
Citation: Chen, F.; Wu, Y.; Liao, T.;

Zeng, H.; Ouyang, S.; Guan, J.

GMIW-Pose: Camera Pose

Estimation via Global Matching and

Iterative Weighted Eight-Point

Algorithm. Electronics 2023, 12, 4689.

https://doi.org/10.3390/

electronics12224689

Academic Editor: Byung Cheol Song

Received: 10 October 2023

Revised: 8 November 2023

Accepted: 15 November 2023

Published: 18 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

GMIW-Pose: Camera Pose Estimation via Global Matching and
Iterative Weighted Eight-Point Algorithm
Fan Chen, Yuting Wu, Tianjian Liao, Huiquan Zeng, Sujian Ouyang and Jiansheng Guan *

School of Electrical Engineering and Automation, Xiamen University of Technology, Xiamen 361024, China
* Correspondence: jsguan@xmut.edu.cn

Abstract: We propose a novel approach, GMIW-Pose, to estimate the relative camera poses between
two views. This method leverages a Transformer-based global matching module to obtain robust 2D–
2D dense correspondences, followed by iterative refinement of matching weights using ConvGRU.
Ultimately, the camera’s relative pose is determined through the weighted eight-point algorithm.
Compared with the previous best two-view pose estimation method, GMIW-Pose reduced the
Absolute Trajectory Error (ATE) by 24% on the TartanAir dataset; it achieved the best or second-best
performance in multiple scenarios of the TUM-RGBD and KITTI datasets without fine-tuning, among
which ATE decreased by 22% on the TUM-RGBD dataset.

Keywords: visual odometry; transformer; ConvGRU; the eight-point algorithm

1. Introduction

In recent years, the field of computer vision has made significant strides in various
applications, including robotics, autonomous vehicles, and augmented reality. Camera
pose estimation is a fundamental problem in computer vision, involving the determination
of the relative position and orientation of two or more cameras observing the same scene,
which plays a crucial role in 3D reconstruction, scene understanding, and localization.
Accurate and robust camera pose estimation is essential for enabling machines to effectively
perceive their surroundings and interact with them.

Traditional camera pose estimation methods are primarily based on geometric princi-
ples, using keypoint matching or optical flow between images to establish correspondences,
followed by solving for camera poses using methods like epipolar geometry [1]. While
these methods offer strong interpretability and often work well in many scenarios, they rely
on accurate feature matching or optical flow, making them less robust in complex scenes.
For example, in cases of texture absence, lighting variations, occlusion, dynamic objects,
and so forth, feature matching or optical flow may result in errors or omissions, leading to
pose estimation failures.

With the advancement of deep learning, some learning-based regression methods [2–4]
have emerged. They predict the camera’s pose directly from the RGB images using
a pose network. These methods can adapt to complex scenes without the need for explicit
feature extraction or point matching. However, according to the principles of multi-view
geometry, recovering camera poses solely from monocular images encounters the challenge
of scale ambiguity [5], meaning that a monocular image sequence cannot recover the scale
of the scene. This implies that if deep learning models are used to regress camera poses
directly without considering camera intrinsic parameters and geometric models, perfor-
mance may degrade significantly when there are domain differences between the test and
training datasets, such as different scenes, viewpoints, resolutions, and more. Therefore,
the generalization ability of learning-based regression methods is often limited.

In this paper, we propose a novel approach called GMIW-Pose to estimate the rel-
ative camera pose between two views. It adheres to geometric model constraints while
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utilizing a deep learning model to extract and enhance image features and optimize
matching weights. An overall schematic is illustrated in Figure 1. GMIW-Pose comprises
three key components:

1. A global matching module based on the Transformer [6]: Inspired by LoFTR [7]
and GMFlow [8], our approach employs a Transformer structure to enhance image
features. It integrates global context features into local features through self-attention
mechanisms and fuses features from two views using cross-attention mechanisms.
The enhanced feature maps are used to generate a similarity matrix, from which dense
correspondences between the two views are extracted via softmax operations. The
Transformer efficiently captures long-range dependencies in image data to enhance
local features for better key point matching. To balance performance and efficiency,
our feature maps are at one-eighth of the original image size, resulting in coarse-level
matches at the same scale.

2. Robust camera pose estimation based on the weighted eight-point algorithm: The
obtained coarse-level matches contain numerous outliers and noise. Common practice
involves estimating an inlier set using methods like RANSAC [9] and then applying
the eight-point or five-point algorithm [10] to recover poses. However, we found
that RANSAC is not suitable in this context, as it assumes the presence of a certain
number of inliers in the candidate set, while coarse-level matching results often have
some bias. Using the weighted eight-point algorithm effectively mitigates the impact
of outliers on the results, and it is differentiable, allowing end-to-end training of
our model.

3. Weight updating module with Convolutional Gated Recurrent Units (ConvGRU) [11]:
We treat the problem of obtaining better-matching weights as an optimization prob-
lem, optimizing weights to minimize geometric loss. To achieve this, we introduce
a weight-updating module that employs ConvGRU to simulate the optimization pro-
cess. At each iteration, the ConvGRU module incorporates global image information,
iterative context information, and geometric loss to iteratively refine the weights of
correspondences.
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Figure 1. Overview of GMIW-Pose: The process begins with the extraction of downsampled dense
features from two images using CNN and Transformer. Subsequently, through the global matching

module, dense sets of matching points {x A, xB ∈ RH×W×2
}

between the two images and their

corresponding initial weights w0 ∈ RH×W are obtained. Following this, an updating module is

employed to iteratively refine the weights. After N iterations, the weights wN along with {x A, xB
}

can be used to compute camera’s relative pose {R, t} using the weighted eight-point algorithm.

The main contributions of this work are as follows: 1. We propose a novel algorithm
framework, GMIW-Pose, to estimate the relative camera pose between two views. It
uses global matching and the weighted eight-point algorithm to estimate camera poses,
providing clear geometric interpretations and addressing the scale ambiguity challenge
often encountered by pose regression-based methods. 2. We introduce the Transformer to
enhance matching robustness, alleviating the poor matching performance issue in complex
scenes faced by traditional methods. 3. We design a weight updating module based on
ConvGRU to obtain better matching weights. To evaluate the performance of our proposed
method, we conducted extensive experiments on the TartanAir [12] and KITTI [13] datasets.
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The experimental results demonstrate that our GMIW-Pose outperforms existing methods
in relative camera pose estimation.

2. Related Works
2.1. Two-View Camera Pose Estimation

Camera pose estimation is a thoroughly researched problem in the field of computer
vision, with a wealth of methods available to address this challenging task. Classical
approaches based on epipolar geometry have gained popularity due to their interpretability
and generalization, being widely employed in various application domains and many
advanced Structure from Motion (SfM) and Simultaneous Localization and Mapping
(SLAM) systems [14–16]. The prerequisite for recovering geometric information is obtaining
a set of sparse or dense matching points. Many classical algorithms have been used to
establish matches, such as ORB [17], and SIFT [18], among others. Nevertheless, these
traditional matching algorithms often perform poorly in cases of non-Lambertian surfaces,
blurriness, and weak textures. Matching algorithms based on deep learning [7,19–21] have
significantly alleviated these limitations. Among them, SuperGlue [21] utilizes graph neural
networks (GNNs) to learn matching relationships from interest points and descriptors,
while LoFTR [7] goes further by not only employing Transformers to capture long-range
relationships within and between views but also bypassing the feature detection stage and
directly producing dense matches. Subsequently, Transformers have been utilized for global
optical flow estimation to address the long-standing challenge of large displacements [8,22].
Inspired by LoFTR and GMFlow, we also employ Transformers to enhance features and
employ global matching methods to generate coarse-level dense matches.

On the other hand, learning-based methods for camera pose estimation have gained
increasing attention in recent years. A significant category of these methods utilizes
deep Convolutional Neural Networks (CNNs) [2–4] to directly regress camera poses,
benefiting from their end-to-end nature, allowing them to predict camera poses directly
from raw image pixels. These methods leverage deep neural networks to learn complex
feature representations and efficiently estimate camera rotations and translations, effectively
bypassing the costly feature matching or tracking steps. However, these models encounter
generalization issues due to the presence of scale ambiguity in monocular vision [5] and
typically require large amounts of annotated data for training, with high demands for
data diversity and quality. To address the issue of generalization, some researchers have
adopted unsupervised learning approaches, utilizing self-supervised signals for training.
SfMLearner [23] minimizes the photometric loss between warped images and input images
while simultaneously learning depth and pose. GeoNet [24] extends this idea to joint
estimation of pose, depth, and optical flow. These methods typically learn camera poses by
reconstructing loss from image sequences or multi-view scenarios, thus avoiding reliance
on precise pose labels, although they still do not solve the scale ambiguity problem. Some
works introduce geometric structures into deep learning models to circumvent scale issues.
For instance, TartanVO [25] addresses the generalization problem by directly incorporating
camera parameters into the model and training on a large amount of data. Jiang et al. [26]
embed epipolar geometry constraints into a self-supervised learning framework through
the joint optimization of camera poses and optical flow. In [27,28], they use the Eight-Point
Algorithm as a neural network inductive bias to regress fundamental or essential matrices.
Wang et al. [29] employ scale-invariant loss functions to train their model. Similarly, our
approach also adopts a geometry-based structure, discarding PoseNet and using the Eight-
Point Algorithm to compute camera poses. We employ a scale-invariant loss function
to train the entire model end-to-end, further mitigating generalization issues caused by
scale ambiguity.

2.2. Iterative Update

Earlier work [30–32] embedded optimization problems into network structures, often
employing neural network models to predict the input or parameters of optimization
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problems. BA-Net [33] incorporated a differentiable Levenberg–Marquardt (LM) algorithm
into a neural network, using fully convolutional layers to predict the λ parameter at each
update step of the LM algorithm. DeepV2D [34] iteratively updated motion and depth
estimation, progressively converging to accurate numerical values. In recent developments
in the field of optical flow estimation, many works [35–38] have employed iterative refine-
ment to enhance optical flow. Among them, RAFT [38] utilized a Convolutional Gated
Recurrent Unit (ConvGRU) module for iterative motion field updates to estimate optical
flow. Inspired by this, in our work, we employ ConvGRU for optimization updates of
matching weights. In each iterative step, ConvGRU takes global image information and
geometric losses as inputs, predicts the residual weights, and progressively improves the
weights of correspondences.

3. Method

For two RGB images with overlapping regions, denoted as {I A, IB ∈ RH×W×3
}

, as-
suming that the camera’s intrinsic parameters K are known, the objective is to solve for the
relative camera pose {R, t}. Here, H represents the width of the images, and W represents
the height. R ∈ SO(3) represents the camera’s rotation, and t ∈ R3 represents the camera’s
translation. We propose a method based on global matching and an iterative weighted
eight-point algorithm to compute the relative camera pose between the two images.

3.1. Establishing 2D–2D Matches

Inspired by LoFTR and GMFlow, we adopted a similar approach to extract 2D–2D
dense matching point pairs between the two views. The difference lies in the trade-off
between runtime speed and performance. We utilized only low-resolution coarse matching
results for subsequent steps without refinement. Additionally, we computed not only
forward optical flow but also backward optical flow and utilized the reciprocal of their sum
to obtain the initial estimation of matching point pair weights, denoted as w0.

3.1.1. Feature Extraction and Enhancement

First, we employed the Convolutional Neural Network ResNet-18 [39] to extract fea-
tures from the original image {I A, IB

}
. To reduce computational complexity in subsequent

steps, the resolution of the extracted feature maps FA and FB ∈ Rh×w×c was reduced to
1/8 of the original image size (h = H/8, w = W/8, where c is the channel dimension of
features). Next, we enhanced the extracted original features using a Transformer module.
Specifically, we started by adding cosine positional embeddings to the original features,
allowing them to carry position-related information. Subsequently, we iteratively applied
self-attention mechanisms and cross-attention mechanisms to transform the feature maps.
In self-attention layers, the query, key, and value all come from the same view’s features. In
cross-attention layers, the key and value are from the same view’s features, while the query
utilizes features from another view. This transformation process can be represented as:

FA = Γ
(

IA
)

, FB = Γ
(

IB
)

(1)

∼
F

A
= Θ

(
FA + P

)
,
∼
F

B
= Θ

(
FB + P

)
(2)

Here, Γ represents ResNet-18, Θ denotes the Transformer, P is positional encoding

and
{∼

F
A

,
∼
F

B
∈ R H

8 ×
W
8 ×c

}
are enhanced feature maps. Positional encoding followed the

2D extension of the standard positional encoding as used in DETR [40].
Feature enhancement is a critical step in obtaining high-quality local features for

matching. It blends global and position-related information into local features through self-
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attention and cross-attention mechanisms, significantly improving matching performance
in scenarios with weak textures, as illustrated in Figure 2.
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while the actual matching pairs are much denser. These colored lines connect corresponding matching
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3.1.2. Global Matching

The similarity of the features between two views can be measured by the inner product
of corresponding feature vectors for each pixel. By flattening the spatial dimensions

of
∼
F

A
and

∼
F

B
into two-dimensional matrices of size (h × w, c), we performed matrix

multiplication, resulting in a large matrix of dimensions (h × w, h × w):

S =
〈
∼
F

A
,
∼
F

B
〉√

c
∈ Rh×w×h×w (3)

Similar to the classical Transformer implementation, we divided by
√

c to prevent
excessively large inner products, ensuring stable gradients. The element in the i-th row and
j-th column of S represents the similarity between the i-th pixel in IA and the j-th pixel in IB.

Various methods can be applied to extract dense matching point pairs between the
two views from the similarity matrix. An approach is to search for the coordinates corre-
sponding to the largest response in the similarity matrix S. Suppose the maximum value in
the S matrix’s i-th row is located in the k-th column; then, the i-th pixel in IA is paired with
the k-th pixel in IB, yielding the matching point pair {i, k}. This process is repeated for each
row, resulting in a total of h×w matching point pairs. While this method is straightforward
and fast, it is non-differentiable and not suitable for stable training. LoFTR employed
two optional solutions, the optimal transport layer and dual-softmax operator, to extract
matches from S in a differentiable manner, whereas GMFlow employed a single softmax
for this operation. We adopted GMFlow’s approach due to its efficiency and its ability to
derive initial weights for the matching point pairs. Specifically, for all pixel coordinates
xA ∈ Rh×w×2 in image IA, the corresponding matching points xB ∈ Rh×w×2 in image IB

were calculated as follows:
xB = so f tmaxrow(S)x

A (4)

Here, so f tmaxrow denotes the softmax operation performed on each row of the
S matrix.

3.2. Weighted 8-Point Algorithm

In the case of known 2D–2D correspondences between two views and the extrin-
sic camera parameters K, we can calculate the fundamental matrix F ∈ R3×3 and the
essential matrix E ∈ R3×3 between the two images using the normalized eight-point algo-
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rithm. Subsequently, we can decompose the essential matrix to obtain the relative pose
{R, t}. Specifically, according to the definition, the fundamental matrix F satisfies the
following equation:

XBF
(

XA
)T

= 0 (5)

where XA and XB are the three-dimensional homogeneous forms of pixel coordinates xA

and xB, respectively.
Next, by flattening the fundamental matrix F into a 9-dimensional vector f in row-

major order, the above equation can be transformed into the form of a homogeneous
linear system:

Af = 0 (6)

Here, A is the coefficient matrix obtained by arranging XA and XB according to
a certain pattern. When the number of matched point pairs exceeds 8, this equation
becomes an overdetermined system, which can be solved for the least squares solution of
f by using the singular value decomposition of ATA. Additionally, since the rank of the
fundamental matrix is 2, another SVD step is needed to enforce the determinant of F to
be 0.

The essential matrix can be derived from the fundamental matrix and camera extrinsics
as follows:

E = KTFK (7)

Finally, the decomposition of E can yield the translation t and rotation R, based on the
relationship between the essential matrix and relative pose:

E = [t]×R (8)

where [t]× denotes the skew-symmetric matrix corresponding to the three-dimensional vec-
tor t. Similarly, the decomposition algorithm can also utilize singular value decomposition.

In scenarios with noise or outliers in the correspondences, solving the fundamen-
tal matrix using the traditional eight-point algorithm may result in significant errors.
A classical solution is to use techniques like RANSAC to estimate an inlier set and then
compute the fundamental matrix using only the inliers. We employ a weighted least
squares method to mitigate the influence of outliers, modifying Equation (6) as follows:

diag(w)Af = 0 (9)

Here, diag(w) represents a diagonal matrix generated from the weights w, where each
element on the diagonal corresponds to the weight of a matched point pair. Consequently,
the least squares solution for f is obtained as the right singular vector corresponding to the
smallest eigenvalue of the matrix (diag(w)A)Tdiag(w)A. The subsequent steps follow the
traditional approach to obtain the camera’s pose R and t.

3.3. Iterative Updates for Weights
3.3.1. Weights Initialization

For simplicity, the initial weights w0 for dense matching pairs can be set to the identity
matrix. However, to expedite convergence, we use the reciprocal of the sum of forward
and backward optical flows as the initial values for weights. Forward optical flow can be
further obtained from dense matching pairs

{
xA, xB

}
as follows:

VAB = xB − xA ∈ Rh×w×2 (10)

The backward optical flow VBA ∈ Rh×w×2 can be obtained by swapping the positions
of IA and IB in the above calculation. Here, due to the commutative properties of feature
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extraction, feature enhancement, and similarity computation operations, the backward
optical flow can be succinctly derived as follows:

VBA = (so f tmaxcol(S))
Tx

A − xA (11)

If the matches are accurate, the absolute value of the sum of forward and backward
optical flows ∆V =

∣∣VAB + VBA∣∣ ∈ Rh×w×2 should be zero. However, due to incorrect
matches, ∆V will be greater than zero, and the less accurate the matches, the larger the
value of ∆V. Therefore, the initial weights are set as follows:

w0 =
1

∆V
=

1∣∣VAB + VBA∣∣ (12)

At this point, we have obtained dense matching pairs between the two views and their
corresponding initial weights {x A, xB, w0

}
.

3.3.2. Iterative Updates

To obtain improved matching weights, an update module is utilized to iteratively
predict the residuals of weights at each step, with the core component being the ConvGRU
unit. Let wk represent the matching weights optimized after k iterations, and employing
the weighted eight-point method allows us to estimate the corresponding essential matrix
∼
Fk. A first-order approximation of geometric distance, namely the Sampson error [41], is
employed as the error metric for the essential matrix. The matching weights w are treated as
variables to be optimized, enabling the minimization of the error function to progressively

refine the estimate
∼
F towards the ground truth Fgt. For the Sampson error associated with

the i-th pair of matching points in the k-th iteration, the specific calculation formula is
as follows:

(ei)k =

[(
XB

i
)T∼FkXA

i

]2

(∼
FkXA

i

)2

x
+

(∼
FkXA

i

)2

y
+

(∼
FkXB

i

)2

x
+

(∼
FkXB

i

)2

y

(13)

Here, XA
i represents the three-dimensional homogeneous coordinates of the i-th pixel

in image IA, and
(∼

FkXA
i

)2

x
denotes the square of the x-coordinate value of the three-

dimensional vector
∼
FkXA

i .
Next, we employed the ConvGRU unit for optimization. The encoding results of wk

and ek, along with the context c, are concatenated as the Inputk to obtain the next hidden
state Hk+1:

Inputk = concat[Π(wk, ek), c] (14)

Hk+1 = ConvGRU(Inputk, Hk) (15)

Here, Π is a Convolutional Neural Network used to encode the weights wk and errors
ek. The context c and the initial hidden state H0 are obtained by linear transformations of
the enhanced reference image feature FA, followed by channel-wise splitting.

The weight residual ∆wk at the k-th step is obtained from Hk+1 through an output
head, which is also a three-layer Convolutional Neural Network. The update equations are
as follows:

∆wk+1 = weighthead(Hk+1)
(16)

wk+1 = wk + ∆wk+1 (17)
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3.4. Training Loss

We supervised the 2D–2D consistency prediction using the absolute difference between
the forward optical flow VAB and the ground truth optical flow VAB

gt :

Lmatch =
∥∥∥VAB − VAB

gt

∥∥∥
1

(18)

The pose loss is divided into two parts: rotation loss and translation loss:

L =
N−1

∑
k=0

γN−1−k(Lrot
k + βLtrans

k
)

(19)

Here, N represents the total number of iterations for updates. γ (set to 0.8) is used to
adjust the weight of the loss function corresponding to each iteration, with higher weights
assigned to later updates. Lrot

k and Ltrans
k represent the rotation and translation losses after

the k-th step of updates, respectively. β is a factor used to balance the scales of these
two losses, and in this paper, β is set to 1. The definitions of Lrot

k and Ltrans
k are as follows:

Lrot
k = min

3− tr
(

RT
gt
∼
Rk

)
4

, τrot

 (20)

Ltrans
k = min


1−

∼
t k ·tgt∥∥∥∼t k ·tgt

∥∥∥
2

, τtrans

 (21)

Here,
∼
Rk and

∼
t k represent the predicted rotation matrix and translation vector af-

ter the k-th step of updates, while Rgt and tgt represent their ground truth counterparts.
tr(∗) denotes the trace of a matrix, and ‖∗‖ represents the magnitude of a vector. τrot
(set to 0.0001) and τtrans (set to 0.1) are used to limit the upper bounds of the loss func-
tions, ensuring training stability. It is worth noting that the translation loss is a scale-
independent function, depending only on the angle between predicted and ground truth
translations. This choice is made because monocular reconstruction can recover scene struc-
ture but not its scale, and using a scale-independent loss function improves the model’s
generalization capability.

4. Experiments and Results
4.1. Datasets

We conducted training exclusively on the training dataset from TartanAir [12], which
includes the “Hard” portions of all 18 scenes. In addition, we used eight sequences MH000-
MH007 from the TartanAir challenge dataset as a validation set to evaluate the performance
of our method. Since TartanAir is a synthetic dataset, to demonstrate the effectiveness of
our algorithm in real-world scenarios, we conducted validation on the KITTI dataset [13]
without pretraining on this dataset.

4.2. Implementation Details

Our model was implemented using PyTorch [42] and Kornia [43] libraries. Kornia is
a differentiable computer vision library built on PyTorch, and we utilized it for fundamental
matrix estimation and differentiable decomposition of the essential matrix. We utilized the
AdamW optimizer and clipped the network gradients to ensure that their L2 norm is limited
to 1. The initial learning rate was set to 0.0001, and we used PyTorch’s ReduceLROnPlateau
as a learning rate scheduler, with patience set to 1 and a factor of 0.2. To strike a balance
between performance and efficiency, we set the total number of iterations for updates N to



Electronics 2023, 12, 4689 9 of 14

2. During training, we used a batch size of 16 on the TartanAir dataset, initially training the
feature extraction network Γ and the feature enhancement network Θ with the matching
loss function for 50,000 steps. Subsequently, we performed end-to-end training of the entire
model using the pose loss function for an additional 50,000 steps.

4.3. Evaluation

Similar to prior research, we used the Absolute Trajectory Error (ATE) [44] on the
TartanAir challenge dataset to measure the performance differences between different
methods. ATE represents the absolute difference between the ground truth and estimated
poses, providing an intuitive reflection of the global consistency between the predicted
and actual trajectories. To align the coordinate systems and scales of the two trajectories,
we needed to compute a similarity transformation matrix S ∈ Sim(3) that maps estimated
poses to ground truth poses. The definition of ATE is as follows:

ATE =

(
1
m

m

∑
t=1

∥∥∥trans
(

Q−1
t SPt

)∥∥∥2
) 1

2

(22)

Here, Pt ∈ SE(3) and Qt ∈ SE(3) are the estimated and ground truth poses corre-
sponding to the t-th frame of the trajectory, respectively. trans(·) denotes the translation
part of a pose matrix.

We used the sequences MH000–MH007 from the TartanAir dataset as a validation
set and measured the ATE metric to evaluate the model’s performance. The experimental
results are shown in Table 1. Compared to the ORB-SLAM, TartanVO, and DiffPoseNet
methods, our approach achieved the best results in six out of the eight sequences (MH000–
MH007) and had the lowest overall average ATE, reducing it by 24% compared to the
second-best method. Furthermore, on the MH004 and MH005 datasets, the traditional
method ORB-SLAM failed to track and produce results, indicating that learning-based
methods exhibit stronger robustness compared to traditional methods.

Table 1. ATE(m)↓ on the MH sequences of the TartanAir dataset. Bold text represents the best results,
while underlined text represents the second-best results.

Methods MH000 MH001 MH002 MH003 MH004 MH005 MH006 MH007 Average

ORB-SLAM [14] 1.30 0.04 2.37 2.45 - - 21.47 2.73 -
TartanVO [25] 4.88 0.26 2.00 0.94 1.07 3.19 1.00 2.04 1.92

DiffPoseNet [45] 2.56 0.31 1.57 0.72 0.82 1.83 1.32 1.24 1.30

Ours 1.24 0.15 0.67 0.29 1.50 1.43 0.89 1.24 0.93

To demonstrate the effectiveness of GMIW-Pose on real datasets, we validated our
method on five sequences of the TUM-RGBD dataset: 360, desk, desk2, rpy, and xyz.
TUM-RGBD is a real dataset captured using handheld devices, covering multiple scenarios
such as offices, corridors, and lobbies. As shown in Table 2, our method achieved the best
performance in three of these scenarios, with the overall average Absolute Trajectory Error
(ATE) being the smallest, which is 22% lower than the second-best method.

Table 2. ATE(m)↓ on TUM-RGBD dataset. Bold text represents the best results, while underlined text
represents the second-best results.

Methods 360 desk desk2 rpy xyz Average

ORB-SLAM2 [46] - 0.016 0.078 - 0.004 -
TartanVO [25] 0.178 0.125 0.122 0.049 0.062 0.107

DiffPoseNet [45] 0.121 0.101 0.053 0.056 0.048 0.076

Ours 0.109 0.057 0.042 0.045 0.040 0.059
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In addition, we conducted experiments on four sequences (06, 07, 09, and 10) from
the KITTI tracking dataset. The KITTI dataset contains real-world traffic scene data that
are well-calibrated and the dataset is commonly used as a benchmark in the SLAM field.
We used the KITTI metric [13] as the evaluation criteria, which calculates the average drift
distance (trel in m/100 m) and rotation error (Rrel in degree/m) for every 100 m of trajectory
in the range of 100 to 800 m. We compared our method with other approaches, including
DeepVO, Wang et al., UnDeepVO, GeoNet, TartanVO, BiLevelOpt, ORB-SLAM, VISO2-M,
and DiffPoseNet, and the experimental results are presented in Table 3. The results show
that our method achieved either first or second place in the majority of the test sequences.
The average drift distance decreased by 8% compared to DiffPoseNet. It is worth noting that
our model, like TartanVO and DiffPoseNet, was trained only on the TartanAir dataset and
was not fine-tuned on the KITTI dataset. This not only demonstrates the effectiveness of
GMIW-Pose on real-world datasets but also highlights its strong generalization capabilities.

Table 3. trel↓ and Rrel↓ on KITTI dataset. Bold text represents the best results, while underlined text
represents the second-best results.

Methods
06 07 08 09 10 Average

trel Rrel trel Rrel trel Rrel trel Rrel trel Rrel trel Rrel

DeepVO [47] 5.42 5.82 3.91 4.60 - - 8.11 8.83 - - - -
Wang et al. [48] - - - - 8.04 1.51 6.23 0.97 - - - -
UnDeepVO [49] 6.20 1.98 3.15 2.48 - - 10.63 4.65 - - - -

GeoNet [24] 9.28 4.34 8.27 5.93 26.93 9.54 20.73 9.04 16.30 7.21 16.30 7.21
TartanVO [25] 4.72 2.95 4.32 3.41 6.03 3.11 6.89 2.73 5.49 3.05 5.49 3.05

BiLevelOpt [26] - - - - 4.36 0.69 4.04 1.37 - - - -
ORB-SLAM [14] 18.68 0.26 10.96 0.37 15.3 0.26 3.71 0.3 12.16 0.30 12.16 0.30

VISO2 m [50] 7.34 6.14 23.61 19.11 4.04 1.43 25.2 3.84 15.05 7.63 15.05 7.63
DiffPoseNet [45] 2.94 1.76 4.06 2.35 4.02 0.51 3.95 1.23 3.74 1.46 3.74 1.46

Ours 2.59 1.39 3.89 2.13 3.55 1.45 3.68 0.88 3.43 1.46 3.43 1.41

4.4. Ablations

• Robust Estimation of the Fundamental Matrix: In GMIW-Pose, we initially used the
weighted eight-point algorithm to estimate the fundamental matrix, but we replaced
it with RANSAC and LMedS for comparison, as shown in Table 4. The experimental
results indicate a significant performance drop when replacing the weighted eight-
point algorithm with RANSAC and LMedS [51]. This drop in performance can be
attributed to the fact that the 2D–2D matching at the front end is performed on coarse-
level features, leading to bias in the set of inlier matches selected by RANSAC and
LMedS. In contrast, the weighted eight-point algorithm not only effectively addresses
this situation but is also differentiable, allowing for a smooth training process.

Table 4. ATE(m)↓ on the MH sequences of the TartanAir dataset for the variants of GMIW-Pose. Bold
text represents the best results, while underlined text represents the second-best results.

Methods MH000 MH001 MH002 MH003 MH004 MH005 MH006 MH007 Average

RANSAC [9] 14.11 2.24 7.26 1.27 2.20 15.27 4.40 7.22 6.75
LMedS [51] 12.60 1.19 6.24 1.73 2.39 6.80 1.04 13.45 5.68

Ours 1.24 0.15 0.67 0.29 1.50 1.43 0.89 1.24 0.93

• Number of Iterations: We compared the impact of different numbers of iterations on
performance, as illustrated in Figure 3. As the number of iterations N in the update
module increases, the ATE error decreases. However, beyond N = 2, increasing the
number of iterations has diminishing returns on model performance. Considering the
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balance between computational efficiency and performance, setting N to 2 is a suitable
choice for practical use.
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5. Conclusions

In this paper, we propose a novel method, GMIW-Pose, to estimate camera relative
poses. To address the generalization issues faced by learning-based direct methods due
to scale ambiguity, we adopt a structure based on epipolar geometry, which offers strong
interpretability. Additionally, we introduce feature enhancement and global matching to
establish dense consistency between two views, mitigating the limitations of traditional
matching methods in complex scenes. Finally, to robustly estimate camera poses from
dense consistency, we employ the weighted eight-point algorithm and iteratively optimize
matching weights using the ConvGRU module. The experimental results show that GMIW-
Pose achieved advanced performance on the TartanAir dataset and can be generalized to
the TUM-RGBD and KITTI real datasets without training.

Furthermore, the weighted dense matching pairs obtained by GMIW-Pose can be
directly used to reconstruct dense three-dimensional scenes. In the future, we plan to
extend its application to multi-view scenarios, leveraging information from multiple frames
for further optimization to achieve superior performance. Specifically, we can extend the
current two-view epipolar geometry constraints to three-view trifocal tensor constraints and
even more views [52]. In addition to geometric constraints, photometric consistency among
multiple views is also a crucial constraint. Differentiable rendering techniques [53,54] can
be employed to reconstruct images, minimizing photometric losses between the original
images and the reconstructed images and facilitating self-supervised pose learning.
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