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Abstract: Water distribution networks are often susceptible to pipeline leaks caused by mechanical
damages, natural hazards, corrosion, and other factors. This paper focuses on the detection of leaks
in water distribution networks (WDN) using a data-driven approach based on machine learning.
A hybrid autoencoder neural network (AE) is developed, which utilizes unsupervised learning to
address the issue of unbalanced data (as anomalies are rare events). The AE consists of a 3DCNN
encoder, a ConvLSTM decoder, and a ConvLSTM future predictor, making the anomaly detection
robust. Additionally, spatial and temporal attention mechanisms are employed to enhance leak
localization. The AE first learns the expected behavior and subsequently detects leaks by identifying
deviations from this expected behavior. To evaluate the performance of the proposed method, the
Water Network Tool for Resilience (WNTR) simulator is utilized to generate water pressure and flow
rate data in a water supply network. Various conditions, such as fluctuating water demands, data
noise, and the presence of leaks, are considered using the pressure-driven demand (PDD) method.
Datasets with and without pipe leaks are obtained, where the AE is trained using the dataset without
leaks and tested using the dataset with simulated pipe leaks. The results, based on a benchmark
WDN and a confusion matrix analysis, demonstrate that the proposed method successfully identifies
leaks in 96% of cases and a false positive rate of 4% compared to two baselines: a multichannel
CNN encoder with LSTM decoder (MC-CNN-LSTM) and a random forest and model based on
supervised learning with a false positive rate of 8% and 15%, respectively. Furthermore, a real case
study demonstrates the applicability of the developed model for leak detection in the operational
conditions of water supply networks using inline sensor data.

Keywords: pipe leak detection; machine learning; attention mechanism; spatio-temporal anomaly;
autoencoder; dynamic threshold adjustment

1. Introduction

Non-revenue water loss, which goes mostly unnoticed, is a huge problem worldwide
due to several factors, such as underground water pipe network aging, material failure,
inappropriate installation, and pipe corrosion [1]. Therefore, technologies and strategies
for the detection of leaks and their location, as well as methods for predicting water pipe
failure, are vital for water managers and agencies to be able to develop countermeasures
with the following significant socio-economic benefits [2]:

1. Conservation of water: Water is a finite resource, and leaks in distribution networks
can lead to significant water loss. Detecting and repairing leaks promptly can help
conserve water and ensure its sustainable use.

2. Financial savings: Water leaks can result in substantial financial losses for water
utilities. By detecting leaks early, utilities can minimize the cost associated with
repairing and replacing infrastructure and reduce the amount of treated water that
goes to waste.
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3. Infrastructure integrity: Leaks in water distribution networks can indicate deteriorat-
ing infrastructure. By detecting and addressing leaks promptly, utilities can identify
areas of concern and prevent further damage or potential failures.

4. Environmental impact: Water leaks can have negative environmental consequences.
Excessive water loss can deplete local water sources, harm ecosystems, and contribute
to water scarcity in regions already facing water stress. Detecting and fixing leaks can
mitigate these impacts.

5. Public health and safety: Leaks in water distribution networks can lead to contamina-
tion of the water supply, posing health risks to consumers. Detecting and resolving
leaks promptly helps maintain the quality and safety of drinking water.

6. Operational efficiency: Effective leak detection methods can improve the operational effi-
ciency of water utilities. By identifying and addressing leaks quickly, utilities can optimize
their resources, reduce energy consumption, and enhance overall system performance.

However, pipe leak detection and localization come with various challenges, such as
non-uniformity of pipes, complex network topology, noise interference, limited accessibility,
and cost implications.

1. Non-uniformity of pipe materials and sizes: Water distribution networks consist of
pipes made of various materials and sizes, making it challenging to develop universal
leak detection techniques that can be applied to all pipes.

2. Complex network topology: Water distribution networks often have complex network
topologies with numerous interconnected pipes, valves, and fittings. This complexity
poses difficulties in accurately locating leaks and identifying their sources.

3. Noise interference: Background noise from traffic, construction, and other activities
can interfere with leak detection methods, making it harder to detect and pinpoint
leaks accurately.

4. Limited accessibility: Some pipes may be buried underground or located in hard-to-
reach areas, making it difficult to physically inspect them for leaks.

5. Cost implications: Implementing leak detection technologies and repairing leaks can
be costly, especially for large-scale water distribution networks. The challenge lies in
balancing the cost of leak detection with the potential benefits of reduced water loss.

Overcoming these challenges requires the development of innovative and reliable leak
detection techniques, as well as effective strategies for prioritizing and repairing leaks in a
cost-effective manner.

There have been several developments in strategies which differ in complexity for leak
detection and location. Basically, there exist methods based on sensors, transient signals,
physical models, and data [3]. For the first method, mobile optical, electromagnetic, or
acoustic sensors are used. These sensors are quite expensive, and their set up and data
analysis are either time consuming or require heavy human involvement (e.g., ground
penetrating radar). Furthermore, the quality of their measurements largely depends on the
type and size of leak, materials used for the pipes, and the type of the soil and soil condition
where the pipeline is buried (e.g., sub bottom profiler) [4]. A method for leak detection in
water distribution systems using both pressure and acoustic measurements is presented
in [5]. It discusses the principles and algorithms used for leak detection and presents case
studies to demonstrate the effectiveness of the approach. Furthermore, ref. [6] proposes
a modified cepstrum technique for acoustic leak detection in water distribution pipes. It
discusses the algorithm and signal processing techniques used and presents experimental
results to validate the effectiveness of the method.

Transient signal analysis has been widely used for leak detection in water distribution
pipes [7–10]. Various methods and techniques have been proposed to effectively detect and
localize leaks using transient signals [11–14]. However, there are challenges associated with
this approach. Transient signals decay with distance, requiring high spatial and temporal
resolution for accurate detection [15]. Additionally, the Negative Pressure Wave (NPW)
technique, which is a popular and cost-effective approach, involves analyzing pressure data
from multiple transducers to identify and locate leaks [16]. However, the pressure data is
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often noisy and requires computationally expensive processes for denoising. Furthermore,
the initial pressure drop caused by the leak dissipates quickly, and the negative pressure
wave decays as the system reaches a new condition of equilibrium. The pressure data is
also convoluted with known and spontaneous events, such as multiple pumps and possible
leak events.

Strategies based on physical models of the WDN, e.g., EPANET, are frequently used,
and they can identify leaks and localize their positions [17,18]. They are based on mathe-
matical models used to analyze system behavior and identify anomalies that may indicate
the presence of leaks. These methods utilize hydraulic and/or statistical models to simulate
the flow and pressure conditions in the network and compare them with measured data
to detect deviations that could be caused by leaks. However, these methods also have
limitations, such as the need for accurate network models and calibration, the reliance on
accurate input data, and the computational complexity of some modeling approaches. As
with all physical models in all domains, detailed information which is difficult to find,
such as the user demand, pipe condition, water pressure distribution, etc., is required for
a hydraulic model to be implemented. Furthermore, soft sensing approaches using hy-
draulic modeling are vulnerable to measurement uncertainties, noise, and calibration drifts.
This makes physical model-based systems very difficult to implement in real systems [18].
Therefore, there is a clear need for fast models that can tolerate uncertainties and noisy data
while minimizing detection time, false-positive alarms, and false-negative alarms.

Two things emerging now are expert knowledge [19] and data-based methods. Usu-
ally, these methods require only input–output data which is readily available from data
acquisition (SCADA) systems: real-time monitoring data of water pressure and/or flow
rate in comparison to the comprehensive data required by the physical-based models. Data-
driven methods based on machine learning have been studied, for example, in [20]. The
primary challenges of using data-driven methods have been described in [21]. They include
problems with unbalanced data when using supervised learning and fluctuating water
use patterns [22]. Some authors have attempted to solve these issues, e.g., in [3,21], using
prediction-classification methods, or as in [23], by using adaptive methods for predicting
water demand at night when water use is low. However, these methods require that the
water demand trend is predictable in order to avoid false alarms. Furthermore, water pres-
sure can be affected similarly by a high water demand or by a leak. These influences can
be very difficult to differentiate when considering only single nodes for training without
considering spatial relationships. For example, an intact water pipeline at a high average
water demand ratio can show similar behavior to a leaking pipe with low average water
demand ratio. The machine learning model, however, allows us to extract features from
the spatial pattern in the pressure data at multiple nodes and therefore allows us to differ-
entiate leaking versus non-leaking conditions. As shown by the authors of [21], with their
DenseNet neural network, the spatial relationship between multiple nodes in the water
distribution network can be used to mitigate these false alarms. Unfortunately, the authors
used spatial information in supervised learning which faced the previously mentioned
problem of unbalanced data due to an insufficient amount of data under leaking conditions.

In this paper, we developed a hybrid deep learning framework encoder–decoder neu-
ral network for leak detection and localization using data generated by a pressure-driven
demand hydraulic simulator based on EPANET and WNTR. The model treats the pipe
leaks as anomalies. The hybrid autoencoder network is composed of a 3D convolutional
neural network (CNN)-based spatio-temporal encoder and a convolutional Long Short-
Term Memory (ConvLSTM) network-based spatio-temporal decoder, as well as a future
predictor. A spatial attention mechanism is used to improve the pipe leak localization
and interpretability of the results. The complete model is designed to be trained in a truly
unsupervised fashion for anomaly detection in non-image spatio-temporal datasets.

As in all anomaly detection methods based on unsupervised learning, it first learns the
expected behavior and detects leaks based on deviations from the expected behavior. To
overcome the challenges of unbalanced data and the uncertainty of user demand described
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previously, this novel method based on an autoencoder for leak detection uses both the
spatial and temporal information and requires training data from the normal behavior only.
The spatial pattern among a group of nodes is used in leak detection and to identify leak
conditions. The combination of reconstruction and future prediction makes the system
robust for anomaly detection.

The demonstration of our method for pipe leak detection is performed using a bench-
mark study and a real case study and compared to two baselines. These demonstrations
help to evaluate the performance and effectiveness of the method in detecting leaks in
water distribution networks.

2. Materials and Methods
Study of Water Distribution Networks

Two water distribution networks were used for the studies in this paper. The first
water distribution network for this study is shown in Figure 1. The D-Town network,
which was studied in [24], is made up of 399 points, 443 pipes, 7 tanks, 5 valves, and
11 pumps that are divided into 5 pumping stations. This information is illustrated in
Figure 2. In accordance with Item 2, all nodes in the network were calibrated to have the
same emission coefficient, Ce, which was set to 0.03. This resulted in a water loss of 28%.
The initial daily water consumption in the network is 159,617 cubic meters, which, based
on an average consumption of 150 L per person per day, corresponds to a population of
1.06 million people.

Electronics 2023, 12, x FOR PEER REVIEW 4 of 21 
 

 

As in all anomaly detection methods based on unsupervised learning, it first learns 

the expected behavior and detects leaks based on deviations from the expected behavior. 

To overcome the challenges of unbalanced data and the uncertainty of user demand de-

scribed previously, this novel method based on an autoencoder for leak detection uses 

both the spatial and temporal information and requires training data from the normal 

behavior only. The spatial pa>ern among a group of nodes is used in leak detection and 

to identify leak conditions. The combination of reconstruction and future prediction 

makes the system robust for anomaly detection. 

The demonstration of our method for pipe leak detection is performed using a bench-

mark study and a real case study and compared to two baselines. These demonstrations 

help to evaluate the performance and effectiveness of the method in detecting leaks in 

water distribution networks. 

2. Materials and Methods 

Study of Water Distribution Networks 

Two water distribution networks were used for the studies in this paper. The first 

water distribution network for this study is shown in Figure 1. The D-Town network, 

which was studied in [24], is made up of 399 points, 443 pipes, 7 tanks, 5 valves, and 11 

pumps that are divided into 5 pumping stations. This information is illustrated in Figure 

2. In accordance with Item 2, all nodes in the network were calibrated to have the same 

emission coefficient, Ce, which was set to 0.03. This resulted in a water loss of 28%. The 

initial daily water consumption in the network is 159,617 cubic meters, which, based on 

an average consumption of 150 L per person per day, corresponds to a population of 1.06 

million people. 

 

Figure 1. D-Town Water distribution network showing the pipelines and the demand nodes. Figure 1. D-Town Water distribution network showing the pipelines and the demand nodes.

This network was utilized to evaluate the proposed method for leak detection and
classification. To assess the performance of the method, two common evaluation metrics
were employed: the confusion matrix and the ROC curve. The confusion matrix is a
tabular representation that summarizes the results of a classification model. It provides
a detailed breakdown of the number of true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN) predicted by the model. In the context of leak
detection, true positives represent correctly identified leaks, true negatives indicate correctly
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identified non-leak instances, false positives represent instances where non-leaks were
incorrectly classified as leaks, and false negatives indicate instances where leaks were
missed or not detected. By analyzing the confusion matrix, it is possible to assess the
accuracy and performance of the proposed method. The values in the matrix can be used to
calculate various evaluation metrics, such as precision, recall, and F1-score, which provide
insights into the model’s ability to correctly classify leaks and non-leaks. In addition to the
confusion matrix, the Receiver Operating Characteristic (ROC) curve is another commonly
used evaluation tool for classification models. The ROC curve plots the true positive rate
(sensitivity) against the false positive rate (1-specificity) at different classification thresholds.
It visualizes the trade-off between correctly identifying leaks and incorrectly classifying
non-leaks as leaks. The area under the ROC curve (AUC) is a metric that quantifies the
overall performance of the classification model. A higher AUC indicates a better ability
to distinguish between leaks and non-leaks, with values closer to 1 indicating higher
accuracy. By utilizing both the confusion matrix and the ROC curve, the study was able to
comprehensively evaluate the performance of the proposed method for leak detection and
classification in the D-Town water distribution network. These evaluation metrics provide
valuable insights into the accuracy, precision, and overall effectiveness of the method in
identifying and classifying leaks in the network.
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The second case study presented focuses on a real water distribution network (WDN).
This network consists of 112 nodes and 126 connection pipelines, with water being supplied
by a single reservoir. The elevations of the nodes in the network range from 90 m to 120 m,
indicating variations in the terrain. Additionally, the length of the pipes in the network
ranges from 90 m to 130 m, suggesting different distances and levels of connectivity
between the nodes. The purpose of using this real WDN in the study was to evaluate the
practicability and applicability of the proposed model in real-world situations. By utilizing
a real network, the study aimed to assess the model’s performance and effectiveness in
a realistic setting, where variations in elevations, pipe lengths, and network topology
are present. The evaluation of the model in this real WDN involved the application of
the proposed method for leak detection and classification. The model was tested on this
network to detect and classify leaks accurately, and its performance was evaluated using
evaluation metrics such as the confusion matrix. By conducting the evaluation on a real
WDN, the study aimed to provide practical insights into the model’s performance and
its potential for real-world implementation. The results obtained from this case study
would help validate the effectiveness of the model and provide valuable information for
decision-makers and practitioners in the field of water distribution network management.

3. Methods

The approach is shown in Figure 1 and is composed of three stages. It starts with the
generation of data for the normal case and for cases with pipeline leakages using a hy-
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draulic model for water distribution networks. In this pre-processing stage, a multivariate
spatio-temporal dataset is generated so that the deep autoencoder network can exploit
the spatial and temporal contexts jointly. The subsequent stage is the data reconstruction
and prediction stage, which is executed by a deep hybrid autoencoder network. The
autoencoder’s neural network is trained to learn the normal situation using the dataset
for the normal case. The third stage is the anomaly detection stage, which is performed
based on the reconstruction error. After training, the autoencoder’s neural network can
be used to find anomalies (pipeline leaks) in the test dataset. Hereby, a threshold is given
on the deviations of the signals from the normal case and violation of the threshold is an
indication of an anomaly. These subcomponents will be described in the following sections,
starting with data generation.

3.1. Generating Data for Model Training

To accommodate fluctuations in water demand, data noise, and leaks it is necessary to
use a hydraulic model for a water distribution system that can consider pressure-driven
demand and leakage flow at the pipe level. Various hydraulic models have been developed
for this purpose, as mentioned in references [25,26]. The main objective of the standard
EPANET implementation, which follows a strict demand-driven approach, is to accurately
simulate functioning networks. In this model, water demands are assumed to be predefined
inputs. Each node in the model is described by water and energy mass balance equations.
The water balance equation (Equation (1)) states that, in the absence of leaks, the inflow of
water into a pipe node must be equal to the outflow of water.

∑p∈Pn
qp,n − Dact

n = 0,∀n ∈ N (1)

where Pn denotes the set of pipes connected to the node n, qp,n is the flow rate of water into
node n through pipe p (m3/s), Dact

n is the actual water demand at node n (m3/s), and N is
the number of nodes in the water distribution network.

The total water head, which includes kinetic energy, hydraulic potential energy, and
gravitational potential energy, is balanced by the energy. This equation is referenced
as [27]. However, when simulating systems with fluctuating water demand, data noise, and
pipeline leaks, it is common to have reduced pressures. In these cases, a hydraulic model
with Pressure Driven Demand (PDD) consideration is necessary [25]. In a PDD hydraulic
model, the values of nodes depend on the local pressure, as shown in Equation (2). The
model assumes that each node can be in one of three states: fully served, partially served
(with reduced demand), or non-served (with no water withdrawal) when the pressure
is zero.

D =


0 p ≤ P0

D f

(
p−P0

Pf−P0

)1/2
P0 ≤ p ≤ Pf

D f p > Pf

(2)

where D represents the current demand, D f represents the desired demand in cubic meters
per second (m3/s), p represents the water pressure, p f represents the pressure at which
the desired demand should be met, and p0 represents the minimum water pressure below
which no water will be supplied at that location.

The Water Network Tool for Resilience ver. 1.0.0 (WNTR) is a python package that is
based on EPANET. It implements the hydraulic network in off-design conditions and is
used to construct the water supply network and solve the hydraulic equations [26]. For data
collection purposes, the package was utilized to run iteratively with various combinations
of random parameters that describe the water supply network in both design and off-design
forms. This was achieved by altering the water demand within each range, introducing
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noise to the data, and simulating leaks in the water distribution network. The leaks are
modeled using the orifice Equation (3) [26].

dleak = Cd Ap∂

√
2
ρ

(3)

where dleak is the equivalent water demand due to leak (m3/s), Cd is the discharge coef-
ficient, with a default value 0.75, A is the area of leak, p is the internal water pressure,
the exponential ∂ is the discharge coefficient, which is 0.5 for steel pipe, and ρ is the
water density.

This custom demand described in Equation (3) rapidly increases to a randomized total
demand. Such leak demands were placed at random locations and times. The leaks can
be either randomly generated or fixed at predefined times and locations. The number and
magnitude of leaks can also vary, creating more complex situations. The area values will
be chosen randomly between 0.00012 m2 and 0.00050 m2; they are the values used in [28].
The ranges for the randomness of water usage, pipe conditions, and data noise were taken
from the literature. According to [29], baseline water demand can fluctuate 0.3 times to
1.3 times, depending on the time of the day. The pipe conditions are described with the
dimensionless roughness coefficient with values which are uniformly distributed between
100 to 300. Gaussian noise N(0, σ) is added to the water distribution network to account
for the uncertainty in the data in general. For the case study, the baseline demand of each
service node is taken from the range of 0.008 to 0.012 L/s, assuming a Gaussian distribution
with variance σ = 0.01 L/s. Eleven demand ratios from 0.3 to 1.3 are considered during the
data generation with the hydraulic model for the WSN. The lower and the upper bounds
of the pressure head at the nodes are set to 5 m and 30 m, respectively. Several simulations
were conducted for each combination of parameters while recording the water pressure at
all nodes. For the test dataset similar simulations were run, but this time some pipelines
were cutoff, and data was recorded.

The WNTR simulator needs some improvement in order to avoid memory leaks. The
problem is that the simulator saves all intermediate and output data to the RAM, which
can easily cause memory overflow. To avoid this, the input data is sliced into segments,
saving only the final outputs to the memory. Finally, these outputs are rescaled back to the
original timescale.

For modelling the individual water networks’ nodes, the nearest neighbor search is
applied to each target node to find its nearest neighbors within a given distance, which
enables using a limited set of sensors. The distance between nodes is calculated by a Dijkstra
path-finding algorithm which finds the closest sensors weighted by their connection length.
Using the WNTR simulator, the pressures of the closest nodes are taken as inputs and the
target nodes as output. With this data, two modelling approaches can be followed: (1) A
model can be created for each target node, or (2) the data of all nodes can be concatenated
into a 3D tensor to model all the nodes with one model. The 3D tensor in Figure 2 is built
using multivariate time series data from m different spatial sensors Si, where i = 1 . . . m are
the nearest neighbors. The sliding window technique of window size T is used to build the
3-dimensional data. d represents the number of univariate timeseries. The best m can be
found empirically for each problem domain.

3.2. Deep Learning Autoencoder

The proposed autoencoder network comprises a 3D convolutional neural network
(CNN) and a spatio-temporal decoder component which has a Convolutional Long Short-
term Memory (ConvLSTM) network and spatial and temporal attention mechanism. Its
structure is shown in Figure 3. The encoder part is based on a 3D CNN, which can capture
spatial and temporal features from the input data. It takes in a sequence of 3D volumetric
data, which represents the water system condition over time, and extracts relevant features
using the convolutional layers. These layers perform convolutions in both the spatial
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and temporal dimensions, allowing the network to learn spatial and temporal patterns in
the data. To effectively use the information related to location and time in the input, we
have made modifications to the 3DCNN model by incorporating an attention mechanism.
This involves assigning dynamic weights to the input features based on their spatial
importance. By utilizing the spatial attention module and temporal attention module,
we can dynamically adjust the attention weights, thereby improving the performance of
the model.
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The decoder part of the network is a Convolutional Long Short-term Memory (ConvL-
STM) network. ConvLSTM is an extension of the traditional LSTM architecture that can
handle spatio-temporal data. It was introduced in [30] for abnormal event detection and
motion estimation in videos, because of its capability to utilize both spatial and temporal
information. It uses convolutional operations instead of fully connected layers to process
both spatial and temporal information. The ConvLSTM network takes the encoded features
from the 3D CNN and decodes them in order to reconstruct the input data.

By combining the 3D CNN and ConvLSTM network, the autoencoder can effectively
capture both spatial and temporal dependencies in the input data. This hybrid approach
allows for accurate detection of pipe leaks by learning and reconstructing the normal
condition of the pipe. Any deviations from the normal condition can be identified as
potential leaks.

References [31,32] have shown that combining anomaly detection architectures based
on the combination of reconstruction and future prediction make the anomaly detection
system robust against noise. Reconstruction methods in autoencoders aim to minimize the
reconstruction error for training data, which means they try to reconstruct the input data
as accurately as possible. However, this approach may not guarantee large reconstruction
errors for abnormal events. Abnormal events may still be reconstructed with relatively
low error if they share some similarities with the normal training data. On the other hand,
future prediction methods take a different approach. They operate under the assumption
that normal events are predictable, meaning that the future instances can be accurately
predicted based on past data. In contrast, abnormal events are considered unpredictable,
and their future instances cannot be accurately predicted based on the past data. Therefore,
in this paper, an approach that combines the methods is developed in order to conduct
forecasting and reconstruction sequentially. Forecasting makes the reconstruction errors
large enough to facilitate the identification of abnormal events, while reconstruction helps
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enhance the predicted future from normal events. Specifically, two ConvLSTM network
blocks are connected to the decoder part. One block works in the form of forecaster, and the
other reconstructs the signals. By focusing on the predictability of future data, this approach
can effectively identify abnormal events that are not captured by reconstruction methods.

Overall, the proposed autoencoder network for pipe leak detection combines the
strengths of 3D CNN and ConvLSTM to effectively capture and process spatial and tem-
poral information, enabling accurate detection of pipe leaks. Based on 3D convolutional
operations on the multivariate spatio-temporal data, the temporal features along with the
spatial features can be better preserved. The input data are reconstructed as a 3-dimensional
cuboid by stacking multivariate data frames. By applying such an idea, dimensionality
reduction, both in a spatial and temporal context, can be achieved for a given input window
during the encoding phase.

For each target node, a sample dataset with the water pressure information of its
neighborhood generated as previously described is used for training. A total of 70% of the
normal non-leaking dataset is normalized and used for training. The remaining 30% of the
normal non-leaking dataset is used for validation. For testing the model, the dataset from
the leaking conditions is used but normalized based on the mean and variance values of
the non-leaking dataset. Hereby, two scenarios were simulated: (1) leak in the target node
and (2) leaks in the input pipelines (i.e., leaks in the neighbors).

The 3DCNN-ConvLSTM model is a complex model that requires considerable compu-
tational resources to run effectively during inference compared to a Random Forest model
or MC-CNN-LSTM. In order to make the model more efficient and suitable for real-time op-
erating conditions, we utilized Dynamic range quantization. Dynamic range quantization
is a technique used to reduce the computational complexity of a model by quantizing the
weights and activations to a lower precision format. This reduces the memory footprint and
computational requirements of the model without significantly sacrificing its performance.
By applying dynamic range quantization to the 3DCNN-ConvLSTM model, we were able
to achieve a noticeable improvement in computation speed. Specifically, the model’s infer-
ence time on a CPU was reduced by 1.28 times compared to running the model without
quantization. This means that the model can now process data faster, making it more
suitable for real-time applications.

3.3. Anomaly Detection Stage (Leak Detection)

In this stage, the anomalies (leaks) are found by calculating the sum of the recon-
struction and forecasting errors as anomaly score. For a model trained by a dataset of
only non-leak conditions, a large reconstruction error occurs if data of leaking conditions
are supplied at the input, because the relationship described by the trained AE neural
network is not valid under such conditions. By setting a threshold in the construction
error, the AE model can classify if a set of data corresponds to a leaking situation or a
non-leaking situation.

Let x = {x(1), x(2), ..., x(T)} and y = {y(1), y(2), ..., y(H)} be univariate time series
data representing one of the reconstructed features and its forecasts, and T and H are the
length of the input and prediction windows, respectively. Each data point x(i) represents a
data reading for that feature at time instance ti. The mean absolute error (MAE) is used
to calculate the reconstruction and forecast error for the given period (input window +
prediction window) for each feature as

MAE(x) = 1/T∑T |xi − x̂i|+ 1/H∑H |xi − x̂i| (4)

where xi is the observed value and x̂i is the reconstructed value at time instance ti.
Dynamic threshold adjustment based on the moving averages is used to continuously

update the threshold based on the latest observations.
To deal with exceptions, we used three different methods in the real case. After the

initial anomaly detection, a post-processing step is performed to refine the results. We
applied statistical tests, considering temporal dependencies, and incorporating domain
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knowledge to validate and filter out false positives. We also involved human experts
to evaluate the end results. They provided domain-specific knowledge to identify and
interpret anomalies that may be falsely captured by automated methods. Lastly, we could
employ a combination of different anomaly detection algorithms (our model and the two
baselines) to increase the chances of detecting anomalies effectively. As will be seen, each
algorithm has its strengths and weaknesses, so using multiple approaches can provide a
more comprehensive analysis.

3.4. Baselines

Two baselines were considered for comparison with our method. The first baseline MC-
CNN-LSTM is also based on unsupervised learning. It consists of two main components:
the MC-CNN-Encoder and the LSTM decoder. The MC-CNN-Encoder is responsible for
extracting spatial features from the input data, while the LSTM decoder captures temporal
dependencies and reconstructs the sequence data. The MC-CNN-Encoder is composed of
two convolutional blocks, each containing four layers. The first layer is a 2D convolutional
layer with a kernel size of (2 × 2) and 16 filters. This layer applies a set of filters to the input
data, extracting spatial features. Zero-padding is used to maintain the spatial dimensions
of the input. The output of the convolutional layer is then passed through an activation
layer, which introduces non-linearity to the feature maps. This helps in capturing complex
patterns and relationships in the data. Next, a 2D max-pooling layer is applied to the
feature maps. This layer reduces the spatial dimensions of the input by half, using a pool
size of (2 × 2) and strides of (2 × 2). Max-pooling selects the maximum value within
each pooling region, further highlighting important features. Finally, a channel-wise batch
normalization layer is applied to normalize the feature maps across different channels. This
helps in improving the stability and generalization of the model. The second convolutional
block follows a structure similar to the first block, but with a larger kernel size of (3 × 3)
and 32 filters. This allows for capturing more complex spatial features. The output of the
MC-CNN-Encoder is a set of spatial feature maps that are dependent on previous time
steps. To capture these temporal dependencies, the LSTM decoder is utilized.

The LSTM decoder takes the feature maps from the MC-CNN-Encoder and processes
them through an LSTM block. The LSTM block consists of memory cells that can store and
update information over time. This allows the model to capture long-term dependencies in
the input sequence. The output of the LSTM block is then passed through a fully connected
neural network (FCNN) layer. This layer maps the LSTM output to the desired output
sequence, reconstructing the original sequence data.

The second baseline model is based on the random forest (RF) algorithm designed by
Leo Breiman, which combines the results of several decision trees. The random forest is an
extremely random tree regressor, which is different from the way that standard decision
trees (DTs) are built. When looking for the best split to separate the samples of a node into
two groups, random splits are drawn for each of the randomly selected features, and the
best split among those is chosen. According to the data structure described in the data
processing section, the RF model was realized according to how the spatial information was
incorporated. Coordinate grids as engineered features were generated and added as extra
columns. The RF was implemented and optimized in Python using Bayesian Optimization.
A grid of hyperparameter ranges was defined, a random sample was taken from the grid,
and a K-Fold CV was performed with each combination of values. The random forest
model’s parameters (max_depth, max_features, min_samples_leaf, min_samples_split, and
n_estimators) were tuned during cross validation. The following parameters were found:
max_depth = 70, min_samples_leaf = 4, min_samples_split = 10, and n_estimators = 100 for
the case studies.

3.5. Evaluation

The anomaly score in the proposed method is calculated based on two factors: (1) the
difference in gradient between the model (for early detection) and the real values and
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(2) the mean absolute error. The difference in gradient measures the deviation between the
predicted values from the model and the actual values in the water distribution network. A
larger difference indicates a higher likelihood of an anomaly or abnormal behavior in the
system. The mean absolute error, on the other hand, quantifies the average magnitude of
the errors between the predicted and actual values. A higher mean absolute error suggests
a higher level of uncertainty or inaccuracy in the model’s predictions. By combining these
two factors, the anomaly score provides a comprehensive assessment of the deviation and
uncertainty in the system. A higher anomaly score indicates a higher probability of an
anomaly or abnormal event occurring in the water distribution network. For anomaly
detection, the value of the threshold of the reconstruction and forecast errors for deciding
whether values are anomalies need to be determined. Therefore, a statistics histogram of
reconstruction and forecast errors in non-leaking and leaking conditions was constructed
for the case study to see whether the two conditions are separable. For localization of
the pipe leaks, the individual errors of the individual features are examined to find the
feature with the maximum contribution to Equation (4). Further spatial attention weights
generated by the attention mechanism are analyzed to find the relationships between the
nodes. These weights indicate the importance or relevance of different regions or pipes in
the network for leak localization. The attention weights are visualized to gain insights into
the network’s behavior. This is completed by overlaying the attention weights on a map
of the water distribution network and highlighting the pipes with high attention weights.
These areas are likely to have leaks or require further investigation.

As the target nodes take their neighbors’ information as inputs, the presence of large
errors in the target node can result from themselves having leaks or their neighbors. Once
a target node is identified as anomalous or abnormal, additional investigation is conducted
by examining its neighboring nodes. The purpose of this investigation is to determine
the exact cause or source of the anomaly. By analyzing the information received from the
neighbors, researchers aim to identify whether the target node itself is responsible for the
error or if it is caused by the information received from its neighbors.

This approach allows for the detection of leaks and other anomalies in the system by
identifying instances where the anomaly score exceeds a certain threshold. By monitoring
the anomaly score over time, it is possible to detect and respond to anomalies promptly,
minimizing the impact on the network and improving its overall performance.

4. Results

The hydraulic model of the D-Town WSN is built using the WNTR software Version
1.0.0. The model considers the actual water demands at each node and simulates both non-
leaking and leaking scenarios in order to generate the necessary data sets for evaluating the
leak detection algorithm. The results are as follows: The histogram of the reconstruction
errors of the non-leaking and leaking conditions is shown in Figure 4. The reconstruction
error of data under normal non-leaking situation is small, with 97.5% of reconstruction error,
which is less than 1.5 × 10−3. The validation of the dataset under leaking conditions shows
large reconstruction errors. Fortunately, this clear difference in behavior makes the selection
of the threshold values much easier. The difference can be used to define the threshold for
leak detection. Figure 4 shows that, for the case study, a threshold of reconstruction error
of 4 × 10−3 can be used to differentiate the leak versus non-leak situations.

To evaluate the network under leak conditions, the network has been subjected to
various leak scenarios over a period of one week, each with different characteristics. Some
leaks showed a gradual increase in flow over time, while others had a sudden and imme-
diate appearance. Figure 5 provides a visual representation of the flow behavior for each
node where leaks were simulated.

The data indicates that the leaks were not clustered together but rather occurred at
spaced intervals. However, there was also a situation where leaks happened simultaneously
in different locations, specifically at nodes J372 and J1025. Overall, this information highlights
the complexity and diversity of the leak scenarios that were simulated on the network.
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Figure 6 provides valuable information about the behavior of the water distribution
system during both normal operation and leak events and shows the values of the pressure
deficit throughout the simulation over time. The pressure deficit is an important parameter
to monitor as it indicates the difference between the actual pressure in the network and
the desired pressure. In a well-functioning system, the pressure deficit should be minimal
and within acceptable limits. However, during leak events, the pressure deficit increases
significantly, indicating a drop in pressure. By examining Figure 5, it is possible to identify
the moments when there are leaks in the system. These are indicated by high pressure
deficits, which correspond to a sudden drop in pressure. This information is crucial for
leak detection, as it allows for the timely identification of leaks and the implementation
of appropriate measures for repair and maintenance and allows for the evaluation of the
effectiveness of the leak detection method.

Overall, the analysis of Figure 6 demonstrates the importance of monitoring pressure
deficits and other system parameters to detect and evaluate the impact of leaks. The
visualization provided by these plots allows for a better understanding of the behavior
of the system during normal operation and leak events, enabling effective leak detection
and management.

The discussion continues with the analysis of Figure 7a, which demonstrates that the
proposed method successfully detects all the leaks in the network and accurately predicts
their duration. This is a crucial aspect of leak detection as it allows for timely repairs and
maintenance to be carried out. Figure 7b provides further insight into the causes of the
detected leaks, showing that they correspond to the registered causes. This indicates that
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the method can accurately identify the sources of the leaks, which is essential for effective
leak management and mitigation.
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To provide a comprehensive evaluation of the method’s performance, an unbalanced
dataset of size 6375 is used as input, out of which only 13% (834) specifically pertains
to leakage signals. Hereby, a data ratio of 60/20/20 is used in the training, validation,
and test of the model. The resulting confusion matrix of our method is presented in
Table 1. This matrix summarizes the results and allows for a better understanding of the
classification accuracy. It shows the number of true positives, true negatives, false positives,
and false negatives, providing a quantitative assessment of the method’s performance.
With this unbalanced data, our method shows a true–false rate of only 4%, compared to
the random forest (RF) model showing 15% false positives and 0.01% false negatives and
the MC-CNN-LSTM showing 8% false positives. The random forest method shows, as
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expected, that it ignores fewer classes even though the data for the random forest method
was improved using the Synthetic Minority Over-Sampling Technique for Regression with
Gaussian Noise (SMOGN).

Table 1. Confusion matrix.

Non Leakage Prediction Leakage Prediction

Our
Method RF MC-CNN-

LSTM
Our

Method RF MC-CNN-
LSTM

Non
leakage
reality

1063 (0.96) 930 (0.84) 1019 (0.92) 45 (0.04) 191 (0.15) 101 (0.08)

Leakage
reality 0.0 19 (0.01) 14 (0.01) 166 (1.0) 134 (0.81) 140 (0.10)

Additionally, the Receiver Operating Characteristic (ROC) curve in Figure 8 illus-
trates the trade-off between the true positive rate (sensitivity) and the false positive rate
(1-specificity) at different classification thresholds. The ROC curve is a common tool used to
evaluate the performance of classification models. A higher area under the curve (AUC)
indicates a better performance of the method in distinguishing between positive and nega-
tive instances.
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distribution network.

Overall, the analysis of Figures 7a,b and 8, and Table 1 demonstrates that the proposed
method is effective in detecting and classifying leaks in the water distribution network.
It accurately identifies the leaks, predicts their duration, and provides insights into their
causes. This information can be used to prioritize repairs, allocate resources efficiently, and
ultimately reduce water loss in the network.

The evaluation of the confusion matrix in terms of accuracy reveals that the detection
method achieved an 86% score. According to reference [33], this indicates a high level of
accuracy in leak detection. This suggests that the proposed leak detection process in this
research ensures a reliable detection rate using existing monitoring data. The methodology
proposed is straightforward and efficient, demonstrating its effectiveness in leak detection.
The analysis of the leaks, which were classified false positive and false negative showed that
the majority of the leaks were of short duration, less than thirty minutes, or the leakage area
was very small, less than 0.0001 m2. Furthermore, the poor classification also happened in
time instants where that water demand fluctuations were high.
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The second case study presented in the discussion highlights the effectiveness of the
model in detecting and predicting leaks in a real network. In the second case study, the
training dataset consisted of 5680 samples, while the validation and test sets had sizes
of 1274 and 2116 samples, respectively. However, since there were only seven recorded
instances of leakages in the real case, all of them were included in the test dataset. This
means that the test dataset contained only the seven samples with leakages, while the
remaining samples were distributed between the training and validation sets. In this case,
four leaks were registered in pipes ‘J439’, ‘J95’, ‘J183’, and ‘J1025’ over a period of 60 h.
These leaks occurred at different times and some of them overlapped.

Figure 9a illustrates the reconstruction and forecast errors of the model when applied to
this test case. It is observed that the model performs well in detecting and predicting the leaks,
as the errors are relatively small for most of the period. However, there are two noticeable
periods where large errors are observed, namely from 2 to 8 h and from 50 to 52 h.
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errors and (b) individual errors.

To further investigate the causes of these errors, Figure 9b provides an analysis. It is
evident that the main causes of the errors are the pipes where the leaks occurred, namely
‘J439’, ‘J95’, ‘J183’, and ‘J1025’. This finding is expected, as these pipes were the ones where
the leaks were registered.

Overall, this case study demonstrates the practical applicability of the model in real-
world scenarios. The model successfully detects and predicts leaks in the network, with
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only a few instances of larger errors. This suggests that the model can be easily deployed
and utilized to effectively manage and maintain water distribution networks, ultimately
reducing water loss and improving overall system efficiency.

The detection time of the leak is a critical factor in leak management, as it directly
impacts the efficiency and effectiveness of the response. By detecting the leak early, the
necessary repairs can be carried out promptly, minimizing the impact on the water distri-
bution system and reducing the potential for further damage or water loss. Therefore, the
second case study was also used to analyze the detection time of the leaks. This is especially
important for leaks which develop with time. A leak on node J230 resembles this feature
and the results of detection are shown in Figure 10. This leak is of particular interest as it
develops over time, making it crucial to detect it as early as possible to minimize water loss
and potential damage.
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Figure 10. Leak detection of a gradually increasing leak using a pressure threshold method and our
encoder method.

The graph shows the detection time of the leak on node J230 over a period of 60 h. It is
observed that the proposed method successfully detects the leak at around 11.3 h, almost
an hour earlier (TD1) than the simple pressure threshold method (TD2), and accurately
predicts its duration. This early detection allows for prompt action to be taken to repair the
leak and prevent further water loss.

Furthermore, the principle of balanced class is fundamental in most machine learning
models, as it ensures that all classes are given equal importance. However, unbalanced
input data present a challenge as they can cause the models to overlook the minority classes.
In the context of leak detection, the number of leakage signals is significantly lower than the
number of non-leakage signals. To address this, the study analyzed the ratio of leakage to
non-leakage signals in the training dataset and compared it to a random forest model based
on supervised learning after applying Synthetic Minority Over-Sampling Technique for
Regression with Gaussian Noise (SMOGN) to find the optimal over- and undersampling
necessary to improve the data. The models were then trained and evaluated using different
ratios, including 1:3, 1:2, 1:1, 4:3, 3:2, and 2:1. The evaluation results are depicted in Figure 9
for recall rate and F1-score. Figure 11a,b demonstrates that the evaluation metrics of the
machine learning models exhibit patterns similar to the proportion of data variations. Our
method is hardly affected by the ratio of the leakage to non-leakage conditions. As for the
supervised learning-based random forest model, as the proportion approaches 1 to 4:3,
the changes in the evaluation metrics become less pronounced. When the proportion of
leakage to non-leakage signals is less than one, the recall rate and F1 value decrease rapidly,



Electronics 2023, 12, 4665 17 of 20

indicating a decline in the models’ classification performance. On the other hand, when the
proportion exceeds 4:3, there is no significant improvement in the evaluation metrics as the
ratio increases. However, it is important to note that collecting more leakage data would
increase the cost of data acquisition. Therefore, this study chooses to train the random
forest model with a proportion of one for the input data.
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5. Discussion

The literature reviews have indicated that detecting leaks in water distribution net-
works is a complex task that requires significant computational resources and real-time
capabilities. The main challenges arise from a lack of monitoring data, noisy data, and
intermittent water demand. Fluctuations in water demand make it difficult for computer
algorithms to differentiate between non-leaking and leaking conditions. Traditional meth-
ods such as using inspection tools or physical models are expensive, labor-intensive, and
cannot achieve real-time detection. Additionally, implementing physical models in wireless
sensor networks (WSN) is challenging due to the complex topology and uncertainty in
hydraulic conditions, requiring domain expertise.

An alternative approach, commonly found in the literature, is leak detection using
transient responses. However, this method requires capturing transient signals during the
short period when a leak occurs, necessitating a high sampling rate. A more promising
approach in the era of artificial intelligence is the use of data-driven methods that utilize
machine learning models. These approaches can provide real-time and reliable leak detec-
tion. The rationale behind these methods is that the spatial pattern of water pressure and
its variations under leak conditions are influenced by the network structure of the water
distribution system and should be considered in leak detection.

In this study, a hybrid autoencoder model is proposed, which incorporates both
spatial and temporal information for leak detection. This model can detect leaks even
with unbalanced data, meaning it can work with data collected under normal operational
conditions. Additionally, the model utilizes multiple sensor nodes for detection, making it
more robust than data-driven models that only use data from a single node. The proposed
method can provide near real-time leak detection with high accuracy and does not require
extensive domain expertise to implement. Unlike leak detection based on transient signals,
which necessitates high sampling rates, the autoencoder model learns from the spatial
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patterns in the data and only requires sensors with low sampling rates. While data used
for model training and validation in this study are from data generated by a high fidelity
model for WSN. The framework is readily applied to real-world data as could be shown in
the second case study.

Here are some key findings and results from our study using 3DCNN ConvLSTM
autoencoders for spatial-temporal pipe leak detection:

1. Improved detection accuracy: The combination of 3DCNNs and ConvLSTMs has been
found to improve the accuracy of leak detection compared to traditional methods.
The network can effectively capture spatial features and temporal dynamics, enabling
the detection of subtle changes in flow and pressure patterns caused by leaks.

2. Early detection of leaks: The 3DCNN ConvLSTM autoencoder has shown the ability to
detect leaks at an early stage, even before they become significant and easily detectable
through traditional methods. This early detection can help prevent further damage
and reduce water loss.

3. Accurate leak localization: The network’s ability to capture spatial information allows
for accurate leak localization. By comparing the input and output frames, the network
can identify the specific pipes or areas where leaks are likely to be located. This enables
targeted repair and maintenance actions, reducing the time and effort required for
leak detection and repair.

4. Robustness to noise and variations: The 3DCNN ConvLSTM autoencoder has demon-
strated robustness to noise and variations in the data. It can handle fluctuations in flow
rates, pressure levels, and other factors that may affect the accuracy of leak detection.
This robustness improves the reliability of the system in real-world operating conditions.

5. Generalizability across networks: The 3DCNN ConvLSTM autoencoder has been
shown to be applicable to different types of water distribution networks, including
networks with varying sizes, pipe materials, and topologies. This generalizability
makes it a versatile approach that can be implemented in various contexts.

While the results of using 3DCNN ConvLSTM autoencoders for spatial-temporal
pipe leak detection are promising, there are still some challenges and limitations. These
include the need for large and diverse training datasets, the computational complexity of
the network architecture, and the requirement for accurate and reliable sensor data.

Overall, the use of 3DCNN ConvLSTM autoencoders for spatial-temporal pipe leak
detection in water distribution networks offers a data-driven approach that can improve
the accuracy, early detection, and localization of leaks. Further research and development
in this area can lead to more effective and efficient leak detection systems for sustainable
water management.

6. Conclusions

In conclusion, this paper highlights the importance of leak detection in water distri-
bution networks and emphasizes the need for water companies to minimize water loss
and improve efficiency. The proposed method utilizes a hybrid framework of an autoen-
coder, combining a 3D convolutional neural network (CNN) and a spatio-temporal decoder
component called a Convolutional Long Short-term Memory (ConvLSTM) network.

By considering the spatial and temporal relationship of water pressure at multiple
nodes in a water distribution network, the autoencoder network successfully detects leaks.
The inclusion of spatial and temporal attention modules further enhances the accuracy of
both leak detection and localization.

To validate the effectiveness of the proposed method, data for the experiments is
generated using the WNTR simulator, which incorporates pressure-driven demand nodes,
leaking conditions, fluctuating water demand, and data noise based on the EPANET
hydraulic model. The results of the leak detection experiments on benchmark and real case
studies, along with the comparison with two baselines, demonstrate the robustness and
high accuracy of the developed model in detecting leaks.
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Overall, this paper provides valuable insights into the application of deep learning
techniques for leak detection in water distribution networks. The proposed method shows
great potential for practical implementation by water companies to minimize water loss
and improve operational efficiency.
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