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Abstract: Background: With the rise of user-generated content (UGC) platforms, we are witnessing
an unprecedented surge in data. Among various content types, dance videos have emerged as a
potent medium for artistic and emotional expression in the Web 2.0 era. Such videos have increasingly
become a significant means for users to captivate audiences and amplify their online influence. Given
this, predicting the popularity of dance videos on UGC platforms has drawn significant attention.
Methods: This study postulates that body movement features play a pivotal role in determining the
future popularity of dance videos. To test this hypothesis, we design a robust prediction framework
DanceTrend to integrate the body movement features with color space information for dance popular-
ity prediction. We utilize the jazz dance videos from the comprehensive AIST++ street dance dataset
and segment each dance routine video into individual movements. AlphaPose was chosen as the
human posture detection algorithm to help us obtain human motion features from the videos. Then,
the ST-GCN (Spatial Temporal Graph Convolutional Network) is harnessed to train the movement
classification models. These pre-trained ST-GCN models are applied to extract body movement
features from our curated Bilibili dance video dataset. Alongside these body movement features,
we integrate color space attributes and user metadata for the final dance popularity prediction task.
Results: The experimental results endorse our initial hypothesis that the body movement features
significantly influence the future popularity of dance videos. A comprehensive evaluation of various
feature fusion strategies and diverse classifiers discern that a pre–post fusion hybrid strategy coupled
with the XGBoost classifier yields the most optimal outcomes for our dataset.

Keywords: popularity prediction; human action recognition; dance video; feature fusion; XGBoost

1. Introduction

In the Web 2.0 era, rapid advancements in information technology have propelled mo-
bile clients to unprecedented heights [1]. Modern social media platforms are characterized
by user-driven content creation and interactions and have overshadowed traditional media
as the primary means for information exchange. This transition is primarily attributed to
their reduced creative costs and enhanced dissemination capabilities [2]. The transparent
nature of user interactions (like forwards and likes) on these platforms under the Web
2.0 framework offers invaluable information for predicting the popularity of social media
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content [3]. Among the diverse offerings of user-generated content (UGC) platforms, dance
videos have notably risen to mainstream prominence [4].

Dance has been an ancient form of expression, predating the advent of language, im-
agery, and other artistic manifestations. Its intrinsic capacity to vividly convey profound
human emotions renders it unique compared to other art forms [5]. The ever-evolving me-
dia landscape has amplified the reach and impact of dance, and the proliferation of variety
shows has broadened the demographic appeal of street dance. This genre has now become a
popular category of user uploads across media platforms, attracting substantial viewership
and engagement [6]. In fact, dance-related topics have attracted researchers’ attention for a
long time. For example, Costas Panagiotakis et al. [7] proposed a framework for generating
beat synchronization dance animation based on visual and audio data analysis in 2013. They
identified dancers’ joints in videos and matched them with rhythm pulses estimated by the
beat-tracking algorithm to generate dance animations of virtual characters.

Video popularity is closely associated with content relevance and user dynamics.
While content is the key to information dissemination and determines its spread, user-
related metrics such as activity levels and influence also bear considerable impacts on a
video’s traction [3]. Tsur and Rappoport showed that content resonating with contemporary
events or trending topics attracts elevated attention [8]. This observation was further
supported by another case study using Weibo [9]. Bakshy et al. discerned a positive
correlation between Twitter popularity and follower count [10], and Deng et al. found a
strong correlation between Weibo’s post virality and the poster’s activity level [11]. Despite
the plethora of studies on popularity prediction, limited attention has been paid to the
predictive analysis of dance video popularity based on human body movements.

This study proposes an integration framework DanceTrend to fuse the human body
movement features with other information like color space attributes and user metrics to
predict the dance video popularity. We formulate this prediction task as binary classifica-
tions of four popularity aspects, i.e., views, likes, favorites, and coin contributions, based on
median value post ranking. Our primary dataset is sourced from Bilibili, a popular video
platform established in 2009, which generously offers the data for academic endeavors.

The main contributions of this study are as follows:

1. A novel PCA-based feature fusion framework DanceTrend was proposed for the
dance video popularity prediction task.

2. DanceTrend effectively integrates three main feature groups, i.e., human body move-
ment features, color space features, and user metrics features.

3. The performance of DanceTrend was evaluated on both public and independently
collected dance video datasets.

2. Related Work
2.1. Factors Influencing Popularity

Existing research in popularity prediction underscores three main determinants: user-
generated content, release time, and user dynamics [12,13]. These elements are also focal
points in this study.

User-Generated Content: Content is the cornerstone of information dissemination,
serving as a pivotal medium to capture attention. Yang and Counts discerned that the
degree to which users were referenced in social media content directly correlated with
the content’s attraction [14]. Tan et al. further explored the variants in popularity based
on different expressions of identical topics on Twitter [15]. Their findings elucidated that
content presentation style significantly influenced its virality. A complementary pattern was
observed about a marked preference for visual content on Weibo, where posts interspersed
with imagery consistently outperformed posts with limited imagery information in terms
of popularity [16].

Release Time: The temporal dimension of content release is important in its receptivity.
Factors like the immediacy of content release in relation to current events and temporal
patterns influence its virality. Platform recommendation algorithms also favor videos
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released in specified timeframes. Canneyt et al. found that the time when information was
posted on Twitter and Facebook largely determined its initial popularity [17].

User Dynamics: The content creator’s personal metrics, such as their visual pres-
ence and follower base, carry significant influence over the content’s popularity trajectory.
Baskshy et al. ascertained that tweets from users with a substantial follower count on Twit-
ter consistently registered higher dissemination and traction compared to their counterparts
with a more limited reach [10].

2.2. Human Action Recognition

The methodology for recognizing human actions is central to our body action extrac-
tion process in this study. Human motion recognition has always been a great concern in
computational graphics. In a paper published in 2018, Abu Zaher Md Faridee et al. [18]
proposed a deep and self-evolving feature learning model HappyFeet based on convo-
lutional neural networks (CNNs) to process motion data captured by wearable sensors.
HappyFeet effectively resolved the problem that most wearable sensors don’t have enough
resolution. For video data, there are now mature frameworks for target recognition and
human posture recognition.

YOLO (You Only Look Once) takes inspiration from the human ability to instanta-
neously identify objects within a visual frame [19]. Traditional object detection algorithms
like RCNN (Region-CNN) and Fast RCNN segregate detection results into object categories
and positions, while YOLO interprets object detection as a regression task. It utilizes a
holistic end-to-end network, seamlessly transitioning from the intake of the original image
to the pinpointing of object locations and categories. Finally, it delivers the positions,
categories, and confidence probabilities of all objects within the image in a singular glance.

Fang et al. proposed the Regional Multi-Person Pose Estimation (RMPE) algorithm
with inaccurate human bounding boxes [20]. Further, they improved it as the AlphaPose
to estimate whole-body regional multi-person poses [21]. They utilized the top-down
methodology to detect individual borders within visual scope before identifying human
poses within each boundary. Enhancements like the symmetric space transformation
network (SSTN) and the pose-guided proposals generator (PGPG) for sample amplification
further refine its functionality. The initial version of AlphaPose did not work well on
multi-target detection. As AlphaPose became a more general human posture recognition
project, it was updated with support for multi-target detection methods. The default target
detection component of the latest version of AlphaPose is YOLO v3. Fang et al. compared
a variety of human posture recognition methods and classified them according to whether
the bottom-up method or top-down method is used in posture recognition [21]. Finally,
the optimal recognition results of the whole body, foot, face, and hands all appear in the
top-down attitude recognition method. These top-down recognition methods use YOLO
v3 as the multi-person target recognition method.

The intrinsic nature of the human skeleton has often been represented via graph
structures, spurring interest in leveraging graph convolutional neural network (GCN) for
human pose detection. The ST-GCN (spatial-temporal GCN) [22] was proposed as an
intuitive choice for gesture recognition. It was initially conceptualized for traffic prediction,
and empirical studies have showcased the ST-GCN’s power in effectively capturing intricate
spatio-temporal correlations of human poses [23].

The performance of the human motion recognition framework needs to be evaluated
based on the real key point information through human motion capture. Such experiments
have also attracted the attention of researchers. In 2020, Rollyn T. Labuguen et al. [24] inves-
tigated the performance of the human pose recognition framework OpenPose, comparing
the output joint position estimated by OpenPose with the mark-based motion capture data
recorded on popular dance movements. Their comparison results show that the average
absolute error for each key point is less than 700 mm.
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2.3. Multi-Modal Feature Fusion

The fusion of diverse features to predict video popularity has become an increasingly
critical area of focus. The general approach in multi-modal feature fusion first involves the
extraction and construction of distinct types of features. These are then modeled to establish
their correlations with the target label “video popularity” in this study. Such a setup allows
for the full utilization of multifaceted information from various modalities. Video visual
feature extraction predominantly employs either deep learning–based methods or artificial
construction techniques [25,26]. Prominent deep learning architectures such as ResNet-
50 [27] and ResNet-101 [28] are frequently deployed for extracting image-based visual
features. The obtained high-dimensional feature space may be refined by strategies like
retaining the last layer of the CNN encoder as the extracted feature set [29] or applying
principal component analysis (PCA) for dimensionality reduction [30,31].

Feature fusion methods can be categorized into two main types: early and late fu-
sion. Early fusion entails the consolidation of multiple high-dimensional features into a
reduced-dimensional space. Conversely, late fusion is also known as decision fusion, which
focuses on merging the prediction results after a sample has been classified by discriminant
classifiers trained on the individual feature groups. The currently popular trend is a hybrid
approach that combines the advantages of both early and late fusion [32]. The development
of deep learning technologies has been fully integrated with these early, late, and hybrid
fusion strategies within the realm of multi-modal feature-based investigations.

2.4. Popularity Prediction Methods

The image/video popularity prediction task can be approached as either a regression
or classification problem, depending on the specific objectives and requirements of a given
study. Some works have formulated it as a regression problem. Khosla et al. calculated
the normalized view count of images as the target labels by fusing the color, gradient, and
deep learning features [33]. Gelli et al. fused the visual sentiment and object features to
predict the log-transformed number of views on Flickr, and an off-the-shelf support vector
regression (SVR) model achieved satisfying performance [34].

Many studies have investigated image/video popularity prediction as a classification
problem. Totti et al. simplified the task into a binary classification problem and utilized a
random forest classifier to predict the popularity of an image based on its share count on
Pinterest [35]. An ensemble framework based on a variety of base classifiers was proposed
for the three-tier classification of video playback volume [36]. Jeon et al. separated videos
into different classes based on their popularity and release status [37] and trained classifica-
tion models for both published and newly released videos with XGBoost and deep neural
network classifiers, respectively. The classifier XGBoost was also successfully applied to
the binary classification of YouTube video popularity after feature selection and fusion [38].
Sarkar et al. introduced a deep neural network framework called ViViD to handle the
multi-modal features and perform multiclass prediction for video popularity [39].

3. Materials and Methods

This study formulated the popularity prediction task of dance videos as a binary
classification problem. There are four popularity indicators, i.e., views, likes, favorites, and
coin contributions, for each video. The samples are sorted by the ascendent order of each
popularity indicator, and the threshold is established at their median value. Videos with an
index above this threshold are considered as “popular”, while those below it are classified
as unpopular.

3.1. Datasets

This study trained and evaluated the proposed framework DanceTrend using two
datasets, i.e., AIST++ and Bilibili Dance Video (BDV).

The Google team released the AIST++ dataset [40], the most comprehensive dataset of
street dance videos to date. The dataset encompasses a wide array of hip-hop dance styles,



Electronics 2023, 12, 4696 5 of 19

including but not limited to Breaking, Popping, Locking, Hip-hop, House, Waacking, and
Jazz. The dataset comprises 1.1 million frames and totals approximately 5 h in duration.
The 1408 sequences of dance videos span basic to advanced levels of dance choreography.
AIST++ has primarily been used in motion generation research, serving purposes such as
movement transfer, dance classification, and movement classification. This study represents
the first instance where the dataset is segmented and tailored specifically for training motion
classification models.

This study constructed the second dataset of Bilibili dance videos (BDV) from the
Bilibili platform. This dataset comprises 769 dance videos carefully gathered between
1 February 2023 and 27 February 2023 from the Bilibili platform’s “Jazz” category. Each
video in this dataset was selected based on its recency, clear recording quality, and full-body
visibility. Popularity data for these videos were collected 31 days post-release, ensuring a
reasonable timeframe for gauging their reception.

The Bilibili dataset is feature-rich, and each sample is characterized by 54 different
features. These features are categorized into three main domains: action-related features,
visual (color) features, and user-specific information. These comprehensive features serve
as the basis for our exploratory analysis and further model training.

3.2. Performance Metrics

This study primarily focuses on Accuracy (ACC) and F1 score as the key evaluation
metrics for binary classification. These metrics provide an overall view of how well a binary
classification model performs in correctly identifying both positive and negative samples.
Below are detailed explanations and mathematical formulations for the metrics.

Accuracy is a straightforward measure that quantifies the overall effectiveness of the model
in making correct predictions for both positive and negative samples. It is calculated using the
formula: Accuracy (ACC) = (TP + TN)/(TP + FP + TN + FN), where TP, FN, TN, and FP are the
numbers of true positives, false negatives, true negatives, and false positives, respectively.

The F1 score is a balanced metric that computes the harmonic mean of Precision and Recall.
It ranges between 0 and 1, with higher values indicating superior performance. The metrics
Precision and Recall are defined as Precision = TP/(TP + FP) and Recall = TP/(TP + FN). Then,
we can calculate F1 = 2 × Precision × Recall/(Precision + Recall).

In this study, PCA is used as the feature fusion method, and its calculation formula is
as follows.

First, we need to standardize the dataset. Assuming the number of samples is n and
the number of features is m, we can obtain a data matrix of size n × m. We need to calculate
the average value by column, and we obtain the column mean value xj =

1
n ∑n

i=1 xij. We

also need to obtain the column-specific standard deviation Sj =

√
∑n

i=1(xij−xj)
2

n−1 . Then, we

can obtain the standardized data Xij =
xij−xj

Sj
.

Second, we calculate the covariance matrix of the standardized sample matrix R with
size m × m, in which rij =

1
n−1 ∑n

k=1 XkiXkj. After we determine R, we can calculate its
eigenvalues λ1 to λm and eigenvectors a1 to am.

Finally, we calculate the contribution degree λi
∑m

k=1 λk
of each eigenvalue and construct

the principal components by taking the eigenvector with the top N contribution degrees.
The i th principal component = a1iX1 + a2iX2 + · · ·+ amiXm (i ≤ m), and N is a manually
set parameter less than or equal to m.

The Maximum Information Coefficient (MIC) is used in the feature selection step. We
first define the term mutual information, which describes the amount of information in the
corresponding part of the two subsystems of the same system. The calculation of mutual
information is defined as follows:

I(x; y) =
∫

p(x, y)log2
p(x, y)

p(x)p(y)
dxdy
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where p(x, y) is the joint probability between the variables x and y. Next, the calculation
formula of MIC is given:

mic(x; y) = max
a∗b<B

I(x; y)
log2 min(a, b)

,

where a and b are the numbers of cells in the x and y directions divided when the two
variables are discretized into a two-dimensional space and represented by a scatter plot,
representing the grid distribution; B is a variable whose size is about 0.6 power of the
amount of data.

3.3. Sample Construction

The construction of appropriate video samples is crucial for the accuracy and reliability
of the prediction models. The beginning parts of the videos are typically added by the
publishers during the video release and do not necessarily pertain to the content of the dance
itself. This study considers the beginning parts of videos redundant and systematically
removes them from the dataset. The following editing rules are applied based on the
duration of each video:

Duration ≤ 25 s: No trimming of the beginning part is performed. Videos of this
length usually consist only of a dance clip, and as such, they are used in their entirety.

25 s < Duration ≤ 30 s: The first 5 s is trimmed. This is based on the assumption that
videos longer than 25 s are likely to start with a redundant prolog.

30 s < Duration ≤ 60 s: The first 10 s is removed. Videos within this duration are
often more formally constructed, and therefore, longer introductory prologs are expected.

Duration > 60 s: The initial 15 s is cut. For videos exceeding one minute, it is generally
assumed that the prologue will be even more elaborate, justifying the longer cut.

By applying these rules systematically, we aim to ensure that the videos used in
our training dataset focus solely on the relevant features of dance movements, thereby
enhancing the quality and reliability of our machine-learning models.

3.4. Human Body Movement Features

Monika Wysoczanska and Tomasz Trzcinski extracted human skeleton features from
dance video samples as video features in multi-modal features. Their data showed that the
human movements represented by human skeleton features in the video frame contributed
useful information for the downstream prediction tasks [41]. In 2022, Davide Moltisanti et al.
released the Breaking competition data set for dance movement synthesis using the Red Bull
BC ONE competition, in which they used automatic and manual annotations to obtain the key
features of the dancers’ human bones in the video [42]. This facilitated more consistent and
accurate performance for dance movement synthesis. The data showed that the key points of
the human skeleton were extremely useful for the recognition of dance movements.

The accurate extraction of features related to human body movement is pivotal to our
study. We partitioned the jazz dance videos from the AIST++ dataset into smaller clips,
each corresponding to a distinct dance movement. These clips were then manually assessed
to categorize the involvement of specific body parts in each movement. Specifically, we
concentrated on the movements of five primary body regions: the head, chest, arms, pelvic
area, and legs.

For instance, after capturing a specific dance movement in a video clip, we evaluate
whether the movement involves head motion. If it does, the clip is added to a dataset of
positive samples for head action. If not, it is placed in a dataset of negative samples. Similar
datasets were created for the other four body regions: chest, arms, pelvic area, and legs.
The detailed information of the datasets is shown in Table 1.
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Table 1. Details of each body region. The table contains the specific content of videos and the number
of sample videos.

Body Region
Positive Samples Negative Samples

Content Counts Content Counts

Head Videos of actions with
head movement 48 Videos of actions without

head movement 49

Chest Videos of actions with
chest movement 59 Videos of actions without

chest movement 44

Arms Videos of actions with
arms movement 68 Videos of actions without

arms movement 37

Pelvic area Videos of actions with
pelvic area movement 47 Videos of actions without

pelvic area movement 56

Legs Videos of actions with
leg movement 59 Videos of actions without

leg movement 43

We employed a spatial temporal graph convolutional network (ST-GCN) to train
individual classification networks for each body part, using the curated sets of positive
and negative samples. These ST-GCN models aim to classify whether a given body part is
engaged in movement within a query clip.

Each video sample is divided into three equally sized segments. The movement
of each of the five body parts is assessed at intervals of 12 frames within each segment.
Subsequently, we calculate the proportion of time each body part is in motion within each
segment. This yields a total of 15 action features, encompassing the time-based activity of
the five main body regions across the three segments of each video clip.

By employing this rigorous methodology, we aim to ensure a comprehensive under-
standing of body movements and to improve the performance and explainability of the
proposed DanceTrend framework for the dance video popularity prediction task.

3.5. Color Space Features

Besides the human body movement features described above, Monika Wysoczanska
and Tomasz Trzcinski also extracted RGB channel features from dance video samples to
represent contextual information [41]. Cheng et al. investigated the micro-video popularity
prediction task by extracting the features of three modalities, i.e., audio, text, and video.
For video images, they extracted the features by grouping the colors into 50 unique tones
in a single RGB channel [43]. Kuo et al. chose to transform RGB features into HSV features
to predict the coloring images. They showed that both RGB features and HSV features
expressed color information from different dimensions [44].

Color composition in dance videos can significantly impact the viewer’s perception
and, consequently, the video’s popularity. Our analysis incorporates a variety of color
space features extracted from the video frames, specifically focusing on grayscale, RGB
(Red, Green, Blue), and HSV (Hue, Saturation, Value) color spaces.

Grayscale characteristics offer a foundational understanding of a video’s color compo-
sition. For each video frame, we calculate both the average and maximum grayscale pixel
values. Additionally, we designate pixels with grayscale values not larger than 40 as “dark
pixels”. For each frame, we calculate and retain the proportion of such dark pixels to the total
number of pixels. Finally, we generate four features: the average and maximum proportion of
dark pixels across all frames, along with the average and maximum grayscale values.

The RGB color space is based on the three primary colors Red/Green/Blue and is a
commonly employed model for digital media. We extract and calculate the average and
maximum values of each RGB component for each video frame. After the analysis of the
entire video sample, six features are constructed, representing the average and maximum
values of the Red/Green/Blue components across all frames.
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The HSV color space offers another representation of color, encoding Hue, Saturation,
and Value (or brightness). The HSV color space divides hues into degrees, ranging from 0
to 360. For the purpose of this study, we segment the hue spectrum into six equal units,
each spanning 60 degrees. Within each unit, we extract the average and maximum values
for both Saturation (S) and Value (V) for each frame. This leads to four features per hue
unit, i.e., average and maximum S, and average and maximum V. A total of 24 HSV features
can be obtained for each sample.

3.6. User Metrics and Additional Features

To offer a more comprehensive analysis of dance video popularity, this study extends
beyond the realm of video content to consider various user- and context-specific features.
These features encompass the uploader’s fan base size, the gender of individuals featured
in the video, the video’s duration, and a metric to gauge the visual appeal of the performers.

Fan Base Size: The size of the uploader’s fan base can significantly influence a video’s
popularity. We capture this count by recording the number of fans that the uploader has at
the time of the video’s release.

Gender of Performers: The performers’ genders can also be a crucial factor in deter-
mining video appeal. Therefore, we classify the genders of the characters in each video into
one of the three categories: male, female, or both.

Video Duration: Video length, measured in seconds, is another variable that has a
potential impact on viewer engagement and the video’s overall popularity.

Visual Appeal Metric: The performers’ visual appeal is anticipated to have a potential
impact on a video’s popularity. We employ Baidu’s facial attractiveness scoring API. We
randomly select 10 frames from each video and apply the API to obtain the attractiveness
scores for the individual features. Both the average and the maximum attractiveness scores
across these frames are calculated as the features.

We integrate these user- and context-specific features to provide a multifaceted per-
spective on the factors that contribute to dance video popularity. This holistic approach
enhances the robustness and explainability of our DanceTrend models.

3.7. Feature Fusion Strategy

We adopted a principal component analysis (PCA)-based feature fusion strategy to en-
rich the following three main groups: human body movement features, color space features,
and user metrics features. These features were constructed from the same dataset and could
carry inherent connections in such structured data that needed further processing [26,45].

Each feature set in Figure 1 was transformed by PCA, and the same number of principal
component (PC) features was obtained. Then, a feature selection and an XGBoost classifier
were employed to process each of the three main groups, i.e., human body movement
features, color space features, and user metrics features. The weighted result of three
predictions was calculated by summing of the three main feature groups: human body
movement features, color space features, and user metrics features, with the weights 0.15,
0.20, and 0.65, respectively.
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3.8. Experimental Procedure

The complete workflow of this study is illustrated in Figure 2. The experimental design
encompasses several stages, from data acquisition to feature extraction, model training, and
ultimately to predictive analysis. Below are the key steps in our experimental procedure.
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The dance videos from the two datasets AIST++ and BDV were acquired and prepro-
cessed. Initially, jazz dance videos from the AIST++ dataset were segmented into smaller
video clips, each corresponding to individual dance movements. For each clip, we labeled
movements involving the head, chest, pelvic area, arm, and leg. These annotated clips serve
as the training set for the subsequent human body movement classification networks. Both
the AIST++ and BDV datasets were processed through a human pose estimation framework,
which integrates YOLO for object detection and AlphaPose for keypoint recognition.

The Spatio-Temporal Graph Convolutional Networks (ST-GCNs) were trained using the
body keypoint data extracted from the five annotated sets of dance movements in the AIST++
dataset. The trained networks were then employed to evaluate body movements in videos
from the BDV dataset. Each BDV video clip was partitioned into three equal-length segments,
and a sampling rate of 12 frames per second was used to assess movements across five body
parts. Proportional movement metrics for each body part were subsequently calculated.

A comprehensive set of 54 features was collected from the above-generated human
body movement features, together with the color space features and the user metrics
features. These were then screened by the Maximum Information Coefficient (MIC) [46].
Only 60% of features with the largest MIC values were retained in each of the two groups:
human body movement features and color space features. All the user metrics features
were preserved.

The refined feature set was used for the three separate predictive models for the three
main feature groups. Their prediction results were used by a weighted decision-making
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process for the four target labels: number of plays, number of likes, number of favorites,
and number of coins.

4. Results and Discussion
4.1. Comparative Experiment

This study employed three groups of features, i.e., human body movement, color space,
and user metrics. These features were transformed by PCA before the XGBoost-based
predictions. We compared the proposed DanceTrend models with multiple classifiers using
the three groups of features without the PCA transformation. The evaluated classifiers
included Random Forest (RF), XGBoost, and Decision Tree (DT). Support Vector Machine
(SVM) and LightGBM were popularly used in many classification studies [47,48] and
were also evaluated in this study. Artificial Neural Network (ANN) was compared for its
prediction capacity of the multi-modal data in this study, since ANN has been commonly
used for classifying multi-modal data [49].

Figure 3 visualizes the performance metrics across four popularity indicators: likes,
coins, favorites, and plays. Our DanceTrend models achieved classification accuracies
of 0.8312, 0.7922, 0.8831, and 0.9026 for these respective indicators, outperforming all
the comparison models. While the prediction accuracy of DanceTrend for the number
of likes was equal to the best-performing comparison model LightGBM, our F1 score
marginally exceeded LightGBM by 0.0002. Our model’s prediction accuracy surpassed the
best-performing comparison model XGBoost by 0.0390, and the F1 score also exhibited a
similar margin of improvement. DanceTrend achieved the same improvement of 0.0714 in
ACC than the best-performing comparison models for the numbers of favorites (LightGBM)
and plays (XGBoost).
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Taking into account the four popularity indicators collectively, our DanceTrend algo-
rithm demonstrates superior performance metrics and affirms its efficacy in predicting
video popularity.

4.2. Determination of Feature Selection Threshold

Maximum Information Coefficient (MIC) can detect both linear and nonlinear cor-
relations between two variables, but it is also sensitive to weak or even false positive
corrections [46]. The diversified types of the three main feature groups in this study rely
on the MIC’s strong capability to detect nonlinear relationships between variables. So, we
chose MIC as the indicator of feature selection.

Among these three groups of features, the MIC between the number of fans and
predictive indicators is the highest, followed by the video time and the level of people’s
appearance, which all belong to user metrics features. Among the color features, the S
value and V value features divided into red blocks by H value have the highest MIC value.
Among the action features, hip and head movements are the top two most significantly
corrected with popularity.

We evaluate how feature selection may impact the prediction tasks of the three main
feature groups (Figure 4).

There are 15 human body movement features in total. The selection of the top 60% of
MIC-ranked features achieved the best ACC values on three video popularity indicators,
likes, coins and favorites, while achieving the second-best ACC = 0.5649 on the indicator
“plays”, which was slightly worse than the best one (ACC = 0.5714). The top 60% of
MIC-ranked features equated to retraining nine features.

The dataset initially contained 34 color space features. No singular selection proportion
yielded the highest accuracy consistently across all four indicators. The top 60% MIC-
ranked color space features consistently ranked within the top three in performance and
reached the best average ranks for ACC (rank 2.25) and F1 (rank 2.50) over the four
popularity indicators. As such, 20 color space features were ultimately selected.

Given that there were only five user metrics features, the retention ratio led to dupli-
cated outcomes. For instance, 30%, 40%, and 50% retention would all yield two features.
But all four subfigures of Figure 4 suggested that the best prediction performance was
achieved using all the five user metrics features.

In summary, features within the top 60% MIC values for human body movement and
color space features were retained, along with all the user metrics features. This yields a
final composite of 34 features for the subsequent analysis.

4.3. Evaluation of Human Body Movement Classifications

We trained separate classification networks to identify the movements in five body
parts: the arms, chest, pelvic area, legs, and head. The networks were trained for 15 epochs,
with the results validated using a test set. These outcomes are illustrated in Figure 5.

The network trained for head movement classification shows unstable fluctuations
during the first eight epochs (Figure 5e). However, this instability resolves over time,
trending toward increased and stable accuracies after the eighth epoch. The variability in
the head movement classification could be attributed to its unique challenges. Specifically,
the key points on the head are more densely clustered than those on other body parts.
Furthermore, the head’s smaller volume compared to other body segments may contribute
to the increased difficulty in its accurate classification. The movement classification net-
works trained for the other four body parts quickly converge to the best accuracies on
both training and testing subsets. The dataset was partitioned into training and testing
subsets at a ratio of 4:1. This distribution results in approximately 20 samples within the
testing subset, as outlined in Table 1. It is observed that, during certain epochs, the testing
ACC marginally surpasses the training ACC. This phenomenon can be attributed to the
relatively small size of the testing subset. Given the limited number of testing samples, even
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a discrepancy of one or two samples can manifest as a notable variation in the resultant
ACC calculation.
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Figure 5. Training performance of the human body movement classification networks. The body
parts undergoing binary network training are identified on the left-hand side of the charts. The
horizontal axis represents the number of epochs the networks were trained for. The evaluated
performance metric is ACC, indicated in the vertical axis. The subfigures correspond to the movement
classifications of the (a) arms, (b) chest, (c) pelvic area, (d) legs, and (e) head.

Notwithstanding these epoch-specific fluctuations, there is a consistent enhancement
in the testing ACC concurrent with the progression of epochs. This ascending trajectory
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aligns with the training ACC trend, indicating robust model generalization despite the
dataset’s constraints. Therefore, the training outcomes are deemed to be valid and reliable.

4.4. Contribution of Human Body Movement Features

We empirically assess the contribution of incorporating the human body movement
features in the video popularity prediction tasks. The above sections showed that the
human body movement features achieved worse than the other two feature groups on the
video popularity prediction tasks. This section executed an ablation study that specifically
focused on the video popularity predictions with and without the human body movement
features. The 10-fold cross validation strategy was used to evaluate the convolutional
neural network (CNN) model on the predictions across all four popularity indicators.

As illustrated in Figure 6a, not only does the model achieve higher accuracy rates, but
it also demonstrates superior performance in F1 score measurements when the human body
movement features are integrated. The largest improvement in ACC (0.0558) is achieved
for the popularity indicator “plays” when the human body movement features are used.
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Figure 6. Contribution evaluation of the different feature types to the popularity prediction task.
(a) The human body movement features and (b) the color features are evaluated in the popularity
prediction task. The horizontal axis represents the four popularity indicators. The vertical axis gives
the difference values of the performance metrics ACC and F1 between the baseline CNN model
using all three main feature groups and that excluding the evaluated feature group. A positive value
indicates that the inclusion of the evaluated feature group achieves better performance than the
model without the feature group.

In summary, the human body movement features positively contribute to the video
popularity predictions across all the four popularity indicators.

4.5. Contribution of Color Features

We also empirically evaluated the contribution of color features to the video popularity
prediction task. This ablation experiment focused on video popularity prediction with and
without color features. Similarly, we use a 10-fold cross validation strategy to evaluate the
prediction of a convolutional neural network (CNN) model for four popularity indicators.

As shown in Figure 6b, color features also have a positive effect on the prediction
of popularity. The two performance metrics ACC and F1 are decreased by at least 0.0214
when the color features are not included in the DanceTrend framework. The largest ACC
improvement (0.0409) is achieved in the popularity indicator “plays” and the largest F1
improvement (0.0574) was achieved in the popularity indicator “likes”.

We conclude that color features contribute positively to the dance video popularity
predictions for all four popularity metrics.
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4.6. Comparative Evaluation of Classifiers across Fusion Strategies

This section evaluated the prediction accuracies of the classifiers when different fusion
strategies were employed. We tested five classifiers (including SVM, DT, LightGBM, GNB,
and XGBoost) against four popularity indicators: likes, coins, favorites, and plays.

Three fusion strategies were evaluated. The pre-fusion strategy combined the three
main feature groups, i.e., human body movement, color space, and user metrics, to build
the classification model. The post-fusion strategy involved building a classification model
for each of the three feature groups and then generating the final predictions using the
weighted sum of the three classification models. This study chose the hybrid fusion strategy,
which included transforming the three feature groups separately, building classification
models over the three transformed feature groups, and generating the weighted sum of the
three predictors.

Figure 7 demonstrates that the different classifiers excelled under various fusion strategies.
When the pre-fusion strategy was employed, LightGBM achieved the best accuracies for the
three popularity indicators, i.e., likes (ACC = 0.8052), favorites (ACC = 0.7922), and plays
(ACC = 0.8442). But it only achieved the second-best ACC (0.7273) for the prediction task
for coins. XGBoost yielded the best accuracy, 0.7403, for the prediction task for coins. In the
scenarios of both post-fusion and hybrid fusion, XGBoost outperformed the other classifiers
across all four popularity indicators. The best classification accuracies of XGBoost were 0.8247,
0.7792, 0.8312, and 0.8636 for the popularity prediction tasks of likes, coins, favorites, and
plays. These prediction accuracies were further improved to 0.8312, 0.7922, 0.8831, and 0.9026
under the hybrid fusion strategy in this study.
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Figure 7. Comparing classification accuracies under varying fusion strategies. The histograms
illustrate the performances of the evaluated classifiers under the (a) pre-fusion, (b) post-fusion, and
(c) hybrid fusion strategies.

XGBoost achieved the overall best classification performance against the other classi-
fiers for the prediction tasks of the four video popularity indicators.

4.7. Determining the Optimal Feature Fusion Method

We also evaluated the impacts of three feature fusion strategies, i.e., pre-fusion only,
post-fusion only, and a hybrid approach that combined the ideas of both pre- and post-
fusion. These strategies were subsequently evaluated for their performance across four
popularity indicators: likes, coins, favorites, and plays.

Figure 8 illustrates the comparative outcomes across the three fusion strategies. The
hybrid fusion strategy used in the proposed DanceTrend framework outperformed the
pre-fusion and post-fusion methods regarding both accuracy and F1 score across all four
popularity indicators.
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The hybrid fusion strategy achieved an accuracy of 0.8312 for the popularity indicator
likes, which is 0.0261 higher than the pre-fusion (0.8052) and 0.0065 higher than the post-
fusion (0.8247) strategies. For predicting the indicator coins, the hybrid fusion achieved
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an accuracy of 0.7922, outperforming the pre-fusion method by 0.0519 (0.7403) and the
post-fusion method by 0.0130 (0.7792). Larger improvements were achieved by the hybrid
fusion strategy, with an accuracy of 0.8831 for predicting the popularity indicator favorites,
which is 0.0909 and 0.0519 higher than the pre-fusion (0.7922) and post-fusion (0.8312)
strategies, respectively. The hybrid fusion strategy even achieved a very high accuracy
of 0.9026 for predicting the popularity indicator plays, besting the pre-fusion strategy by
0.0584 and the post-fusion strategy by 0.0390. A similar trend was observed for the other
prediction performance metric F1 score.

5. Conclusions

This study delves into the topic of dance video popularity prediction, employing
human body movement recognition techniques. We showed the positive contribution of
the movement features to the prediction of dance video popularity. Additionally, this study
investigates the relative merits of feature fusion strategies and classifiers, revealing that
our proposed DanceTrend framework significantly outperforms the other approaches, with
accuracies of 83.12%, 90.26%, 88.31%, and 79.22% for the four popularity indicators, i.e.,
“likes”, “plays”, “favorites”, and “coins”, respectively.

While our study proposes a novel framework DanceTrend for the prediction task of
dance video popularity, it also comes with its set of limitations. Firstly, this study defines
the human body movement features by the movements of only five primary body regions:
the head, chest, arms, pelvic area, and legs. The intricate and free-form nature of dance
movement adds an inherent layer of complexity to the feature construction process, and
more complex algorithms need to be developed to describe the dance movements.

Secondly, the feature set in the proposed DanceTrend framework may be further
improved by additional modalities of features. We can further refer to multi-modal analysis
methods and add new feature types, such as the audio features, including rhythm, pitch,
music type, etc. There are also text features in the title that can be analyzed in combination
with the current large language models (LLMs). The LLM-embedded text features may
deliver high-level features like emotion status. The cover image characteristics of the
published video serve as another feature modality.
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