limb motor imagery experiment. The structure of each trial is
illustrated in Figure 2a. After the beginning of the experiment, a cue in the form of an
arrow pointing up or a cross appeared and remained on the screen for 0–6 s. During
the tasks, an upward arrow was set as a cue to prompt motor imagery, while a cross
was shown as a cue to rest. The participants were instructed to begin imagining the
leg movement until the arrow disappeared from the screen. There a 4 s break between
tasks. A block consists of 50 trials, 25 for each of the two cues. Each participant
completed three blocks, yielding a total of 150 trials.

(2) Experiment II: Lower-limb motor imagery experiment with multimodal stimulation.
The structure of each trial is illustrated in Figure 2b. From to 0–6 s, four types of stimu-
lation were provided during motor imagery: visual, auditory, FES, and proprioceptive.
The visual stimulation was a video of leg-raising; the auditory stimulation was an alert
tone. FES was performed using surface electrodes, and the proprioceptive stimulation
was an electric lift pedal that can raise a participant’s right leg. The participant per-
formed motor imagery of leg raising during the stimulation period until stimulations
stopped. At the end of motor imagery, the pedal returned to the starting position from
6 to 12 s. Next, a cross cue appeared and remained on the screen from 12 to 18 s to
allow the participant to rest. The blocks of 50 trials comprised 25 trials for each cue.
Each participant completed three blocks, for a total of 150 trials.

(3) Experiment III: Multimodal stimulation experiment. The structure of each trial is
illustrated in Figure 2c. From to 0–6 s, four types of stimulation were provided subject.
The subject maintained resting state during the stimulation period until stimulations
stopped. At the end of stimulations, the pedal returned to the starting position from 6
to 12 s. Next, a cross cue appeared and remained on the screen from 12 to 18 s to allow
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the participant to rest. The blocks of 50 trials comprised 25 trials for each cue. Each
participant completed three blocks, 150 trials were conducted.

or Break

0 6 10

time (s)

Start

Reset

0 6 12 18

Experiment I

Experiment II

Start

MI or Rest

MI with Stimulation Rest

Reset

0 6 12 18

Experiment III

Start

RestStimulation

(a)

(b)

(c)

time (s)

time (s)

Figure 2. The experimental protocol for the proposed BCI system. (a) Paradigm of experiment I.
(b) Paradigm of experiment II. (c) Paradigm of experiment III.

2.2. Riemannian Local Linear Feature Construction Algorithm

In this section, an RLLFC algorithm is proposed for decoding of motor imagery EEG
signals based on a Riemannian manifold. As shown in Figure 3, the RLLFC algorithm
consists of unsupervised basis learning and representation weight calculation.

so α1 α2 α ns1 s sn2 ++ +...=

α1 α2 αn++...× × ×+ =

MDS

Training set

Testing trial

MDS

MDS

Feature set

SVM

SVM
P1

P2

Pn

Pn

P2

P1

z 1 z2 z n z o

Riemannian Manifold 

 Local Tangent Space

Local Isometric 

     Mapping

 Alignment 

Embedding

Training labels

sn

so

Figure 3. RLLFC algorithm during the calibration and testing phases.
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2.2.1. Basis Learning with Local Isometric Mapping

Denoting the N-channel EEG signal with L sampled points as

X(t) = [x(t), . . . , x(t + L− 1)] ∈ RN×L, (1)

the spatial covariance matrix of X(t) is defined as

P =
1

L− 1
X(t)XT(t). (2)

The space of spatial covariance matrices with symmetric positive definite (SPD) forms
lies on a differentiable Riemannian manifoldM [29]. The Riemannian geodesic distance
between two spatial covariance matrices P1, P2 ∈ M(N) is defined as

δR(P1, P2) =
∥∥∥log

(
P−1

1 P2

)∥∥∥
F
=

[
N

∑
i=1

log2 βi

] 1
2

, (3)

where ‖ · ‖F is the Frobenius norm of a matrix and βi is the i-th real eigenvalue of P−1
1 P2.

After characterizing the relationships between EEG samples in the Riemannian mani-
fold, we learned the basis from the training dataset using an unsupervised Riemannian
manifold learning method. More specifically, we first designed a local isometric mapping to
preserve the real relationships between the EEG samples as effectively as possible from the
Riemannian manifold to a low-dimensional subspace. For a data point P in the Riemannian
manifold, we selected the k-nearest neighbor of P according to the Riemannian geodesic
distance. The local tangent space T is defined as the tangent space at P, and all of its
neighboring points are mapped into tangent space,

T =
{

si = upper
(

P−
1
2 LogP(Pi)P−

1
2

)
, Pi ∈ neighbor

}
(4)

where the upper(.) operator is used to retain and vectorize the upper triangular part of the
matrix. The logarithmic mapping operator is denoted by LogP(Pi) = P

1
2 log

(
P−

1
2 PiP−

1
2

)
P

1
2 .

The local tangent space represents the local structure of the data in the Riemannian
manifold.

Multidimensional scaling (MDS) is a widely used approach to dimensionality reduc-
tion. It projects data objects onto a low dimensional space while preserving the original
distances among them as much as possible. Local Isometric Mapping is based on MDS.
Isometric mapping was applied in each local tangent space to reduce the dimensions and
preserve the structure. This can be achieved using the following optimization problem:

min
∥∥ψ(D)− ψ

(
D′
)∥∥2

F, (5)

where D is the distance matrix of points si, sj on the local tangent space T with
(D)ij =

∥∥si − sj
∥∥

F = δR
(
Pi, Pj

)
. D′ is the distance matrix of points yi in a low-dimensional

subspace. ψ(·) denotes an operator from distance matrix to inner product matrix. The
optimization problem in (5) can be solved by eigenvalue decomposition:

Y = λ1/2KT , (6)

where λ consists of the d largest eigenvalues of ψ(D) and K consists of the d eigenvectors
corresponding to the d largest eigenvalues [30].
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Finally, we utilized reconstruction processing in locally linear embedding to align all
subspaces of the local tangent space to global coordinates [31]. The weights wij that best
linearly fit point yi between its neighbors can be learned by

min
wi

∥∥∥∥∥yi −∑
j

wijyj

∥∥∥∥∥
2

F

. (7)

Furthermore, the matrix W represented structural information of all local neighbor-
hoods, the global coordinates Z can be learned from each tangent subspace by keeping the
weight wij:

min
Z

∑
i

∥∥∥∥∥zi −∑
j

wijzj

∥∥∥∥∥
2

F

. (8)

Equation (8) can be converted to

min
Z

Z(I−W)(I−W)TZT . (9)

Define M = (I−W)(I−W)T , the global coordinates Z can be obtained by solving the
null space of the M. And zi is the i-th row of matrix Z. Thus, matrix Z is the basis learned
from the training dataset.

2.2.2. Representation Weight Calculation

For an testing EEG trial Xo(t), we expect to find a linear combination of bases zi
learned from the training dataset to best represent the features of Xo(t) as follows:

zo =
k

∑
i=1

αizi. (10)

To this end, the key problem is the calculation of representation weight αi. Inspired
by the weight calculation in the locally linear embedding method, we first selected the ko-
nearest neighbors of Po based on the Riemannian geodesic distance, where Po is the spatial
covariance matrix of Xo(t). Furthermore, Po and its neighbors were mapped into the local
tangent space, and the Riemannian mean of Po and its neighbors was regarded as a tangent
point. The representation weight αi can be learned using the following optimization:

min
αi

∥∥∥∥∥so −
k

∑
i=1

αisi

∥∥∥∥∥
2

F

, (11)

where so is the tangent vector of Po and si is the tangent vector of i-neighbor. Support
vector machine (SVM) is a supervised machine learning algorithm that develops an optimal
hyperplane that allows classification of input data. In the case of the SVM, a SVM with
radial basis functions as kernels was used for classification. The pseudocode for RLLFC is
provided in Algorithm 1.
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Algorithm 1 Riemannian local linear feature construction (RLLFC)

Input: Training datasets Xtr with label ltr and testing EEG trial Xo(t);
Output: Label lo of testing EEG trial Xo(t);

1: Compute a set of covariance matrices Ptr of Xtr;
2: for 1=1: 1:(|Ptr|), do;

Construct local tangent space Ti for Pi using (4);
Calculate Di for local tangent space Ti;
Obtain low-dimensional subspace Yi using (6);
Compute weight wi using (7);

end for
3: Reconstruct the global coordinates Z using (8);
4: Utilize Z and ltr to train SVM classifier;
5: Compute covariance matrices Po of Xo;
6: Map Po and its neighbors into local tangent space;
7: Learn weights [α1, α2, ..., αk] using (10);
8: Construct feature zo based on [α1, α2, ..., αk] using (9);
9: Predict zo using the SVM classifier;

3. Results and Discussion
3.1. Data and Algorithm Description

Data description: Three datasets were used to demonstrate the effectiveness of the
proposed method:

(1) The in-house dataset was recorded from ten subjects (M01–M10) who performed
experiment I. The recorded signals consisted of 30 EEG channels. For each subject,
there were two types of EEG signals, the lower-limb motor imagery and rest conditions.
The training set and testing set were randomly divided at a quantity ratio of 2:1. In
total, 100 samples for the training phase, 50 samples for the testing phase.

(2) The in-house dataset was recorded from twenty subjects (M01–M20) who performed
experiment II. The recorded signals consisted of 30 EEG channels. For each subject,
there were two types of EEG signals, the lower-limb motor imagery with multimodal
stimulation and rest conditions. The training set and testing set were randomly
divided at a quantity ratio of 2:1. Thus, the overall number of training/testing trials
for each subject was 100/50.

(3) The in-house dataset was recorded from twenty subjects (M01–M10) who performed
experiment III. The recorded signals consisted of 30 EEG channels. For each subject,
there were two types of EEG signals, the multimodal stimulation and rest conditions.
The training set and testing set were randomly divided at a quantity ratio of 2:1.
Broadly, the training set comprised 100 trials, and the testing set comprised 50 trials.

Algorithms evaluated: To evaluate the performance, four competing algorithms for
EEG decoding were used as follows:

(1) SBCNN: a simplified Bayesian convolutional neural network (SBCNN) was proposed
to decode the EEG signal by minimizing the Kullback–Leibler divergence between the
approximate and real distributions [25].

(2) FB-MAP-CSP: this approach decomposes EEG signals into multiple-frequency band-
pass bands and uses the MAP-CSP algorithm to extract the features at each sub-band
separately, with linear discriminant analysis performing classification [27].

(3) SRC_UFU: An EEG classification algorithm based on a sparse representation. This
method was designed to identify the EEG signals by updating the basis set with new
testing samples [26].

(4) RLS-CSP: a fast generalized eigen-decomposition method that updates the filter coeffi-
cients using recursive least squares [28].
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3.2. Parameter Setting by 5-Fold Cross-Validation

In the RLLFC algorithm, the three parameters k, d, and ko must be calculated before
test processing. In our study, the parameters were learned through a 5-fold cross-validation
scheme, in which the training data were divided into five parts; one was kept as the valida-
tion set, and the other four were used as the training set. Considering the two-class classifi-
cation problem of an in-house BCI, for simplicity, the classification accuracy was used as a
performance measure for the in-house dataset. Figure 4 shows the 5-fold cross-validation
classification accuracies of the best parameter combinations for the in-house dataset cor-
responding to experiments I, II and III. For each subject, the parameter k was set as
[19, 11, 15, 17, 9, 15, 19, 11, 15, 13] in experiment I, [17, 19, 17, 19, 19, 15, 17, 11, 13, 19, 15, 13, 15,
17, 19, 19, 17, 15, 13, 15] in experiment II, and [19, 17, 11, 11, 19, 17, 13, 19, 19, 19] in experiment
III. The parameters d and ko were set as [8, 6, 6, 6, 4, 2, 4, 6, 4, 4] and [3, 9, 7, 7, 5, 3, 9, 9, 3, 3], re-
spectively, in experiment I; [4, 6, 6, 8, 8, 6, 8, 8, 8, 8, 6, 6, 8, 8, 8, 6, 8, 6, 8, 8] and [3, 9, 7, 7, 3, 7, 9, 3,
9, 7, 9, 9, 7, 5, 7, 9, 5, 3, 7, 9], respectively, in experiment II; and [6, 8, 4, 6, 6, 8, 8, 6, 8, 4] and
[7, 7, 9, 7, 9, 5, 7, 3, 7, 9], respectively, in experiment III. In the SVM, the penalty parameter C
set to 1.0 and the kernel coefficient γ set to 0.1.

(a)

(b)

(c)

Figure 4. Accuracy (%) for all studied algorithms via 5-fold cross-validation. (a) In-house dataset I
(MI). (b) In-house dataset II (MI with stimulation). (c) In-house dataset III (stimulation).
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Furthermore, to demonstrate the generalization capacity of the proposed model, we
compared the proposed algorithm with four other competing classification algorithms, that
is, SBCNN, FB-MAP-CSP, SRC_UFU, and RLS-CSP, using 5-fold cross-validation. As shown
in Figure 4, the RLLFC method outperformed the competing methods for all subjects and
had a higher accuracy and lower standard deviation than those of the other competing
methods. This indicates that our RFFLC model is more stable than the other four methods.
In addition, we provide a significance analysis of the cross-validation results in Figure 4.
From the paired t-test results in Table 1, it is clear that the differences between RLLFC
and other competing methods are statistically significant, supporting the superiority of
RLLFC’s generalization capacity.

Table 1. t-test results for the proposed method versus competing method via 5-fold cross-validation
(M01–M10).

Paired t-Test In-House Dataset I In-House Dataset II In-House Dataset III
p-Value p-Value p-Value

RLLFC vs. SBCNN † †† ∼
RLLFC vs. FB-MAP-CSP * †† *

RLLFC vs. SRC_UFU †† † ∼
RLLFC vs. RLS-CSP † †† ∼

Note: ∼ nonsignificant, * p ≤ 0.05, † p ≤ 0.005, †† p ≤ 0.001

3.3. Classification Performance of RFFLC

Tables 2 and 3 present the classification accuracies of the RLLFC algorithm for lower-
limb movement imagery with and without stimulation, respectively, corresponding to
experiments I and II. For a fair comparison, we also compared RLLFC with the SBCNN,
FB-MAP-CSP, SRC_UFU, and RLS-CSP algorithms for decoding. As shown in Table 2, the
proposed RLLFC achieved a mean accuracy of 74.8% for experiment I, which was higher
than those of SBCNN, FB-MAP-CSP, SRC_UFU, and RLS-CSP by 6.0%, 9.4%, 10.0%, and
8.2%, respectively. Furthermore, as shown in Table 3, the proposed RLLFC achieved a mean
accuracy of 87.2% for experiment II, which was higher than those of SBCNN, FB-MAP-
CSP, SRC_UFU, and RLS-CSP by 8.4%, 10.6%, 7.0%, and 9.0%, respectively. Comparing
Tables 2–4, the accuracies of movement imagery with stimulation are still higher than
the accuracies of movement imagery and stimulation experiment. It can be inferred
that multimodal stimulation can help improve motor imagery ability to obtain a high
classification performance. To demonstrate model performance, data were collected from
subjects (M11–M20); as shown in Table 5, the proposed RLLFC achieved a mean accuracy
of 88.4% for experiment II. It was observed from Table 6 that the recall of two classes are
close, and there is no bias towards any of them. The t-test analysis of Tables 2–4 are shown
in Table 7; it can be seen that the differences between RLLFC and other competing methods
are statistically significant. Based on the results of the experiments, it was concluded
that the proposed RLLFC has better decoding performance than the other state-of-the-
art algorithms.

Table 2. Results of experiment I (MI) for all studied algorithms (%).

Method
Mean Subject

Accuracy M01 M02 M03 M04 M05 M06 M07 M08 M09 M10

RLLFC 74.8 90 74 68 80 92 78 64 80 64 58
SBCNN 68.8 82 66 64 78 76 66 60 64 70 62

FB-MAP-CSP 65.4 72 70 70 64 72 64 58 70 54 60
SRC_UFU 64.8 78 62 66 64 68 60 66 62 66 56
RLS-CSP 66.6 76 66 72 66 82 58 60 62 58 66
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Table 3. Results of experiment II (MI with stimulation) for all studied algorithms (%).

Method
Mean Subject

Accuracy M01 M02 M03 M04 M05 M06 M07 M08 M09 M10

RLLFC 87.2 84 96 80 78 90 96 74 98 98 78
SBCNN 78.8 80 90 68 80 86 86 64 84 88 62

FB-MAP-CSP 76.6 74 86 66 74 78 80 68 78 86 76
SRC_UFU 80.2 72 82 78 76 82 84 76 90 92 70
RLS-CSP 78.2 82 80 72 64 80 92 66 94 84 68

Table 4. Results of experiment III (stimulation) for all studied algorithms (%).

Method
Mean Subject

Accuracy M01 M02 M03 M04 M05 M06 M07 M08 M09 M10

RLLFC 71.4 82 70 78 64 70 70 66 84 66 64
SBCNN 68.8 70 74 68 60 80 72 64 68 70 62

FB-MAP-CSP 67.2 78 62 72 68 62 64 60 72 64 70
SRC_UFU 69.4 80 78 68 70 66 62 62 68 72 68
RLS-CSP 70.2 74 64 66 74 78 68 68 78 60 72

Table 5. Results of experiment II (MI with stimulation) for all studied algorithms (%).

Method
Mean Subject

Accuracy M11 M12 M13 M14 M15 M16 M17 M18 M19 M20

RLLFC 88.4 86 94 80 96 70 92 92 88 96 90
SBCNN 81.6 76 88 78 82 76 80 88 86 86 76

FB-MAP-CSP 78.4 80 78 70 90 64 82 84 70 82 84
SRC_UFU 80.8 84 82 72 84 72 88 80 78 90 78
RLS-CSP 80.2 78 90 84 94 64 84 74 72 82 80

Table 6. Recall of each class for the proposed method in the test (M01–M10) (%).

Class
Mean Subject

Recall M01 M02 M03 M04 M05 M06 M07 M08 M09 M10

True of In-house dataset I 75.6 92 80 72 76 88 80 68 76 60 64
False of In-house dataset I 74.0 88 68 64 84 96 76 60 84 68 52
True of In-house dataset II 87.6 80 96 76 84 88 96 76 100 96 84
False of In-house dataset II 86.8 88 96 84 72 92 96 72 96 100 72
True of In-house dataset III 70.4 80 76 72 60 68 76 60 84 60 68
False of In-house dataset III 72.4 84 64 84 68 72 64 72 84 72 60

Table 7. t-test results for the proposed method versus competing method in the test (M01–M10).

Paired t-Test In-House Dataset I In-House Dataset II In-House Dataset III
p-Value p-Value p-Value

RLLFC vs. SBCNN * †† ∼
RLLFC vs. FB-MAP-CSP † †† *

RLLFC vs. SRC_UFU ** † ∼
RLLFC vs. RLS-CSP * †† ∼

Note: ∼ nonsignificant, * p ≤ 0.05, ** p ≤ 0.01, † p ≤ 0.005, †† p ≤ 0.001
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To demonstrate the efficiency of the testing processing of the RLLFC algorithm, we also
compared the computational loads of the proposed algorithm with those of the competing
algorithms using Python 3.6 and a 3.2 GHz CPU. Figure 5 show the training and testing
times of each algorithm. The training time denotes the computational load of the model
training on the training dataset, whereas the test time is the mean computational load of
the processing of 50 trials for classification. As shown in Figure 5, the training times of
RFFLC were shorter than those of SBCNN for the in-house datasets and longer than those
of FB-MAP-CSP and RLS-CSP, because calculation of the Riemannian distance requires
more time for high-dimensional manifolds. However, the test time of RFFLC was the
shortest in-house datasets. The RFFLC method takes a mean time of 0.13 s for decoding of
a single trial. Therefore, considering both time-consumption and performance for in-house
datasets, RFFLC presents a comparable advantage over the other options.

(a)

(b)

Figure 5. Comparison of the mean training times and mean test times of the studied classification
algorithms for in-house dataset I, II, and III. (a) Training times of RLLFC, SBCNN, FB-MAP-CSP,
SRC_UFU, and RLS-CSP. (b) Test times of RLLFC, SBCNN, FB-MAP-CSP, SRC_UFU, and RLS-CSP.
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3.4. Classification Performance Supporting Analysis

To support the high classification performance of RLLFC in the previous results,
we analyzed the performance of basis learning and representation weight calculation
in the proposed RLLFC algorithm. For basis learning, we designed an unsupervised
dimensionality reduction method called local isometric mapping to obtain low-dimensional
features. The corresponding feature distribution of the two-dimensional embedding of
the EEG signal learned by the RLLFC algorithm is presented in Figure 6. For a fairer
comparison, we also show the two-dimensional features of three competing dimensionality
reduction algorithms: Isomap, LLE, and RLS-CSP. As shown in Figure 6, the discriminative
features learned by RLLFC have much higher separability than Isomap, LLE, and RLS-CSP.
It can be inferred that the basis learned by RLLFC could maintain the separability of the
EEG signal to support the high classification performance of RLLFC.

(a)

(b)

(c)

Figure 6. 2D discriminative features learned by Isomap, LLE, RLS-CSP, and RLLFC for the in-house
EEG dataset (M08). (a) Subject M08 from in-house dataset I. (b) Subject M08 from in-house dataset II.
(c) Subject M08 from in-house dataset III.

To demonstrate the representation effects of the RLLFC algorithm, we compared the
time-frequency diagram of the EEG signal in the testing trials with the linear combina-
tion of its ko-nearest neighbors from the training trials. The representation weight αi for
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the linear combination was calculated using Equation (10). For intuitive visualization,
the time-frequency diagram of the EEG signal was used to express the effect of the linear
combination. Because the short-time Fourier transform is a linear transformation, the
linear combination of the time-frequency diagram is equivalent to a linear combination
of EEG signals. Figure 7 shows the time-frequency diagram of lower-limb movement
imagery with and without stimulation. Comparing Figure 7a–e, it can be observed that
the real time-frequency diagram of the EEG signal can be approximately expressed as a
linear combination of the time-frequency diagrams of its 3-nearest neighbors weighted
by the representation coefficients [α1, α2, α3]. These results prove that the representa-
tion weight learned by RLLFC can correctly characterize the relationship between the
testing trial and its k-nearest neighbors, supporting the high decoding performance of
this approach.

Reality                                  Combination              =              Basis × α              +               Basis × α                +                Basis × α11 2 2 3 3

× 0.441 +  × 0.224 + × 0.335=

× 0.439 +  × 0.20 + × 0.358=

VS

MI

MI+Stimulation

(a) (b) (c) (d) (e)

Figure 7. The time frequencies of the lower limb movement imagery with and without stimulation in
CPZ electrodes from subject M08 of the in-house dataset. (a) The real time-frequency diagram of the
EEG signal. (b) A combination of the time-frequency diagrams. (c) Time-frequency diagram of basis
1 corresponding to the EEG signal. (d) Time-frequency diagram of basis 2 corresponding to the EEG
signal. (e) Time-frequency diagram of basis 3 corresponding to the EEG signal.

3.5. Effect of Stimulation on RLLFC

More specifically, to discuss the difference between RLLFC performed on the lower-limb
movement imagery with and without stimulation, we analyzed the four time-frequencies
corresponding to the mean EEG signal in four different brain cortices, that is, the sensory
cortex, visual cortex, auditory cortex, and a non-related cortex. As shown in Figures 8 and 9,
the time-frequency approximate representation of the sensory cortex is closer to the real time
frequency than those of the visual cortex, auditory cortex and non-related cortex. Moreover,
the time-frequency approximate representations of the visual and auditory cortices are
closer to the real time frequency than that of non-related cortex. Note that we have proven
that RFFLC is an efficient feature representation method for lower-limb motor imagery
and can accurately reconstruct features of lower-limb motor imagery EEG. The results
in Figure 8 show that the sensory cortex area is mainly involved in pure motor imagery,
whereas the visual and auditory cortices involved little pure motor imagery. In addition,
by combining the time-frequency diagrams of the sensory cortex in Figures 8 and 9, it is
observed that the rhythm range related to MI in Figure 9 is larger than that in Figure 8.
The same result was observed in the visual and auditory cortices. This is because the
neurons in the sensory, visual, and auditory cortices were stimulated and reinforced
in experiment II, which included FES, proprioceptive stimulation, visual stimulation,
and auditory stimulation. These results prove that stimulation can increase the cortical
activation of the motor cortical areas.
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× 0.439 +  × 0.224 + × 0.337=

Reality                                  Combination              =              Basis × α               +               Basis × α               +               Basis × α11 2 2 3 3

× 0.415 +  × 0.479 + × 0.106=

× 0.237 +  × 0.514 + × 0.249=

× 0.678 +  × 0.116 + × 0.206=

VS

Sensory Cortex

Auditory Cortex

Visual Cortex

Non-related Cortex

(a) (b) (c) (d) (e)

Figure 8. The four brain cortex mean time-frequencies of the lower-limb movement imagery without
stimulation from subject M08 of the in-house dataset I. (a) The real time-frequency diagram of the
EEG signal. (b) Combination of time-frequency diagrams. (c) Time-frequency diagram of basis
1 corresponding to the EEG signal. (d) Time-frequency diagram of basis 2 corresponding to the EEG
signal. (e) Time-frequency diagram of basis 3 corresponding to the EEG signal.

Reality                                  Combination              =              Basis × α               +               Basis × α               +               Basis × α11 2 2 3 3

× 0.295 +  × 0.351 + × 0.354=

× 0.331 +  × 0.457 + × 0.212=

× 0.319 +  × 0.358 + × 0.323=

× 0.317 +  × 0.372 + × 0.311=

VS

Sensory Cortex

Auditory Cortex

Visual Cortex

Non-related Cortex

(a) (b) (c) (d) (e)

Figure 9. The four brain cortex mean time-frequencies of the lower-limb movement imagery with
stimulations from subject M08 of the in-house dataset II. (a) The real time-frequency diagram of
the EEG signal. (b) Combination of time-frequency diagrams. (c) Time-frequency diagram of basis
1 corresponding to the EEG signal. (d) Time-frequency diagram of basis 2 corresponding to the EEG
signal. (e) Time-frequency diagram of basis 3 corresponding to the EEG signal.
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4. Conclusions

In this study, a novel lower-limb BCI system combining visual stimulation, auditory
stimulation, FES, and proprioceptive stimulation was designed to assist patients in lower-
limb rehabilitation training. Furthermore, the RLLFC algorithm was proposed to improve
the performance of decoding by using unsupervised basis learning and representation
weight calculation in a motor imagery BCI system. Compared with other competing
methods, the proposed RLLFC method can learn low-dimensional features and correctly
characterize the relationship between an testing trial and its k-nearest neighbors. The
experimental results demonstrate the effectiveness of the proposed system. However,
the training process in RLLFC incurs a very large computational load because of the
Riemannian distance calculation. Future work will modify the proposed RLLFC used in
the training process.
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